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ABSTRACT

Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broad-
ened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of
biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global per-
spectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil com-
munities defined as ‘biocrust’, it is worth asking whether we all share a clear, universal, and fully articulated definition of
what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust
researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological rel-
evance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements:
physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have
some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be consid-
ered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of bio-
crusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel &
Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles

and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea)
organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence
and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent
layer.With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope
to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall
importance to ecosystem and Earth system functioning.
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I. INTRODUCTION

Biological soil crusts (hereafter biocrusts) occur globally in
ecosystems where limited vascular plant cover allows sunlight

to reach the soil surface (Fig. 1); they are especially predom-
inant in water-limited ecosystems. Biocrusts’ relevance to
ecosystem functioning is well documented: they stabilize the
soil surface, thus effectively reducing erosion by both wind
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and water (Eldridge & Leys, 2003; Barger et al., 2006; Zhang
et al., 2006; Bowker et al., 2008; Chaudhary et al., 2009; Bel-
nap, Munson & Field, 2011; Faist et al., 2017); fix carbon
and nitrogen, fertilizing nutrient-poor dryland soils
(Lange & Green, 2004; Veluci, Neher & Weicht, 2006;
Elbert et al., 2012; Su, Wu & Zhang, 2012; Barger
et al., 2016; Sancho et al., 2016); influence local and regional
water cycling (Zhang et al., 2009; Bowker et al., 2013; Kid-
ron & Büdel, 2014; Chamizo et al., 2016; Eldridge
et al., 2020); and have multifaceted effects on plant germina-
tion and growth (Zhang et al., 2016; Ferrenberg et al., 2018;
Havrilla et al., 2019). According to a recent estimate, bio-
crusts currently cover about 12% of Earth’s terrestrial surface
and about 30% of all dryland soils (Rodriguez-Caballero

et al., 2018a). Despite their prevalence, biocrusts are imper-
illed by global change factors, in particular the combined
effects of land-use intensification and climate change, which
may cause a strong decrease in biocrust coverage at local,
regional, and global scales (Reed et al., 2012; Maestre
et al., 2013; Ferrenberg, Reed & Belnap, 2015; Rodriguez-
Caballero et al., 2018a). Because biocrusts are both imper-
illed and key to ecosystem functioning, their influence on eco-
systems and consequences of their loss should be
incorporated into analyses and models of global change
(Elbert et al., 2012; Barger et al., 2016; Sancho et al., 2016;
Ferrenberg, Tucker & Reed, 2017; Rodriguez-Caballero
et al., 2018b). Land managers, nature conservation organiza-
tions, policy makers, landscape architects, and the broader

Fig. 1. Sites of biocrust studies in dryland and non-dryland regions. Biocrusts occur in all drylands around the world, but also in non-
dryland regions if microclimatic conditions are suitable. Composition of biocrust types varies depending both on continent and
climatic region. Dryland regions shown according to UNCCD (UNEP-WCMC, 2007). Biocrust study sites marked according to
list in Rodríguez-Caballero et al. (2018a). Biocrust types occurring in the different dryland and non-dryland regions are presented
in inset bar charts, with the number of described sites of occurrence on the y-axis. Bar charts are presented for the different
continents, excluding Antarctica.
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society need to consider and safeguard biocrusts to sustain
the ecosystem services they provide (Lopez-Rodriguez
et al., 2020).

Interest in biocrusts has experienced a dramatic increase
over the past few decades. The number of publications deal-
ing with biocrusts (or synonymous terms) in 2021 has
increased threefold compared with all publications up to
the year 2000 (252 compared to 86; search conducted on
January 14, 2022; see online Supporting Information,
Fig. S1), with research conducted on all continents (Weber,
Belnap & Büdel, 2016a) (Fig. 1). Other disciplines, such as
vegetation and soil science, animal ecology, physiology,
remote sensing, and hydrology have also begun to appreciate
the relevance of biocrusts, incorporating them into studies
during recent years (Karnieli et al., 2003; Dumack
et al., 2016; Havrilla et al., 2019; Eldridge et al., 2020). Given
this increasing interest in biocrusts and acknowledgement of
their importance, many researchers and land managers alike
are frequently asked whether or not a specific community
‘qualifies’ as a biocrust or not, often noting that different per-
spectives and characterizations are used. These experiences
suggest that a universal definition of biocrusts would be ben-
eficial to ensure a more consistent usage of the term and clar-
ify what sets biocrust communities apart from other
biological communities with similar features.

Much of the early literature on biocrusts did not specifi-
cally use the term ‘crust’ (reviewed in Friedmann &
Galun, 1974), instead referring to “terrestrial algae”
(Fritsch, 1922), “soil algae” (Friedmann, Lipkin & Ocampo-
Paus, 1967), “cryptogamic covers” (Zhu, 1960; Kleiner &
Harper, 1972; Jiang et al., 1995), “soil surface lichens”
(Rogers, 1972), or “surface stratum” (Shields, Mitchell &
Drouet, 1957). Fletcher & Martin (1948) was an exception,
reporting them as “rain-crusts.”A first attempt at a definition
was made by Reiners, Worley & Lawrence (1971), who stud-
ied primary succession at Glacier Bay (USA). They coined
the term “black crust”, describing it as a “cohesive, felt-like
crust on the soil surface” with successional roles in “soil stabi-
lization, soil-moisture retention, organic matter accumula-
tion, and seed-bed modification” (Reiners et al., 1971,
p. 59). This early definition mentions structural and func-
tional properties, and identified the soil surficial habitat.
They described black crusts as “multi-species colonies” com-
prising unrelated organisms of bryophytes, cyanobacteria,
and lichens, adding a taxonomic element to the definition.
West (1990, p. 180) in a global review defined “microphytic
crusts” as “the complex of mosses, lichens, liverworts, algae,
fungi and bacteria at the soil surface.” He went on to note
that ferns and club mosses are not part of these communities,
following Cameron (1978), again suggesting a taxonomic ele-
ment to the emerging definition (Friedmann & Galun, 1974).
For a detailed review on the recognition and past naming of
biocrusts, see Lange & Belnap (2016).

The first attempt at a comprehensive definition of bio-
crusts was presented in the initial review volume on bio-
crusts (Belnap & Lange, 2003), where the authors focused
on the taxonomy, habitat, physical structure and function

of biocrusts. They stated “biological soil crusts result from
an intimate association between soil particles and cyanobac-
teria, algae, microfungi, lichens, and bryophytes (in different
proportions) which live within, or immediately on top of, the
uppermost millimeters of soil. Soil particles are aggregated
through the presence and activity of these biota, and the
resultant living crust covers the surface of the ground as a
coherent layer” (Belnap et al., 2003, p. 3). The ecological rel-
evance of biocrusts was stressed in the second review volume
(Weber, Büdel & Belnap, 2016b), explaining that biological
soil crusts “consist of microscopic (cyanobacteria, algae,
fungi, and bacteria) and macroscopic (lichens, bryophytes,
and microarthropods) poikilohydric organisms that occur
on or within the top few centimetres of the soil surface. In
regions where water availability limits vascular plant cover,
these communities are especially visible, creating an almost
continuous living ‘skin’ that mediates most inputs, transfers,
and losses across the soil surface boundary” (Belnap,
Weber & Büdel, 2016, p. 3).

Thus, the definitions of the 21st century clarify that bio-
crusts are characterized simultaneously by their taxonomy,
habitat, physical structure, and ecological functions, but from
these short passages it still is not always clear what are the
essential properties of biocrusts, what is the underlying ratio-
nale, or what is not a biocrust.

Based on these gaps in current biocrust definitions and as
an aid to attract new interest in biocrusts from a scientific
and practical perspective, this review will: (i) identify the
key elements defining a biocrust, namely their habitat, phys-
ical structure, function, and taxonomy; (ii) distinguish other
communities and features which exhibit some, but not all rel-
evant biocrust features, and thus are not biocrusts; (iii)
describe the variation within the bounds of our definition,
including biocrust variants shaped by differing environ-
ments; (iv) propose a universal definition of biocrusts.

II. BIOCRUST-DEFINING ELEMENTS

Biocrusts can be defined by elements related to habitat, func-
tion, physical structure, and taxonomy. The combination of
these characteristics, summarized in Figs 2 and 3 and
described in the following subsections, provides a thorough
definition of biocrusts.

(1) Habitat characteristics

First, we define biocrusts as a community of organisms dwell-
ing on the soil surface. This includes hypolithic biocrusts that
colonize soils on the sides and beneath translucent rocks
(Figs 2, 3; Pointing, 2016). We exclude organisms that pre-
dominantly grow in or on rocks, leaves, and wood
(e.g. endolithic cyanobacteria, saxicolous lichens and bryo-
phytes, and epiphytes), although we acknowledge there
may be situations in which it is appropriate to study all such
communities together (Elbert et al., 2012).
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Most examples of biocrusts from the literature occur on
and within the uppermost surface of the soil (usually an organo-
mineral A horizon) or, in some highly degraded situations,
on the exposed underlying mineral horizon (Gretarsdottir
et al., 2004). We do not rule out the possibility that biocrusts
can grow on anO (organic layer) horizon, but generally com-
munities in those habitats do not display other key biocrust
properties (e.g. aggregating soil particles; for an expanded
discussion, see Section III.3). Further, most biocrusts occupy
terrestrial soils that desiccate regularly, and, generally speaking,
are dry more often than not (Figs 2, 3; Raggio et al., 2014;
Büdel, Williams & Reichenberger, 2018). We exclude any
sediment-associated communities that occur in freshwater,

marine, or intertidal habitats (commonly referred to as
‘mats’ or ‘microbial mats’; Stal, 1994). We are also unaware
of any examples of hydric soils supporting biocrusts; normally
such soils either accumulate large amounts of organic matter
or are characterized by high vascular plant productivity such
that insufficient light reaches the soil surface to support the
growth of biocrusts.

(2) Physical structural characteristics

Because of the soil aggregation conducted by biocrust organ-
isms, and its location only at the soil surface, a detectable
structural shift occurs at the soil surface: namely, a physically

Fig. 2. Biological soil crust (biocrust) definition based on a decision tree approach.
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cohesive, thin and somewhat hardened upper surface layer
(Figs 2, 3). This particular structural configuration is consis-
tent with the general usage of the word ‘crust’: a hardened
outer surface (e.g. as in a bread crust or the Earth’s crust).
Within the biocrust, or immediately below it, the amount of
soil fine particles is often increased due to both dust entrap-
ment and soil weathering processes, reinforcing the distinc-
tiveness of the biocrust from underlying soil (Chen
et al., 2009; Garcia-Pichel et al., 2016). In some cases, bio-
crusts can contain several hardened layers on top of each
other, resulting from recurring biocrust burial and new reco-
lonization on top (Malam Issa et al., 2009; Drahorad & Felix-
Henningsen, 2013; Felde et al., 2014; Gao et al., 2017).

The thickness of biocrusts is a relative, rather than abso-
lute, value, although we note that most examples from the lit-
erature describe communities that are no more than one to a few
centimetres thick (Figs 2, 3; Belnap et al., 2003; Zhao et al., 2006;
Belnap et al., 2016). Nonetheless, we are aware of communi-
ties where the biocrusts may be thicker, such as semi-arid tall
moss communities that have substantial above-ground bio-
mass up to several cm thick (Rosentreter, Bowker &
Belnap, 2007). Biocrust thickness is relative to the soil hori-
zon in which it grows; for example, a typical biocrust gener-
ally encompasses only a small fraction of the depth of an A

horizon. Biocrusts alone do not generally constitute soil hori-
zons. Because they are thin, biocrusts tend to break under
pressure, rather than yielding and deforming.

(3) Functional characteristics

Perhaps the core functional element in the definition of a bio-
crust is that the component organisms and their exudates
aggregate surface soil particles, increasing the stability of the soil
surface above that of the underlying soil (Figs 2, 3, 4A;
Eldridge & Leys, 2003; Zhang et al., 2006; Chaudhary
et al., 2009; Jimenez Aguilar et al., 2009; Belnap
et al., 2014). A biocrust is thus different from a physical soil
crust, because the aggregation is at least partially and often
primarily engineered by living (i.e. biocrust) organisms. In
particular, secretions of extracellular polymeric substances
and filamentous biological structures (e.g. moss rhizoids,
lichen rhizines, cyanobacterial filaments) are key to generat-
ing this aggregation (Fig. 4B; Hu et al., 2002; Neuman &
Maxwell, 2002; Mager & Thomas, 2011; Rossi, Mugnai &
Philippis, 2018).

Biocrusts contain photosynthetic organisms. These photo-
autotrophs fix atmospheric carbon dioxide and thus require pres-
ence at the soil surface.

Fig. 3. Biological soil crust (biocrust) definition illustrated in a Venn diagram. Ovals represent the four major elements of our biocrust
definition. Biocrusts are consistent with the region where all four overlap. Other ‘outgroups’ are also mapped and labelled on the
diagram, with the main reasons for their distinction from biocrusts listed. Parenthetical numbers indicate the relevant section of
this review for each outgroup.
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Biocrusts are extremotolerant (Fig. 2). They can withstand
extreme temperatures and low precipitation through desic-
cation tolerance (Lange, Belnap & Reichenberger, 1998;
Raggio et al., 2014; Green & Proctor, 2016). Once dry, bio-
crust organisms are in a largely inactive physiological stage
characterized by a wide tolerance of extreme environmental
conditions (Mazor et al., 1996; Karsten, Herburger &
Holzinger, 2016). Biocrust organisms withstand high levels
of UV radiation by manufacturing sunscreen pigments

(e.g. scytonemin; Soule et al., 2009; Karsten &
Holzinger, 2014), and many components (e.g. the cyanobac-
terium Microcoleus and related genera) can also tolerate high
salinity levels (Kakeh et al., 2021).

(4) Taxonomic composition

A taxonomic definition of biocrusts is fraught with difficulty
because biocrusts are comprised of an assortment of

Fig. 4. Illustration of characteristics that define biocrusts (A, B) and of features that are not biocrusts (C–H). (A) Biocrusts aggregate
surface soil particles, thus stabilizing soils; Sakaik�a sclerophyllous shrubland, La Gran Sabana, Venezuela. (B) Filamentous biological
structures (cyanobacterial filaments) cause a soil aggregation; Colorado Plateau, Southern Utah, USA. (C) Physical crust; Knersvlakte
at Goedehoop farm, South Africa. (D) Microbial mat; Shannah, Oman. (E) Fungus of the genus Bovista with mycelium; Graz, Austria.
(F) Vagrant Xanthoparmelia sp. (green) growing on top of a regular biocrust; Colorado Plateau, Southeast Utah (photographs: courtesy
of Kyle Doherty). (G) Cyanobacterial macrocolonies; former limestone quarry, Aschfeld, Germany. (H) Lichen and bryophyte carpet,
Illulisat, Greenland.

Biological Reviews 97 (2022) 1768–1785 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

1774 Bettina Weber and others



photoautotrophic and heterotrophic organisms that span domains,
kingdoms, and phyla (Figs 2, 3). The photoautotrophic com-
ponent includes multiple lineages, namely cyanobacteria,
algae, lichens, and bryophytes, but excludes ferns, fern allies,
and vascular seed plants (Cameron, 1978; West, 1990). Cya-
nobacteria, algae, lichens and bryophytes all belong to the
historical grouping of ‘cryptogams’ (meaning ‘hidden repro-
duction’), which are organisms reproducing by spores rather
than seeds, all lack highly developed vascular tissue and
many, if not most, of them are able to desiccate regularly.
Thus, the photoautotrophic component of biocrusts is composed of

non-vascular cryptogams. Despite this grouping not being phylo-
genetically based, it is useful, and some recent literature has
returned to using this term to describe the majority of the
photoautotrophic biocrust components, because they tend
to co-occur in similar habitat types where they engineer phys-
ically and functionally similar communities (e.g. Elbert
et al., 2012; Deane-Coe & Stanton, 2017). As the dominating
photoautotroph is one of the important determinants of bio-
crust type, this descriptor is often used in the literature
[i.e. cyanobacteria-, lichen-, or bryophyte-dominated bio-
crusts (Lazaro et al., 2008; Büdel et al., 2009)].

In addition to the photoautotrophic cryptogams, biocrusts
contain a great diversity of microbial heterotrophs, including
fungi, bacteria, and archaea (Maier et al., 2018, 2022; Abed
et al., 2019; Pombubpa et al., 2020). These organisms can con-
sume the carbon compounds released by the photoautotrophs
during rainfall events (Beraldi-Campesi et al., 2009). Biocrusts
create a habitat that is occupied by microfauna such as proto-
zoa, nematodes, tardigrades, rotifers, and microarthropods
(Neher et al., 2009; Liu et al., 2011). Thus, biocrusts form entire
foodwebs/ecosystems, made up of photoautotrophic pro-
ducers and heterotrophic consumers (Fig. 5).

III. WHAT IS NOT A BIOCRUST?

There are features, structures, organisms, or community
types on soil and other substrates that share some, but not
all, biocrust characteristics. The boundary between what is,
and what is not, a biocrust is often not clearly defined and
intermediate forms may be found (Figs 2, 3). We do not view
this as problematic, but rather typical of most commonly rec-
ognized types of biological communities (e.g. ecotonal com-
munities). Below, we present several instructive examples of
‘outgroups’ that may be encountered and that cannot be
considered biocrusts (see Fig. 2).

(1) Physical crusts

Physical crusts are created by abiotic processes (Figs 2, 3).
Compressional and shear forces, such as raindrops, runoff,
hooves and vehicles, disrupt soil aggregates; with additional
rain, the individual soil particles then reform into a hard-
packed layer (Valentin & Bresson, 1992; Pagliai &
Stoops, 2010). Alternatively, precipitated salts in the soil that

form through evaporation can aggregate surface particles
into a physical crust (Fang et al., 2007; Bu, Wu &
Yang, 2014). Physical crusts are particularly common in
hot deserts and disturbed lands (Fig. 4C). Over time, they
may be colonized by biocrust biota and transform into bio-
crusts. Thus, physical crusts and biocrusts often co-occur,
especially in dryland settings (Malam Issa et al., 2011; Beau-
gendre et al., 2017).

(2) Freshwater, intertidal, and marine mats

In shallow freshwater, marine, intertidal, and other non-
ephemeral aquatic settings, the sediment within the water is
often colonized by ‘microbial mats’ (Stal, 1994). These
microbial mats consist of both photoautotrophic and hetero-
trophic organisms which occur as layers, giving the commu-
nity a ‘striped’ appearance (Schulz, 1937). As in biocrusts,
heterotrophic anaerobes are found in the deeper strata,
whereas the photoautotrophs occur in the uppermost layers
(Figs 2, 3, 4D). These communities are also extremotolerant,
as they are subjected to rapid changes of osmotic pressure,
regular desiccation, and high ultraviolet (UV) load (Bolhuis,
Cretoiu & Stal, 2014; Prieto-Barajas, Valencia-Cantero &
Santoyo, 2018). While there are many similarities between
microbial mats and biocrusts, they are excluded because they
are not clearly terrestrial and are often inundated by water.

Fig. 5. Biological soil crusts (biocrusts) form miniature
ecosystems. They are composed of photoautotrophic producers
(i.e. cyanobacteria, algae, lichens, and bryophytes; shown in
green), microfauna acting as consumers (i.e. protozoa,
nematodes, tardigrades, rotifers, and microarthropods; shown
in blue), and decomposers (i.e. fungi, bacteria, and archaea;
shown in red). Colouration of drawing by Renate Klein-
Rödder, originally published in Belnap & Lange (2003);
courtesy of Springer.
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(3) Fungal mycelial mats

Non-flooded soils with substantial organic matter, such as
forest floors, are dominated by fungi with varying functional
roles from saprobic decomposers to pathogens to mycorrhi-
zal heterotrophs (Griffiths, Castellano & Caldwell, 1991).
Fungi create underground networks of hyphae, or mycelia,
often near the soil surface where organic matter is concen-
trated, but they may densely or diffusely permeate an entire
soil horizon (Figs 2, 3, 4E). While mycelia clearly contribute
to soil aggregation and fungal hyphae are generally found
within biocrusts, fungal mycelial mats are excluded from bio-
crusts for two reasons: there are no photosynthetic organisms
present and they are not purely a soil surface phenomenon.

(4) Vagrant lichens, moss balls, and detached
cyanobacterial colonies

Both mosses and lichens may become detached from the soil
surface in some environments, including some of the drylands
occupied by biocrusts (Perez, 1991; Rosentreter, 1993). These
may be taxa that sometimes are part of a biocrust when they
are within or attached to the soil surface (e.g. Xanthoparmelia
spp.; Eldridge & Leys, 1999). In the detached or vagrant state,
they are transportable by wind, water, and gravity (Figs 3, 4F).
Despite habitat overlap and some functional and taxonomic
similarity, we consider vagrant organisms to be distinct from
biocrusts because they do not aggregate soil particles, as most
of their biomass rests on top of it.

In a variety of habitats around the world, from the tropics
to the Arctic and Antarctic, large (up to several centimetres in
diameter) foliose or stringy colonies of cyanobacteria (notably
Nostoc) may periodically develop rapidly and cover substan-
tial proportions of either soil, rock, or the built environment
(Fig. 4G). They may persist on the soil surface or in the soil.
Although the genus Nostoc is an important component of bio-
crusts around the world, the detached macrocolonies of Nos-
toc commune and Nostoc flagelliforme are distinguished from
biocrusts, because they occur above the soil rather than being
attached to it, and they do not contribute to the aggregation
of soil particles. Further, like vagrant lichens and moss balls,
the dry colonies may be distributed by the wind. Thus, we
suggest that in the detached, vagrant state, these colonies
do not constitute biocrusts.

(5) Lichen/bryophyte carpets and peat bogs

In regions where water is seldom limiting, lichens and bryo-
phytes can be a dominant component of the ecosystem, as
in the ‘lichen meadows’ and ‘bryophyte carpets’ found in
tundra and taiga ecosystems (Figs 2, 3, 4H). Such carpets
can also occur in some temperate regions in habitats where
vascular plants are limited in growth, for example, by low
light conditions inside a forest (e.g. forest ‘bryoid layers’).
Peat bogs form in frequently flooded soils; in these communi-
ties, the growing front of Sphagnummosses is near the surface,
whereas beneath there may be substantial accumulations of
dead biomass.

All these communities may accumulate substantial living
and dead biomass, lending them a thickness usually of several
centimetres or much more. Most of the moss or lichen bio-
mass occurs above the mineral soil surface, and most of the
live photoautotrophic tissue generally does not make contact
with the mineral soil surface nor does it aggregate it. When
subjected to compressional forces, their soft and sponge-like
structure can bend and yield, rather than be crushed and
broken like biocrusts.

IV. VARIATIONS IN FORM AND FUNCTION
WITHIN BIOCRUSTS

Globally, biocrusts take on a wide variety of forms, as their
external appearance is determined by many factors such as
species composition, biomass of biocrust organisms, internal
physical structure, (micro-)climate, soils, and disturbance his-
tory. These factors, combined with the resultant external
morphology, then determine the functions the biocrust will
play in a given ecosystem. Here, we highlight both common
and rare biocrust forms to illustrate the wide variation in
physical morphology and composition found in different eco-
logical settings. In general, lichen and bryophyte cover and
rugosity increase as potential evapo-transpiration (PET)
declines; this is accompanied by a decline in cyanobacterial
cover (Bowker et al., 2016). However, other drivers such as
disturbance and soil type can override generalizations based
on climate (Bowker et al., 2016).

(1) Hyper-arid regions (AI < 0.05)

Hyper-arid regions (e.g. portions of the Negev, Namib,
Sahara, Mojave, Atacama, Taklamakan deserts; Fig. 1) have
very low precipitation and very high summer temperatures;
this results in a very low aridity index (AI), which is the ratio
of long-term water supply or precipitation (P) and potential
evapotranspiration (PET; i.e. the ‘drying power’ of the atmo-
sphere to remove water from terrestrial surfaces by evapora-
tion and by plant transpiration). Given the very low
availability of soil moisture, biocrusts are generally composed
of a relatively low biomass of cyanobacteria and/or algae,
although small pockets of bryophytes and lichens can be
found in wetter microhabitats (Romero et al., 2020). These
organisms reduce erosional features that roughen surfaces
and there is no frost-heaving which would normally create
microtopographic features. As a result, biocrusts in hyper-
arid regions often have a smooth surface (Fig. 6A). The
smooth surface topography facilitates movement of materials
(e.g. litter, seeds, sediment) across the soil surface in contrast
to most other biocrust types. Due to their low biomass, car-
bon and nitrogen inputs from these biocrusts are compara-
tively low, but often important due to the largely absent
vascular vegetation (Abed et al., 2019).
Hyper-arid regions can host three other distinctive biocrust

or biocrust-like communities. In fog deserts (e.g. portions of
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the Namib, Atacama deserts), where most precipitation results
from regularly occurring fog, lichen fields may occur
(Schieferstein & Loris, 1992; Büdel et al., 2009; Fig. 6B). In
these communities, soil-adherent lichens and cyanobacteria
are joined by erect, relatively tall fruticose lichens with strongly
branched thalli that ‘comb’ the fog for water.

The recently described ‘grit-crust’, known only from the
Atacama Desert, is unique in that it develops on the upper
weathered bedrock layer, a nascent ‘soil’. This surface is
mostly composed of grit-sized (�6 mm) pebbles, enveloped
and aggregated by several species of green algal lichens
(chlorolichens), accompanied by fungi and cyanobacteria

Fig. 6. Biocrusts varying in form and function within different climatic settings. (A) Smooth cyanobacteria-dominated crust near
Beersheba, Israel. (B) Lichen fields with Teloschistes sp. as the prominent genus; Namib Desert, Alexanderbay, South Africa.
(C) Grit crust with weathered granite pebbles, enveloped and aggregated by several species of chlorolichens, accompanied by fungi
and cyanobacteria; Atacama Desert, Chile. (D) Hypolithic biocrust with cyanobacteria growing on the sides and underside of
translucent quartz pebbles; Goedehoop farm, Knersvlakte, South Africa. (E) Cyanobacteria-dominated biocrust with cyano- and
chlorolichens; Soebatsfontein region, Succulent Karoo, South Africa. (F) Cyanobacterially dominated pinnacled crust with mosses
and lichens; Canyonlands National Park, Colorado Plateau region, USA; Cactacea occurring in-between pinnacles.
(G) ‘Wrinkled’ biocrust in semiarid regions; Great Basin region, northwest Utah, USA. (H) Cyanobacteria-dominated biocrust
with mosses and liverworts, impacted by trampling; Fazenda Brejo, Caatinga, Brazil.
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(Fig. 6C; Jung et al., 2020). Whether or not this community is
considered a biocrust according to our definition depends on
whether the habitat is interpreted as soil or rock; physical
structural, functional, taxonomic, and some habitat charac-
teristics suggest at least a very close affinity to biocrusts.

In regions where annual precipitation is too low even for
cyanobacteria to live unsheltered on the surface, hypolithic
biocrusts dominated by cyanobacteria can often be found
(Fig. 6D). The constituent organisms attach to soil beneath
rocks; hypoliths attached only to rock would not be consistent
with our definition. Their dry limit corresponds to <5 mm
precipitation of rainfall per year or even decadal periods
without rain (Warren-Rhodes et al., 2006). The translucent
rocks allow light to penetrate to the photosynthetic organisms
and also ameliorate water stress by reducing evaporation,
increasing the surface area that harvests water and facilitat-
ing nightly condensation (Weber et al., 2013).

(2) Arid regions (0.05 ≤ AI < 0.2)

Similar to biocrusts found in hyper-arid regions, those in arid
deserts (e.g. parts of the Mojave, Sahel, and Karoo deserts;
Fig. 1) are generally dominated by cyanobacteria or lichens,
with patches of bryophytes commonly found in wetter micro-
sites (Malam Issa et al., 1999). The presence of lichens and
bryophytes commonly generates rugosity, in which these
components are elevated by about 1–2 cm above an other-
wise flat surface (Figs 1, 6E). This higher cover of lichens
and bryophytes and longer residence times of soil moisture,
and thus biocrust activity, result in more inputs of carbon
and nitrogen and greater soil stability (Malam Issa
et al., 2001). Rugosity may reduce the propensity for a bio-
crust to accelerate the movement of materials across the soil
surface, perhaps even allowing the biocrust to function more
as a mobile resource accumulator rather than resource shed-
der (Williams, Buck & Beyene, 2012). Arid regions also sup-
port biocrusts with a smooth topography (Fig. 1); these
function similarly to those of hyperarid regions. If translucent
rock pebbles are present, hypolithic cyanobacteria, bryo-
phytes, and/or lichens might be found (Ekwealor &
Fisher, 2020).

(3) Semi-arid regions (0.2 ≤ AI < 0.5)

As PET decreases relative to arid regions in parts of North
America (e.g. the Colorado Plateau), several deserts of
Northern China and central Asia and across large areas of
South America (e.g. Patagonia), Africa (e.g. Kalahari),
Australia, and the Mediterranean Basin (Fig. 1), the number
of biocrust species and cover of lichens and bryophytes
increases (Maestre et al., 2011; Bowker et al., 2017). In Medi-
terranean ecosystems, temperature and precipitation were
observed not only to determine lichen and bryophyte cover,
but also to affect cyanobacterial composition (Munoz-Martin
et al., 2019). In addition, some semi-arid regions commonly
experience freezing winter temperatures. Frost-heaving
uplifts the soil surface with its mosaic of cyanobacteria,

lichens, and bryophytes, resulting in a differentially eroding
surface. This may create striking castle-like pinnacles that
are up to 15 cm high and with delicate tips <4 mm across
(Figs 1, 6F). Because of the increased surface area created
by the pinnacles and the lower PET, the biomass and nutri-
ent input of biocrust organisms can be quite high and soil sta-
bility greatly increased by their presence (Pérez, 2021). Due
to the strong preservation of surface roughness, they are often
strong sinks for mobile resources such as water, seeds, and
sediment. This crust type is generally the most vulnerable
to soil surface disturbance, as the frost-heaved surface is eas-
ily broken and churned, burying the biocrust organisms.
Hypoliths are also found in semi-arid regions, with cyanobac-
teria, lichens and bryophytes colonizing the hypolithic envi-
ronment (Büdel & Schultz, 2003).
As PET decreases further in semi-arid regions (e.g. steppe

regions such as the North American Great Basin, central
Mongolia, Europe, Australia), biocrusts generally become
heavily dominated by a wide variety and high biomass of
lichens and bryophytes, which may attain a thickness of cen-
timetres, and many green algal species (Samolov et al., 2019).
Here, biocrusts can be so cohesive that they completely elim-
inate erosion (Eldridge & Kinnell, 1997; Leys & Eldridge,
1998; Gao et al., 2017). The microtopography may resemble
rolling, gentle micro-hills with a few centimetres of relief,
especially when lichens or bryophytes dominate. The very
high biomass, compared to biocrusts in more arid regions,
results in a large contribution of stability, nitrogen, and car-
bon to these soils (Chamizo et al., 2012). In other areas (prob-
ably determined by soil properties or increasing summer
rainfall), cyanobacteria retain dominance (Williams, Büdel &
Williams, 2018), and their morphology may take the appear-
ance of a wrinkled skin, perhaps superimposed over desicca-
tion cracks (Fig. 6G).

(4) Dry sub-humid regions (0.5 ≤ AI < 0.65)

Drier sub-humid regions have sufficiently high PET to limit
vascular plant cover and thus support biocrusts (e.g. southern
Serengeti savannah in Tanzania, Africa; short-grass prairie
in North America, Caatinga in South America; Fig. 1). These
regions are traditionally heavily grazed by wildlife and domes-
tic livestock (Szyja et al., 2019), and are often affected by peri-
odic fires (Siebert & Dreber, 2019). Plant litter can have an
inhibitory effect on biocrust growth and development
(Ding & Eldridge, 2020). Biocrusts in this region are often
dominated by cyanobacteria, with a limited bryophyte and
lichen component, likely due to the trampling impact of
grazers (Fig. 6H), periodic fires, and vascular plant coverage
or litter (Szyja et al., 2019; Palmer, Hernandez & Lipson,
2020; Ding & Eldridge, 2020). The biocrust morphology is
usually smooth in purely cyanobacterial biocrusts and varies
to rugose when bryophytes and lichens are present (Szyja
et al., 2019; Fig. 1). Because plant cover is relatively high and
bryophyte/lichen cover relatively low, these biocrusts play a
lesser functional role than in other regions where their cover,
biomass, and species diversity is higher.
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(5) Alpine and polar regions

Biocrusts are also found in cold climates of polar andhigh eleva-
tion regions, where water may be limited due to aridity or
becauseof frequent freezing, and seedplant covermaybe sparse
or absent (Fig. 1). Patchy or continuous covers of biocrusts
(Fig. 7A) dominated by bryophytes, lichens, cyanobacteria, or
mixtures have variously beendescribed from scattered locations
such as the Canadian Arctic (Gold & Bliss, 1995; Hogg
et al., 2018), Svalbard (Williams et al., 2017), Antarctica
(Colesie et al., 2014a), Icelandic highlands (Arnalds, 2015), the
high Andes (Perez, 1997), and the Austrian Alps (Büdel
et al., 2014; Jiang et al., 2018), among others. Unlike in the dry-
lands,auniversaldriverofbiocrust formandfunctionathigh lat-
itudes/elevations has not been identified, nor has a general
classification emerged. However, several locally or regionally
important factors have been found to affect biocrust form and
function.Across 10 high-latitude sites,Williams et al. (2017) clas-
sifiedbiocrust habitat types dictated by altitudinal gradients and
differing land forms (e.g. scree slopes, hillocks, plains, etc.). Alti-
tudinal gradients and land forms influence such factors as parti-
cle size and rock content of soils, snowmelt timing, soilmoisture
content, andcryogenicprocesses, all ofwhichmayshape thebio-
crusts. Wetter, warmer low-lying sites tend to support greater
moss abundance, thick mats of cyanobacteria, or mixtures,
whereas drier uplands tend to favour lichens (Stewart
et al., 2011;Williams et al., 2017).

Latitudemayalso influencecold-climatebiocrust characteris-
tics, for example inAntarctica.At higher latitudes, snowfall only
generates availablewater if temperatureallows thawingwithina
few hours. Otherwise snow sublimates with no effect on bio-
crusts. Activity periods are thus reduced to a few hours or days
per year, leading to biocrusts dominated by chlorolichens and,
more rarely, green algae (Colesie et al., 2014b, 2016b), whereas
cyanobacteria are constrained to the hypolithic habitat. Bio-
crusts formed by cyanobacteria, green algae, lichens or mosses,
ormixturesaremostly reported fromthesomewhatwetter lower
latitudes of Antarctica.

High-latitude and alpine biocrust morphologies are also
highly variable and have not been documented thoroughly on
a global scale. Smooth to rolling morphologies can be observed
(Büdel & Colesie, 2014), but because of extreme frost-heaving,
biocrusts may be smoother overall than uncrusted soil
(Fig. 7B). Other cryogenically generated features, such as pat-
terned ground or polygonal rock nets, may confer uniquemor-
phologies to superimposed biocrusts (Williams et al., 2017). In
addition to functional properties common to most biocrusts, in
these cold environments theyarealsonotable for facilitatingvas-
cular plant colonization because of their moderation of frost
heaving and warming of the surface, and because of their role
providing nutrients and promoting water retention (Bliss &
Gold, 1999; Arnalds, 2015; Benavent-Gonz�alez et al., 2018).

(6) Special edaphic settings

While general characteristics of biocrusts in drylands can be
predicted by climate, many edaphic factors, such as soil

texture, chemistry, fertility, and parent material can have
an overriding influence on biocrust species composition.
These factors may shift the type of biocrust one might expect
to find within a given climate. Here, we discuss some of these
unique situations.

Fine-textured soils often support a high cover of lichens and
mosses (Anderson, Harper & Holmgren, 1982). Biocrusts on
fine-textured clay-rich soils, dominated by cyanobacteria
and/or lichens can exhibit a cracking or peeling surface
(Fig. 7C).Fine soilswith ahighcontent of shrink-swell clays often
form highly eroded badlands in semi-arid and drier regions,
which tend to support far fewer species and much less biocrust
cover than other soils in an area (Bowker et al., 2006; Bowker &
Belnap, 2008). On the other hand, in clay badlands in sub-
humid climates, biocrusts may fill niches too stressful for seed
plants (Loppi, Boscagli & Dominicis, 2004).

Gypsiferous soils, including gypsiferous badlands (e.g. the
Tabernas Desert), are well known to support a high diversity of
mosses and lichens relative to other soils in a given area, includ-
ing species found only on gypsum (Lazaro et al., 2008; Bowker
et al., 2017). Especially in semi-arid regions, a very high cover
of crustose, squamulose, and foliose lichens,witha rugose topin-
nacled morphology, can be found (Fig. 7D).

Special parent materials such as grussy granites (granitoids
that weather granularly into angular gravels) may lead to an
unusually high preponderance of hypolithic and lichen/
bryophyte biocrusts (Pietrasiak, Johansen & Drenovsky,
2011).This likelyoccursbecause the relatively small translucent
quartz crystals have a high dust-trapping capacity. In the high
antarctic climate of the transantarctic mountain range there
are snow-free areas, where true soils are not developed. The
upperground layer consists of grussygranitesharbouringchlor-
olichen biocrusts with a surface structure somewhat smoother
than the non-colonized grussy granites (Colesie et al., 2014a).

Depending on their origin, mine tailings can vary widely in
texture, nutrient availability and chemistry. The sum of these
factors often influence the taxonomic biocrust composition,
whereas climatic factors are of minor relevance (Sun
et al., 2004; Purvis & Pawlik-Skowro�nska, 2008).

Naturally unstable surfaces, such as sand dunes, also can
support biocrusts, regardless of the climatic conditions, and
the degree of biocrust development is often dependent on
the stability of the dune (Corbin & Thiet, 2020). Semi-fixed
dunes can support a relatively high cover of mosses and
lichens (e.g. in the Gurbantunngut Desert, China, and in
the temperate USA), whereas more mobile dunes support,
at most, only a low cover of pioneers like cyanobacteria or
algae. Inter-dunal areas are often stable and generally sup-
port whatever biocrust type is allowed by the climate zone,
assuming the area is left uncovered by sand for a sufficient
time (Hagemann et al., 2017).

(7) Biocrusts in early successional mesic
environments

In addition to climatic and edaphic properties of the habitat,
disturbance has a strong effect on biocrust growth and the
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types that may occur (Steven et al., 2015). Disturbance and
subsequent succession provide an opportunity for biocrusts
to develop in high-precipitation areas that would normally
not host these communities due to high cover of vascular

plants and plant litter (Büdel et al., 2014; Corbin &
Thiet, 2020). These biocrusts are generally transient in
nature, becoming greatly diminished in abundance, or sup-
planted entirely as they are replaced by vascular plant

Fig. 7. Biocrusts varying in form and function within different climatic, edaphic, and land-use settings. (A) Polar region with low
cover of vascular vegetation, but a dense cover of cyanobacteria-dominated biocrusts with bryophytes; Zeppelinhamna, Ny
Alesund, Spitsbergen. (B) Liverwort-dominated biocrusts; because of extreme frost-heaving, biocrusts are smoother overall than
uncrusted soils; Icelandic Highlands. (C) ‘Peeling’ biocrust, dominated by cyanobacteria; Central Chihuahuan desert, Mexico.
(D) Biocrust on gypsiferous soil, with particularly high coverage of chlorolichens; Tabernas Badlands, Spain. (E) Postglacial
biocrust, dominated by mosses and cyanobacteria; Kangerlussuaq region, Greenland. (F) Biocrusts of temperate dry meadows
(‘Trockenrasen’) with typical lichen community comprising Fulgensia fulgens, Toninia caerulionigricans, Cladonia convoluta, and
Diploschistes muscorum; Ruine Homburg, Aschfeld, Germany. (G) Stora Alvaret (barren limestone terrace) on the island of Öland,
Sweden; biocrusts with lichens of the genera Fulgensia, Psora, and Cladonia. (H) Biocrusts after fire in former forests; main
photograph: Lolo Fire, western Montana, USA; insert: Cajete fire, northwestern New Mexico, USA (photographs courtesy of
Henry Grover).
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vegetation over months to several years. If, however, distur-
bance persists alongside soil conditions stressful to vascular
plants (acidity, excessive drainage, infertility, shallow depth),
biocrusts can form a long-lasting feature in temperate envi-
ronments (Corbin & Thiet, 2020).

Transient biocrusts occur in different climatic and distur-
bance regimes andon soils of variable texture andnutrient con-
tent. Thus, they vary substantially in form and composition
amongdistinct settings.Post-glacial environmentsareanotable
example, in which cyanobacteria alone or in combination with
lichens, liverworts, ormosses can completely cover andalter the
new soil surfaces (Reiners et al., 1971; Schmidt et al., 2009; Rag-
gio et al., 2012; Nascimbene et al., 2017; Fig. 7E).

Not all examples are primary successional settings, as more
common anthropogenic disturbances can also allow for sec-
ondary succession and can facilitate biocrusts to colonize.
Examples of such transient biocrusts include those of temper-
ate drymeadows (‘Trockenrasen’), dominated by lichens and
some bryophytes, where the soils are shallow, poor in nutri-
ents, and, due to grazing disturbance (or the artificial
removal of vegetation), shrubs do not encroach into the
meadow (Fig. 7F). Alvar communities are exposed to similar
conditions of shallow nutrient-deprived soils and regular dis-
turbance by grazing, which facilitates dominance by lichens
and bryophytes (Fig. 7G; Büdel et al., 2014; Corbin &
Thiet, 2020). Another example occurs in African Miombo
woodlands, where the residual soils from abandoned termite
mounds support high lichen cover (Belnap, Sanford &
Lungu, 1996). Tree fall, mechanical vegetation removal,
and fire can produce unvegetated soil surfaces that are
quickly colonized by moss-dominated biocrusts. Under these
conditions, biocrusts may form a valuable ecosystem compo-
nent (Seitz et al., 2017). For example, a community of ruderal
bryophytes, or ‘fire mosses’ is common on burned soil in the
months or years following forest fire (Grover, Bowker &
Fule, 2019; Fig. 7H). In some cases, a combination of differ-
ent disturbances keeps vegetation low and facilitates the
growth of biocrusts. In sand plains and pine barrens, a wealth
of moss and lichen biocrusts are provided with a niche by
combinations of periodic fire, and fossorial mammal and
agricultural activity (Corbin & Thiet, 2020). In coastal dune
systems, disturbances in the form of coastal storms, sand sal-
tation, and salt spray act as stressors for the vegetation and
thus facilitate long-lasting algal or cyanobacterial biocrust
occurrence (Mikhailyuk et al., 2019; Corbin & Thiet, 2020).

V. A UNIVERSAL BIOCRUST DEFINITION

After an extensive review of the literature and discussions
with other biocrust researchers, it is clear that the definition
put forth by Belnap et al. (2003) applies to the majority of bio-
crust communities. However, as interest in biocrusts grows
and expands, this definition requires refinement to cover all
biocrust communities. Therefore, we propose the following
refinement of the Belnap et al. (2003) definition: Biological soil

crusts (biocrusts) result from an intimate association between soil parti-

cles and differing proportions of photoautotrophic (e.g. cyanobacteria,
algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi,
archaea) organisms, which live within, or immediately on top of, the
uppermost millimetres of soil. Soil particles are aggregated through the

presence and activity of these often extremotolerant biota that desiccate reg-

ularly, and the resultant living crust covers the surface of the ground as a
coherent layer.

VI. CONCLUSIONS

(1) We propose a clarified definition of biocrusts that clearly
distinguishes them from several other community types
(Fig. 2), yet allows for the inclusion of a wide variety of
very different assemblages and morphologies. The pro-
posed set of criteria in the decision tree (Fig. 2) helps
define the limits to biocrusts and simultaneously opens a
broad climatic, edaphic, taxonomic, and functional spec-
trum for studying biocrust communities; this is a useful
advance, given the multiplicity of habitats and regions
where biocrusts occur and have important ecological
roles. We have not attempted to produce a definitive clas-
sification of different biocrust types, but rather provide a
description of the wide range of biocrusts found around
the world. Others have provided potential schemes that
might be adapted globally (Rosentreter & Belnap, 2003;
Büdel et al., 2009; Colesie, Felde & Büdel, 2016a; Wil-
liams et al., 2017).

(2) Adoption of this refined definition of biocrusts could
result in multiple positive outcomes. Much unnecessary
confusion arises when scientists apply the same term to
different phenomena, or vice-versa. With the revised bio-
crust definition we aim to reduce this problem. In partic-
ular, we hope that this unified definition will expand the
already multi-disciplinary biocrust research community
by drawing in new researchers and land managers, who
may not be aware that their focal systems comprise a type
of biocrust. We also hope that this review will improve
our ability to synthesize biocrust ecology and uncover
linkages across studies and study systems. Finally, we
hope this review stimulates the use of biocrusts as a model
system (Faist et al., 2021) to teach scientific concepts in the
classroom, to improve scientific literacy and connection
to nature in the general public, and we encourage the
incorporation of biocrusts into land-management deci-
sion making.
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Büdel, B., Williams, W. J. & Reichenberger, H. (2018). Annual net primary
productivity of a cyanobacteria-dominated biological soil crust in the Gulf
Savannah, Queensland, Australia. Biogeosciences 15, 491–505.

Cameron, R. E. (1978). The perplexity of desert preservation in a threatening world.
In Earthcare: Global Protection of Natural Areas (ed. E. A. SCHOFIELD), pp. 411–443.
Westview Press, Boulder.

Chamizo, S., Belnap, J., Eldridge, D. J., Cant�on, Y. & Issa, O. M. (2016). The
role of biocrusts in arid land hydrology. In Biological Soil Crusts: An Organizing

Principle in Drylands (eds B. WEBER, B. BÜDEL and J. BELNAP), pp. 321–346.
Springer, Cham.

Chamizo, S., Cant�on, Y.,Miralles, I. & Domingo, F. (2012). Biological soil crust
development affects physicochemical characteristics of soil surface in semiarid
ecosystems. Soil Biology & Biochemistry 49, 96–105.

Chaudhary, V. B., Bowker, M. A., O’Dell, T. E., Grace, J. B., Redman, A. E.,
Rillig, M. C. & Johnson, N. C. (2009). Untangling the biological contributions to
soil stability in semiarid shrublands. Ecological Applications 19, 110–122.

Chen, R. Y., Zhang, Y. M., Li, Y., Wei, W. S., Zhang, J. & Wu, N. (2009). The
variation of morphological features and mineralogical components of biological
soil crusts in the Gurbantunggut Desert of Northwestern China. Environmental

Geology 57, 1135–1143.
Colesie, C., Felde, V. J. M. N. L. & Büdel, B. (2016a). Composition and
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covering the time span from 1989 to 2021.
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