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Abstract

The within-host evolutionary dynamics of tuberculosis (TB) remain unclear, and underlying 

biological characteristics render standard population genetic approaches based upon the Wright-

Fisher model largely inappropriate. In addition, the compact genome combined with an absence 

of recombination is expected to result in strong purifying selection effects. Thus, it is imperative 

to establish a biologically relevant evolutionary framework incorporating these factors in order to 

enable an accurate study of this important human pathogen. Further, such a model is critical for 

inferring fundamental evolutionary parameters related to patient treatment, including mutation 

rates and the severity of infection bottlenecks. We here implement such a model and infer 

the underlying evolutionary parameters governing within-patient evolutionary dynamics. Results 

demonstrate that the progeny skew associated with the clonal nature of TB severely reduces 

genetic diversity and that the neglect of this parameter in previous studies has led to significant 

mis-inference of mutation rates. As such, our results suggest an underlying de novo mutation 

rate that is considerably faster than previously inferred, and a progeny distribution differing 

significantly from Wright-Fisher assumptions. This inference represents a more appropriate 

evolutionary null model, against which the periodic effects of positive selection, associated with 

drug-resistance for example, may be better assessed.
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Tuberculosis (TB) is a public health threat worldwide (WHO 2018). Despite clear 

motivation for study, the observed within- and between-host evolutionary dynamics of 

Mycobacterium tuberculosis (M.TB) are not well understood, and results to date represent 

something of a paradox. On the one hand, drug resistance evolves rapidly (Fonseca et al. 

2015; Eldholm et al. 2015); on the other, the genomic characteristics of M.TB do not appear 

conducive for such rapid adaptation, with inferred mutation rates being among the slowest 

of any human pathogen (Rocha et al. 2006; Ford et al. 2011; Ford et al. 2013; Colangeli 

et al. 2014; Payne et al. 2019; Menardo et al. 2019) and remarkably little genetic variation 

observed within or between hosts. Furthermore, purifying selection has been argued to play 

both a dominant as well as a weak role in shaping patterns of variation (Hershberg et al. 

2008; Pepperell et al. 2013), and demographic estimates suggest a population history of TB 

that either matches or is uncorrelated with that of its human host (Comas et al. 2013; Bos et 

al. 2014; Brites and Gagneux 2015; Eldholm et al. 2016).

To obtain a more robust understanding of TB evolutionary dynamics, it is essential to 

first appreciate that between-population observations are simply an aggregation of within-

population processes. As such, studying the population genetics of within-patient data is 

critical to understanding the genetic differences observed between patients as well as their 

treatment outcomes. Fortunately, recent advances in sequencing technologies have allowed 

for more abundant and higher quality within-patient data. These published datasets have 

revealed a few common features of M.TB, including low-levels of genome-wide variation. 

For instance, Trauner et al. (2017) deep-sequenced 12 patients across four-time points 

and observed fewer than 50 polymorphic sites per patient genome-wide. In addition, the 

observed site frequency spectrum (SFS) is generally characterized by an abundance of rare 

variants (i.e., it is strongly left-skewed). These patterns have partly led to the suggestion that 

purifying selection effects may be wide-spread in the M.TB genome (Brown et al. 2016; 

Phelan et al. 2016; Mortimer et al. 2018).

Additional evolutionary factors likely contribute to these genomic patterns as well. For 

example, population bottlenecks may reduce genetic variation and alter the shape of the SFS 

(see review Thornton et al. 2007). Previous M.TB studies have investigated these effects 

separately in both the deep-time view of the population bottleneck and subsequent growth 

experienced by the host human population (Hershberg et al. 2008; Liu et al. 2018), as well 

as the shallow-time view of the population bottleneck and subsequent growth characterizing 

each novel transmission event and treatment (e.g., Trauner et al. 2017). Additionally, in 

fitting the left-skewed SFS, Pepperell et al. (2013) found that such a demographic history 

combined with a mix of both deleterious and neutrally evolving sites produced the nearest 

fit to the observed SFS. Finally, given the lack of recombination in M.TB, related linkage 

effects (i.e., background selection; Charlesworth et al. 1993)) have similarly been discussed 

within these contexts (Pepperell et al. 2010; Copin et al. 2016).

While these studies have provided many important insights, there remains a relatively 

unexplored, although potentially highly significant, effect: clonality. Indeed, clonality and 

the related progeny distribution represents an important violation of commonly used 

evolutionary inference approaches based upon the Wright–Fisher (WF) model and the 

related Kingman coalescent (Eldon and Wakeley 2006; Dos Vultos et al. 2008; Huillet and 
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Möhle 2011; Lapierre et al. 2016). Specifically, progeny distributions under the WF model 

are Poisson distributed with a small mean and variance. Therefore, when an individual 

produces many offspring, far in excess of simple replacement in the next generation, the 

assumption that only two lineages coalesce at a time is violated, resulting in multiple-merger 

coalescent (MMC) events (see reviews of Tellier and Lemaire 2014; Irwin et al. 2016).

While perhaps abstract at first blush, this violation has very important implications for the 

study of sequence variation and diversity. Namely, as M.TB has been found to exhibit strong 

progeny skew owing to obligate clonal reproduction (Baker et al. 2004; Dos Vultos et al. 

2008), the null model against which the above studies are comparing becomes incorrect. For 

example, under a multiple-merger model, the effective population size (Ne) no longer scales 

linearly with census size (N) as it does under the Kingman coalescent (Huillet and Möhle 

2011). As a result, genetic diversity is a nonlinear function of the underlying population 

size—a result of interest given the strongly constrained and similar levels of variation 

observed across TB patients, regardless of infection time or resistance status. Similarly, 

under these progeny-skew models, the SFS is skewed toward an excess of low-frequency 

variants, generating a negative Tajima’s D even under equilibrium neutrality (Eldon and 

Wakeley 2006; Birkner et al. 2013; Blath et al. 2016)—which appears of relevance to M.TB 
populations given the pervasively left-skewed SFS observed both within and between TB 

patients. Finally, the fixation probability of beneficial mutations under progeny skew may 

become much larger than under the WF model, owing to the increased probability of rapidly 

escaping stochastic loss (Der et al. 2011). This is fundamental to understanding the rapidly 

and independently evolving drug-resistance mutations in global TB populations—a result 

seemingly at odds with the previously inferred mutation rates (Sherman and Gagneux 2011; 

Colangeli et al. 2014; Duchêne et al. 2016). In sum, the general theoretical expectations 

owing to progeny skew alone appear to qualitatively match empirical observations from 

M.TB; observations that, to date, have been attributed to alternate processes.

Recent progress has been made in utilizing these models to disentangle and even co-estimate 

patterns of demography, progeny skew, and selection. While there exist a variety of potential 

MMC models (see review of Tellier and Lemaire 2014), the so-called Ψ-coalescent has been 

a major focus of this literature given the straight-forward biological interpretation. Namely, 

the parameter Ψ represents the proportion of the next generation arising from a single parent 

(e.g., Ψ = 0.05 implies that one individual contributes offspring that comprise 5% of the 

next generation). In addition to which, recent experimental measures are beginning to offer 

real-time insights into such progeny distributions (Vahey and Fletcher 2019). Three results 

are of particular importance here. First, Eldon et al. (2015) demonstrated that population 

growth may be distinguished from multiple-merger coalescent events owing to progeny-

skew, given differing expectations in the SFS. Second, Matuszewski et al. (2018) derived 

analytical expectations for the SFS under a multiple merger coalescent model with changing 

population size and further demonstrated that these parameters can indeed be accurately 

inferred jointly within a likelihood framework. Finally, building upon the two above results 

as well as the approximate Bayesian statistical framework developed by Foll et al. (2014, 

2015), Sackman et al. (2019) recently extended these results and demonstrated an ability to 

co-estimate progeny skew, effective population size, as well as persite selection coefficients 

from time-sampled polymorphism data.
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Thus, a tremendous opportunity now exists to understand better the impact of mutation, 

genetic drift, and selection in dictating patterns of M.TB evolution and genomic variation 

under this more realistic coalescent model accounting for the underlying progeny 

distributions inherent to clonal reproduction. While the approximate Bayesian approach 

of Sackman et al. (2019) would appear ideal for this purpose, it is a time-sampled 

estimator reliant upon considerable levels of segregating variation in order to track changing 

allele frequencies (as is commonly observed in viral populations, for example). Thus, this 

approach is under-powered given the minimal levels of variation observed in M.TB. Further, 

as the underlying mutation rate itself is a question of great interest and importance in M.TB 
(Payne et al. 2019), it is desirable to additionally co-estimate this parameter rather than 

assume it to be known.

With this motivation, we developed a novel statistical approach utilizing the insights 

described above pertaining to infection dynamics and widespread purifying selection, while 

overlaying inference of underlying mutation rates and progeny distributions. Using this 

appropriate null model that accounts for these commonly occurring processes, we further 

assessed the ability to distinguish periodic processes, such as the infection-related bottleneck 

or selective sweeps associated with drug resistance. Owing to the major contributions of 

purifying selection and progeny skew in dictating patterns of diversity, and the resulting 

paucity of genomic variation, results suggest that these additional processes may be difficult 

to accurately quantify.

Materials and Methods

SIMULATIONS

We conducted forward-in-time simulations using the SLIM version 3 software package 

(Haller and Messer 2019). M.TB populations were modeled using a genome size of 441,153 

kb, equivalent to a 10th portion of the true genome size, for computational efficiency. As 

M.TB is a compact, highly coding genome (Cole et al. 1998; Fleischmann et al. 2002), 

we assumed a distribution of fitness effects (DFE) characterized equally by deleterious 

(s = −0.01) and nearly neutral (s = −0.001) mutations. While a bi-modal DFE shape 

has been recurrently supported in directed mutagenesis studies in a variety of organisms 

(e.g., Bank et al. 2014), the relative density of the different DFE classes is unknown. 

Thus, we also assessed the impact of alternative DFE densities on the resulting inference—

comparing a 60%/40% and 40%/60% split of deleterious and effectively neutral variants 

with the 50%/50% described above. More generally however, this consideration of both 

effectively neutral and deleterious mutations is essential, particularly given that the genome-

wide effects of background selection are expected to be substantial given the lack of 

recombination in M.TB.

Mutation rate (μ) measured in vitro has been reported to be as slow as 2 × 10−10 (Ford 

et al. 2011). In contrast, higher estimates ranging from 1 × 10−9 to 9 × 10−6 (Ford 

et al. 2013) have been proposed; therefore, our study considered the full extent of this 

range. Furthermore, it is important to note that previous experiments have measured only 

the neutral mutation rate, not the total mutation rate. In other words, the large input of 

deleterious mutations—comprising a substantial component of the total mutation rate—has 
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not been included in earlier estimates as these mutations are unlikely to be sampled as 

segregating variation or as fixed differences. However, as these mutations are important for 

shaping diversity via both purifying selection and background selection effects, and as our 

interest is in understanding the total rate at which all de novo mutations are input into the 

population, we considered the total rather than the neutral mutation rate. In order to infer 

this parameter within the context of an appropriate progeny-skew model, μ was drawn from 

a prior uniform distribution between 1 × 10−9 and 9 × 10−6 per site per generation.

Following an initial burn-in period of 10N generations, we considered a three-stage 

demographic model characterizing a single patient infection: moving forward in time, we 

describe (1) a neutral equilibrium population of size N, (2) an initial infection bottleneck 

leading to an instantaneous population reduction to size N2, and (3) a subsequent population 

size recovery to size N. In stage 1, we modeled a population of size N = 1000. In order 

to quantify the effects of underlying assumptions pertaining to population size, additional 

simulations and inference were performed at N = 25,000. During stage 2, the severity 

of the population bottleneck (β) was sampled from ~U[0.001, 0.1], where N2 = N*β–as 

the distribution of infection size in humans is unknown. However, it has been reported 

that in cattle TB (M. bovis) infection can be established by a single cell forming unit 

(Dean et al. 2005). During stage 2, the degree of progeny skew (or Ψ) was sampled from 

a prior distribution of ~U[0, 0.2]. A value of 0 corresponds to the standard WF model, 

whereas above 0.2 no sequence variation remains. Progeny skew was simulated following 

the procedure of Sackman et al. 2019. In brief, one individual is chosen from the primary 

population A and founds a separate subpopulation B, the single generation unidirectional 

migration rate from B to A is set to Ψ, and the chosen individual thus contributes NΨ 
offspring to the following generation of A. A series of mate choice callbacks in SLiM 

force the migration rate to be exact rather than stochastic (see supplementary materials of 

Sackman et al. 2019). Subpopulation B is removed, the next generation begins, and a new 

individual is randomly sampled for the following generation. As such, each generation is a 

combination of N(1 − Ψ) replacement events and a single sweepstakes event of magnitude 

NΨ. To emulate patient sampling at the onset of symptoms (approximately 3 months 

minimum; Behr et al. 2018), we allowed stage 2 to run for 90 generations, assuming a 

generation time of 24 h (Cole et al. 1998), and stage 3 to run for 910 generations before 

outputting genome alignments in ms format. Thus, the total generation time of our model 

was 11N.

Drawing from these prior distributions, 10,000 points (i.e., parameter combinations) were 

sampled. For each parameter combination, we conducted 1000 replicates in order to 

characterize both the mean and variance. Summary statistics were calculated in the R 

package PopGenome version 2.6.1 (Pfeifer et al. 2014).

DATA ANALYSIS AND JOINT POSTERIOR ESTIMATES

For comparison to patient data, we examined the distribution and mean of segregating 

sites in samples published by Trauner et al. (2017; see their ‘Additional file 2’; https://

zenodo.org/record/322377#.XO2CAy2ZNBw). These samples were sequenced with an 

average depth of approximately 1247× and full genomic coverage. We primarily utilized 

Morales-Arce et al. Page 5

Evolution. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/322377#.XO2CAy2ZNBw
https://zenodo.org/record/322377#.XO2CAy2ZNBw


these data to identify an upper- and lower-bound of observed within-patient variation, and to 

observe the frequency spectrum associated with these examples. Thus, we focused upon the 

first time-point (i.e., pretreatment) of patient 10, in whom was found the most segregating 

genome-wide variation (50 segregating sites). This patient sample had an average depth of 

~1420×. For comparison, we also highlight the average number of observed polymorphic 

sites, corresponding to 20 segregating sites. Furthermore, given these low levels of variation, 

invariant genomes were also observed. In such cases there are naturally no SFS-based 

summary statistics, and so we utilized the expected fraction of invariant genomes to compare 

simulated and observed data (e.g., with very slow mutation rates and/or very high Ψ values, 

the expected fraction of invariant genomes far exceeds that observed in the empirical data). 

Further, given that patient data are subject to stringent filtering criteria (i.e., removing SNPs 

under a 2% frequency cutoff), it was necessary to filter the simulated data to allow a 

fair comparison. For the simulated replicates, variants with <2% frequency were filtered 

out before the calculation of summary statistics (Table S1)—although unfiltered values 

can also be found in the Supporting Information. Relevant scripts have been deposited 

on GitHub (https://github.com/AYMoralesArce/Within-host_Popgen_TB_project.git) and 

Dryad (https://doi.org/10.5061/dryad.1ns1rn8qq).

Results and Discussion

CONSIDERING LEVELS OF VARIATION

We report the first joint consideration of mutation rate, purifying selection, infection 

history, and progeny-skew in M.TB populations. A correlation of summary statistics (Fig. 

1) demonstrates that while mutation rate (μ) increases the number of segregating sites as 

expected, progeny skew (Ψ) acts to reduce variation. Furthermore, as the Ψ-parameter is 

of relevance every generation (i.e., every reproduction event), the impact of this previously 

unconsidered progeny skew on levels of variation is in fact much stronger than the single 

bottleneck event associated with infection. Considering the full distribution of sampled 

μ values (Fig. S1), it is apparent that Ψ drastically reduces the average proportion of 

segregating sites genome-wide even for fast mutation rates, and that the probability of 

producing genomes devoid of any variation will naturally increase as μ decreases.

In order to consider a range of μ consistent with observed data—once pervasive purifying 

selection and progeny skew have been taken into account—two examples of patient data 

collected by Trauner et al. (2017) representing mean (20 segregating sites genome-wide) and 

high (50 segregating sites genome-wide) variation samples were plotted and compared to the 

simulated data. In order to compare simulated data with patient data, the same filtering steps 

must be applied. In this case, SNPs under 2% frequency were filtered in the empirical data, 

and thus, the simulated data were similarly filtered in order to be comparable (Fig. 2).

As shown, fast mutation rates (μ on the order of 1 × 10−6 and 1 × 10−7) routinely produce 

expected numbers of segregating sites far above that observed in patients, regardless of other 

parameter values, while slow mutation rates (μ on the order of 1 × 10−9) generally result 

in too little variation to match observation—particularly considering the resulting expected 

fraction of invariant genomes. This result is of interest as M.TB mutation rates are generally 

believed to be exceedingly slow (Sherman and Gagneux 2011)—although importantly, this 
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inference has largely neglected the important contribution of these additional evolutionary 

processes. Thus, once accounting for the diversity-reducing effects inherent to clonality, as 

well as the extent of purifying selection effects inherent to a compact, non-recombining 

genome, it is evident that the de novo mutation rate is likely faster than previously believed, 

with mutation rates on the order 1 × 10−8 well matching the range of observed data (Fig. 

2). In addition, in order to consider the impact of underlying assumptions pertaining to 

population size, simulations were re-performed with a 25× larger population size. As shown 

in Fig. S2, owing to these diversity reducing effects, mutations rates on the order of 1 × 10−8 

remain the best fit to observed levels of variation, with slower mutation rates still producing 

too little variation and too many invariable genomes to be consistent with patient data.

CONSIDERING DISTRIBUTIONS OF VARIATION

For the general range of μ identified above, the number of genome-wide segregating sites 

in simulated population data ranged from a minimum average of 2.1 to a maximum average 

of 78.7 SNPs (Table S1), depending on the combination of μ and Ψ drawn from the priors. 

Specifically, higher values of μ may be off-set by higher values of Ψ, resulting in a similar 

number of segregating sites for multiple parameter combinations. For example, for the mean 

observed patient diversity of 10 SNPs, simulation results demonstrate that μ = 8.13 × 10−08 

and a Ψ = 0.06 would produce an average of 10.15 ± 4.64 SNPs, potentially suggesting a 

good fit to the data. However, μ = 3.1 × 10−08 and a Ψ = 0.02 can also generate similar 

results, yielding 10.40 ± 4.45 SNPs. More generally, this ridge in the posterior distributions 

(Fig. 3A) between these two parameters suggests that they will be difficult to estimate 

independently if only levels of variation are used.

Thus, while comparisons with general levels of variation are useful for identifying a range 

as in the above section, more information is needed to parse values further. Importantly, 

previous theoretical results (Eldon and Wakeley 2016; Matuszewski et al. 2018) have well 

described the effect of Ψ on the observed distribution of genetic variation (i.e., SFS). To 

utilize this information, a general summary of the SFS, Tajima’s D (1989), was calculated 

on the filtered simulated data. As shown (Fig. S3), the shape of the SFS, and thus the value 

of the D-statistic, is related to the value of Ψ. As the degree of progeny skew initially 

increases, D becomes increasingly negative, as previously described. However, as progeny 

distributions become highly skewed, levels of variation are sharply reduced, resulting in an 

apparent increase in D values (Fig. S3). Increasing D values could also be a result of the 

underlying filtering criteria, as after filtering simulations to match real data with segregating 

sites >2%, D values increased proportionally (Fig. S4). However, Tajima’s D is consistently 

negative in all mutation ranges, even after filtering.

PARAMETER INFERENCE FROM PATIENT SAMPLES

Thus, we next considered these results in light of published patient data. Recent publications 

have suggested that NGS technologies could facilitate personalized treatment in TB patients, 

allowing for improved outcomes (Copin et al. 2016; Cancino-Muñoz et al. 2019). To utilize 

such data, however, it is vital to understand the evolutionary dynamics shaping within-host 

M.TB diversity. As an illustrative example, we have re-examined the number of segregating 

sites in patient samples and estimated a mean ~10 segregating sites per sample (Trauner et 
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al. 2017; Fig. S5). Using the results and expectations obtained above regarding the level 

and distribution of variation, the patient data appear best fit by simulated populations with 

μ values ranging from 7.3 × 10−9 to 3.8 × 10−7, with the strongest posterior density at μ ≈ 
6e-8 and Ψ ≈ 0.06 (Fig. 3A). Furthermore, this inference appears robust to variation in the 

density of the DFE classes, an important consideration given that the precise nature of this 

underlying distribution is unknown (Fig. S6). Notably, even faster μ values could produce 

similar results, but only if Ψ proportions are in excess of 0.15 (Fig. 3A).

In addition, owing to the strong per-generation reductions associated with progeny skew, 

there remains no signal in the data to estimate the severity of the infection bottleneck 

accurately (Fig. 3B). Specifically, while there is an increase in density toward stronger 

bottleneck values, the posterior distribution is not notably distinct from the prior distribution 

~U[0.001, 0.1] (Fig. 3B). Apart from the population size reduction associated with infection, 

these results have important implications for the ability to detect other parameters of clinical 

interest—namely, the presence of selective sweeps associated with beneficial mutations 

(e.g., potentially owing to drug-resistance). First, while there is strong statistical power to 

infer both μ and Ψ from patient data, there is little power to detect isolated events in the 

past (Fig. 3B). This result, although unexpected under standard WF assumptions, is intuitive 

given the non-WF progeny distributions related to clonality. Namely, the diversity reduction 

associated with a single bottleneck event multiple-generations in the past is not discernible 

from the per-generation diversity reduction related to clonal reproduction. Further, given 

that a selective sweep is, in fact, a type of population bottleneck (Barton 1998), this 

result also demonstrates that detecting selective sweeps associated with resistance mutations 

in this non-recombining organism, based on levels and patterns of genomic variation, 

will be exceedingly difficult. However, this observation reconciles the fact that levels of 

variation do not appear significantly different between resistant and non-resistant M.TB 
patient populations (Trauner et al. 2017)—that is, these additional evolutionary processes are 

shaping variation so strongly that the presence or absence of a resistance-associated selective 

sweep does not result in strongly differentiable expectations.

Finally, this difficulty raises the question of utilizing divergence-based inference determined 

from between-patient samples. While this is a topic of interest for future investigation, a 

number of major challenges exist for incorporating such data into this statistical framework. 

With regards to the model itself, the behavior of divergence-based statistics, such as Fst, can 

differ quite substantially from WF expectations. For example, the expectation of coalescent 

times within a subpopulation may become less than that between subpopulations, regardless 

of the timing or strength of gene flow (Eldon and Wakeley 2009). With regards to the 

empirical data, an inability to rely on molecular clock-based arguments in M.TB (Menardo 

et al. 2019), combined with commonly absent information related to re-infection status, 

renders a definition of the timescale of separation highly tenuous.

IMPLICATIONS FOR CHARACTERIZING THE HISTORY OF TB IN HUMANS

A topic of wide-spread interest in the literature pertains to the history of TB in the human 

host. This inference has primarily been made within a phylogenetic context, relying on 

the construction of a single consensus sequence per patient. While such a comparison of 
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consensus sequences can be highly misleading when making evolutionary inference (see 

Renzette et al. 2017), these age estimates also inherently rely on an accurate knowledge 

of mutation rates in order to invoke the “clock-like” accumulation of neutral mutations 

as a proxy for time, as noted above (Menardo et al. 2019). As our results demonstrate 

that previous mutation rate estimates have likely been downwardly biased, it is of interest 

to consider what these revised mutation rates would imply for this evolutionary history. 

However, there are at least three difficulties in directly comparing population-level estimates 

with previous consensus-based phylogenetic inference. First, estimates are generally given 

per year, whereas the preferred evolutionary rate is per generation (as given here). There is 

support for one generation per day as a conversion (Cole et al. 1998), although further study 

is necessary to quantify the correct scaling factor. Second, when invoking a divergence-

based clock, previous studies are measuring the neutral mutation rate, given that the rate of 

mutation is equivalent to the rate of divergence for neutral mutations only (Kimura 1968). 

However, we are here interested in the total mutation rate (that is, the rate at which neutral 

and non-neutral mutations arise per generation); therefore, our rate must be parsed into 

neutral and nonneutral components to enable appropriate comparison. Similar to the first 

point, additional research is necessary in order to better quantify the distribution of fitness 

effects in M.TB, as understanding the fraction of total mutations represented by neutral 

mutations is necessary for the conversion. Finally, we here consider the alleles segregating 

within a population for inference (i.e., within a patient), whereas previous studies often 

call a consensus sequence per patient (i.e., per population) and make inferences based on 

a collection of such consensus sequences. Such a summary of population-level variation 

into a single sequence is difficult to interpret, although what is evident is that a great 

majority of rare alleles will be neglected, and thus only a small subset of total variation 

(i.e., common alleles) will be considered (Renzette et al. 2017). As such, we propose 

that future evolutionary inference pertaining to TB would benefit tremendously from a 

full consideration of within-patient diversity, as we demonstrate here. In sum, any direct 

comparison with consensus-based phylogenetic age estimates would be overly speculative at 

this juncture.

Conclusions

TB patient infection dynamics have remained enigmatic. We here argue that much of the 

difficulty in interpreting patterns of variation and evolution has owed to an inappropriate 

underlying null model, relying on classical expectations developed for organisms with 

very different underlying biological properties. Fortunately, recent theoretical extensions 

in non-WF and alternative coalescent models, more appropriate for clonally reproducing 

organisms, have created an opportunity to revisit existing M.TB patient data. By accounting 

for the pervasive purifying selection effects associated with this non-recombining, highly 

coding genome, as well as the skewed progeny distributions inherent to clonal reproduction, 

we have provided improved insights into the evolutionary dynamics shaping within-host 

variation. Further, through a consideration of these diversity-reducing effects, results suggest 

an underlying de novo mutation rate that is considerably faster than previously inferred. This 

may reconcile the seemingly contradictory observations of both rapid resistance evolution, 

but extremely low levels of population variation. Namely, the population mutation rate may 
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indeed be sufficiently fast to provide a steady input of beneficial mutations, explaining the 

rapid resistance evolution clinically observed. However, recurrent purifying selection and 

progeny skew act together to rapidly eliminate segregating variation from the population, 

reconciling the minimal levels of variation observed as well as the general homogeneity 

in levels and distributions of variation in both resistant and non-resistant patient samples 

alike. Furthermore, the role of these per-generation evolutionary forces in shaping patterns 

of variation is sufficiently strong that periodic events, including the infection-associated 

bottleneck and selective sweeps centered on drug-resistance mutations, will be challenging 

to detect and quantify on top of these more common processes. In general, this framework 

represents an approach for constructing appropriate evolutionary null models for the wide-

array of organisms that are not well fit by WF progeny distribution assumptions—including 

a large variety of plants, viruses, and marine organisms.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation heatmap of parameters and summary statistics. Correlations are given between 

the parameters of interest (mutation rate (μ), progeny skew (Ψ), and bottleneck severity 

(N2)), and summary statistics (the mean and variance of the level of variation as measured 

by the number of segregating sites, and the mean and variance of the distribution of 

variation as measured by Tajima’s D). As shown, N2 values do not correlate with any 

of the summary statistics, as the effect of the single generation bottleneck is swamped 

by the per-generation reproductive skew. Further, as expected, μ positively correlates with 

the number of segregating sites, while Ψ acts to reduce variation and is thus negatively 

correlated. Finally, while μ would not be expected to strongly correlate with the shape of the 

SFS (here summarized by Tajima’s D) for neutral mutations, it does so here given that we 

explicitly account for the input of deleterious mutations (see Materials and Methods).
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Figure 2. 
Log scale distribution of segregating sites above 2% frequency, as a function of mutation 

rate (μ) and progeny skew (Ψ). For each parameter combination (1,000 in total) of μ and 

Ψ drawn from the prior distributions, 1,000 replicates were simulated, with the mean given 

by the black dot and the standard deviation given by the gray bars. Each panel corresponds 

to a different order of magnitude of mutation rate range: (A) 1 × 10−6 to 9 × 10−6, (B) 1 × 

10−7 to 9 × 10−7, (C) 1 × 10−8 to 9 × 10−8, and (D) 1 × 10−9 to 9 × 10−9. The colored lines 

correspond to two examples of the proportion of segregating sites observed genome-wide 

in empirical patient data: 20 segregating sites as a mean (orange), and 50 segregating sites 

from patient_10 (blue) (Trauner et al. 2017). As shown, the range of segregating sites for the 

fast mutation rates (panels A and B), result in expectations much larger than that observed 

in patient data, regardless of Ψ. Conversely, the slowest mutation rate (panel D), results in 

too little variation, except under WF conditions (i.e., Ψ near 0) that are known to be violated 

in this organism. Thus, rates on the order of 1 × 10−8 to 9 × 10−8 (panel C) appear to 

well explain the range of variation observed in patient data, and further imply values of Ψ 
ranging roughly from 0.05 to 0.1, consistent with values previously estimated for within-host 

virus data (Sackman et al. 2019).
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Figure 3. 
Posterior parameter estimates pertaining to patient data. (A) Joint posterior distribution for 

the parameters μ and Ψ. Solid contour lines specify the highest posterior density intervals. 

Owing to the diversity-increasing effect of μ and diversity-decreasing effect of Ψ, there 

exists a ridge in the joint posterior. Regardless, owing to differing expectations in the SFS 

along this ridge, inference suggests μ values within the 1 × 10−8 range in combination with 

Ψ < 0.10. (B) Posterior density for the severity of the infection bottleneck (N2). The X-axis 

gives the number of genomes at the time of infection reduced from 1000. While the posterior 

distribution is non-uniform, the observation that all tested values remain consistent with 

patient data strongly suggests that there is not sufficient information in the data to estimate 

this third parameter (i.e., size of the bottleneck, in addition to μ and Ψ).
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