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Abstract
In recent years, pulmonary imaging has seen enormous progress, with the introduction,
validation and implementation of new hardware and software. There is a general trend
from mere visual evaluation of radiological images to quantification of abnormalities
and biomarkers, and assessment of ‘non visual’ markers that contribute to establishing
diagnosis or prognosis. Important catalysts to these developments in thoracic imaging
include new indications (like computed tomography [CT] lung cancer screening) and
the COVID-19 pandemic. This review focuses on developments in CT, radiomics, artifi-
cial intelligence (AI) and x-ray velocimetry for imaging of the lungs. Recent develop-
ments in CT include the potential for ultra-low-dose CT imaging for lung nodules, and
the advent of a new generation of CT systems based on photon-counting detector tech-
nology. Radiomics has demonstrated potential towards predictive and prognostic tasks
particularly in lung cancer, previously not achievable by visual inspection by radiolo-
gists, exploiting high dimensional patterns (mostly texture related) on medical imaging
data. Deep learning technology has revolutionized the field of AI and as a result, perfor-
mance of AI algorithms is approaching human performance for an increasing number
of specific tasks. X-ray velocimetry integrates x-ray (fluoroscopic) imaging with unique
image processing to produce quantitative four dimensional measurement of lung tissue
motion, and accurate calculations of lung ventilation.
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INTRODUCTION

In recent years, pulmonary imaging has seen enormous pro-
gress, with the introduction, validation and implementation
of new hardware and software, some of which are discussed
in this review. There is a general trend from mere visual
evaluation of radiological images to quantification of

abnormalities and biomarkers, and assessment of ‘non
visual’ markers that contribute to establishing diagnosis or
prognosis. Important catalysts to the developments in tho-
racic imaging include new indications (like computed
tomography [CT] lung cancer screening)1,2 and the
COVID-19 pandemic3; both have led to large increases in
numbers of chest examinations in the (very) recent past.

In the Respirology Invited Review Series on Thoracic
Imaging, this article complements the recent review on func-
tional MRI,4 and describes developments in CT, radiomics,
artificial intelligence (AI) and x-ray velocimetry, with partic-
ular focus on lung nodules/tumours (CT, radiomics and AI)
and ventilation (x-ray velocimetry).

Abbreviations: AI, artificial intelligence; ARDS, Acute respiratory distress syndrome;
CF, cystic fibrosis; CT, computed tomography; CXR, chest radiography; EGFR,
epidermal growth factor receptor; FEV1, forced expiratory volume in 1 s; FVC, forced
vital capacity; kVp, tube voltage peak; mAs, milliampere-seconds; NSCLC, non-small
cell lung cancer; PACS, picture archiving and communications system; PCD, photon-
counting detector; ULD, ultra-low-dose; XV, x-ray velocimetry; WHO, World Health
Organization.
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COMPUTED TOMOGRAPHY

In recent years, technical improvements in CT, including
developments in—among others—detector technology, tem-
poral resolution, image reconstruction techniques and spectral
imaging methods, have led to a surge in validation, accuracy
and implementation studies. In this review, the focus is on
ultra-low-dose (ULD) imaging and photon-counting CT scan-
ning. A third important topic of progress is so-called spectral
or dual-energy CT. This technique, its status, and its current
applications have been extensively reviewed in a recent over-
view article, to which readers are kindly referred.5 Spectral CT
is used in pulmonary embolism suspicion for improved image
quality and assessment of pulmonary perfusion, and can yield
additional information in pulmonary hypertension. Further-
more, blood volume information from spectral CT can help to
distinguish parenchymal pathologies like pneumonia or
infarct. In lung cancer, spectral CT can be used for tumour
perfusion evaluation, and help to assess treatment response.

ULD imaging

With recent improvements in CT hardware and software,
there has been increasing interest in so-called ULD imaging.
This term is generally considered to apply to CT scans with
a calculated radiation dose of below 1 milliSievert.1 ‘As low
as reasonably achievable’ is a central radiological principle,
because of the known association between radiation dose
and cancer incidence. However, there is a trade-off between
how much the radiation dose can be lowered, and the result-
ing image quality. The lower the dose, the noisier the CT
images, where small details with low contrast may become

missed, and strain for radiologists to read the scan increases.
The image quality should remain sufficient to allow accurate
evaluation of the primary indication of the CT scan.6

The lung is a high contrast organ, which makes it appro-
priate for ULD CT, in particular for the evaluation of solid
lung nodule/pathology against the air-filled lungs. There is
particular interest in ULD imaging due to the recent recom-
mendations to prepare and/or implement CT lung cancer
screening in high-risk individuals.1,2 Importantly, this
screening takes place in an apparently healthy population,
and thus, concerns need to be addressed regarding potential
risks of radiation dose due to the repeated CT screenings.7

Solutions to lower the radiation dose

In order to reduce the radiation dose in chest CT to an ULD
setting, different solutions can be applied, depending on the
specific CT vendor. See the overview in Box 1, with explana-
tion of radiological terms. Reducing radiation dose starts by
carefully considering the indication of the CT scan, selection
of the appropriate scan protocol and limiting the scan range
to the area in question. The basic CT scan acquisition
parameters include the tube voltage peak (kVp) and the tube
current time product (milliampere-seconds, mAs). Reducing
these parameters result in lower-energy x-ray photons with
less penetrative power and less photon output, in particular
less low energy photons; this reduces radiation dose.
Another method to decrease photons that have limited con-
tribution to image information is the use of a thin tin filter
between the x-ray tube and the scanned individual.

All described techniques, however, also result in less
photons reaching the detector, with increased noise and less

BOX 1 Solutions resulting in or allowing radiation dose reduction in routine chest CT

Parameter Description of parameter Intervention

CT scanner related

Tube current time product,
milliampere-seconds
(mAs)

A measure of the quantity of x-ray photons produced per second Reduce mAs use tube-
current modulation

Tube voltage peak (kVp) Determines maximum and average energy of x-ray photons, and photon quantity Reduce kVp patient
specific kVp
selection

Tin filtration Metal sheet pre-patient that removes low-energy photons Apply tin filter

Image reconstruction related

Iterative reconstruction (IR) Specific methods of image reconstruction, where an initial guess of the CT data is
adjusted in several iterations in order to match the measured CT data until the
difference is smaller than a preset value; usually these methods are provided in
different user selectable strengths

Apply (a level of) IR

Deep learning reconstruction
(DLR)

Image reconstruction methods, some vendor-specific and some stand-alone, based
on deep learning training networks, that transform noisy, (ultra-)low-dose
images into high-quality images

Apply (a level of) DLR
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information in the eventual image. This is only partly neu-
tralized by improved detector systems. Without other inter-
ventions, (very) low radiation dose leads to high noise in the
image, limiting the diagnostic accuracy. In particular the
combination with new image reconstruction techniques, so-
called iterative reconstruction techniques,8 and more
recently, deep-learning based techniques,9 can counteract
the image noise and reduced image information.

In iterative reconstruction, an initial guess of the CT
data is adjusted in several iterations in order to match the
measured CT data until the difference is smaller than a pre-
set value. Usually these methods are provided in different
user selectable strengths. By now, there are different genera-
tions of iterative reconstructions. Furthermore, there are
now deep learning training networks that transform noisy,
(ultra-)low-dose images into high-quality images. For an
example, see Figure 1.

Studies on ULD in chest CT so far have mainly focused
on the image quality and the accuracy for detection of lung
nodules.11–17 The most recent studies have applied combina-
tions of techniques described above, in particular, tin filtration
with newest generations of iterative reconstruction,11–13 or
reduced tube current with deep-learning reconstruction.14,15

In these studies 40–200 patients underwent a clinically indi-
cated, regular dose chest CT scan and in the same session an
ULD CT scan. The calculated radiation dose of the ULD CT
scan was generally 0.15–0.2 mSv, which is around 90% radia-
tion dose reduction compared to a routine non-contrast chest
CT, and getting close to the radiation dose of a chest x-ray
examination (0.05–0.1 mSv); this is a remarkable feat.

Overall, the sensitivity of detection of solid lung nodules
in ULD CT was similar or slightly lower (10%–17%

reduced) compared to regular dose CT.11–14 It is important
to realize that for sensitive detection of subsolid nodules, the
lowest radiation dose in ULD CT does not suffice, as conspi-
cuity of these lesions becomes very limited.14,18,19 Further
research is needed on what combination of scan protocol
specifications (in tube voltage, tube current and reconstruc-
tion, with or without x-ray beam filtration) is needed to
obtain a sufficiently high level of nodule detectability. Likely,
computer automated detection of lung nodules, whether or
not AI-based, may help in this respect.11,13

There are conflicting results and insufficient evidence on
the effect of BMI on the accuracy of lung nodule detection.
Some studies indicate no negative effect for individuals with
a BMI above 25,11,20 while another recent study showed sig-
nificantly lower detectability of nodules at higher BMI.14

Some other studies excluded individuals with high BMI.16,17

An important point that so far has received limited
attention is the potential effect of ULD CT acquisition on
quantification of lung nodules (volume, diameter and den-
sity). These issues need further research and optimization
prior to potential implementation in screening settings, to
make sure that lung cancer screening outcomes are not
affected.

ULD chest CT for other applications than lung
nodules

ULD CT protocols could potentially also be used for indica-
tions other than evaluation/follow-up of lung nodules.
Regarding detection and quantification of emphysema, two
studies which included a more general chest CT patient

F I G U R E 1 Standard dose CT (HRCT) and ultra-low-dose CT (ULD) in the same patient (from the cohort described in Reference 10). (A) Shows a
standard reconstructed HRCT image (filtered back projection). (B) Shows a cropped view of the standard reconstructed HRCT image. (C) Shows a standard
reconstructed ULD CT image, with elevated image noise. (D) Shows an ULD CT image based on deep learning reconstruction. (E) Shows an ULD CT image
based on iterative reconstruction. (D) and (E) show less image noise, more similar to standard dose (HRCT) image

820 VLIEGENTHART ET AL.



cohort21 and a COPD cohort10 showed that ULD CT com-
bined with iterative reconstruction (IR) or deep learning
reconstruction (DLR) can indeed detect lesser and more
severe emphysema, without significant difference in sensitiv-
ity to standard dose CT. However, some differences in the
extent of emphysema resulted, depending on the reconstruc-
tion level. Thus, consistent scan protocols are needed for
follow-up. Furthermore, higher BMI may result in lower
detectability of emphysema.20 Interestingly, an ULD CT
protocol may also be accurate for evaluation of cystic fibro-
sis (CF), follow up imaging and detection of viral pneumo-
nia, including COVID-19 pneumonia.6,22 However, if the
primary indication is interstitial lung disease/abnormality,
then an ULD CT protocol is not recommended.6

Photon-counting detector CT scanner

While innovations in CT hardware and software have been
extensive in the last decade, even the newest clinical CT gen-
erations have some limitations. Suboptimal spatial resolu-
tion hampers evaluation of small structures such as the
pulmonary interstitium. In certain patients, the CT scan can
show reduced image contrast, significant noise or streak
artefacts.23 Dual-energy CT has gained momentum for
material differentiation and for functional information but
each CT vendor solution has inherent limitations.

Photon-counting detector (PCD) CT is a ground-
breaking development that will contribute to the solution of
these main limitations in CT. In regular CT scanners, x-ray
photons are absorbed in a scintillator detector that converts
x-rays into light photons. Light is then absorbed by an
underlying photodiode, and an electrical charge generated,
which results in an image signal. In PCD CT, x-ray photons
are absorbed in a semiconductor material. There, positive
and negative charges are created that are pulled apart in a
strong electric field, instead of an intermediate step of light
photons. In contrast to detectors in regular CT scanners,
each individual x-ray photon with its energy is counted.

Furthermore, the PCD has a higher geometric dose effi-
ciency, for example by electronic noise suppression.

The technological advances in PCD CT result in higher
contrast-to-noise ratio, higher spatial resolution (currently
down to 0.28 � 0.28 mm in clinical settings), lower radiation
dose, reduction of noise and artefacts and improved dual-
energy imaging, with the potential of multi-energy imaging.23

In a recent phantom study on lung nodules, PCD CT yielded
higher subjective and objective image quality compared to a
regular CT scanner at the same low radiation dose.24 First clin-
ical examples in chest CT, as reviewed by Si-Mohamed,25 show
excellent spatial resolution of small parenchymal structures,
and improved detection of low density structures like subsolid
nodules. The first patient studies on the advantages of clinical
PCD CT scanners in chest imaging are eagerly awaited.

RADIOMICS

Radiomics pipeline

Recently, texture analysis techniques have attracted interest
to address a well-known problem with visual inspection of
medical images, namely subjective evaluation and diagno-
sis.26,27 The new paradigm, called radiomics,28,29 is based on
the transformation of medical images into minable data that
became feasible by applying mathematical transformations
on specific areas of tissue, primarily tumoral.

The radiomics workflow is comprised of several consecu-
tive phases (Figure 2).30 First, a medical oncologist needs to
provide a well-described clinically meaningful case, that
addresses an unmet clinical problem related to the patient
with (lung) cancer. Consequently, the radiologist needs to
identify the relevant data source, namely the type of modality
to be considered for data extraction, as well as the type of
individual imaging techniques that are relevant to the clinical
question under investigation. Next, an imaging scientist will
verify the state of the raw data and whether they need any
kind of pre-processing actions before feature extraction.

F I G U R E 2 Consecutive steps in a
typical radiomics workflow (adapted from
reference 30)
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Regarding the data, three important requirements need to be
fulfilled: adequate quantity, expected quality and large diver-
sity. As far as data quantity is concerned, it is not possible to
provide some hard numbers, however the more data we have,
the more efficient the learning process will be. In addition,
large datasets can support the training of robust models that
are stable to changes and less sensitive to overfitting.

One potential bottleneck in the radiomics workflow is
the necessity to provide segmentation masks, preferably of
the entire tumour and sometimes even in its vicinity (pen-
umbra). Since tumour segmentation is based on the subjec-
tive opinion of radiologists on the exact borders of the
tumour, significant variability between readers can be found.
To address the latter, it is advised to collaborate with two or
more radiologists to provide segmentation masks.

Manual tumour segmentation can be time consuming,
and it certainly should be done by expert radiologists which
poses issues of availability. The latter problem has initiated a
significant effort towards developing automatic or semi-
automatic tools to reduce the work burden and accelerate
the segmentation process. These tools are mostly based on
deep learning algorithms, where with a moderate number of
cases such networks can be trained to produce segmentation
masks that then only need to be verified and validated by
expert radiologists.

Following the delineation of the tumour, a radiomic fea-
ture library or package can be used to extract well defined
features that are based on known mathematical formulas.
These features can be summarized into three distinct types:
first order features, shape features and texture features. First
order features estimate properties of individual voxel values,
ignoring the spatial interaction between neighbouring vox-
els, so they are very similar to histogram metrics. Further-
more, there is a group of features that convey two- and
three-dimensional shape and volume information. Those
can be also used to study purely morphological characteris-
tics of the tumour in an objective manner.

Finally, a vast amount of radiomic features are
extracted by applying texture matrices in the images pro-
viding information about local and global heterogeneity of
the tumour. For example, the grey level co-occurrence
matrix describes the second-order joint probability func-
tion of an image region constrained by the mask. Each ele-
ment of this matrix represents the number of times the
combination of predefined pair of intensities occurs in two
pixels in the image that are separated by a distance of
pixels along angle θ.

Feature selection

In radiomics, as in many other multi-dimensional problems,
usually the number of predictors significantly outweighs the
number of samples (p � n). There is a need therefore to
reduce the dimensionality of the problem by identifying the
most informative features through a methodology that is
called feature selection.

Feature selection is generally performed in consecutive
phases. For example, one can use spatial and/or temporal sta-
bility analysis as a first step towards dimensionality reduction.
Since segmentation masks may differ between radiologists,
often at least two segmentation masks are obtained from the
same lesion. Then, the computed radiomic features are ana-
lysed with interobserver correlation coefficients to identify
those above a certain threshold (usually 0.75) meaning that
their value is not significantly changing across the two radiol-
ogists. After stability analysis, a zero or near zero variance
method can be used to remove features that are constant
across exams of different patients. Subsequently, correlation
analysis may detect redundant features and remove them.
Finally, more sophisticated methods like minimum redun-
dancy maximum relevance or recursive feature elimination
are used to craft the radiomic signature.30

Model selection/assessment

According to the no free lunch theorem in machine learn-
ing, ‘no single machine learning algorithm works best for
every problem’.31 This means that we do not know in
advance which algorithm is the most efficient for each indi-
vidual problem. Of course, someone may have a strategy to
choose which type of algorithms to focus on, for example if
performance at the expense of ‘explainability’ is the target,
to consider deep learning instead of conventional machine
learning algorithms.

In any case, we need to train several algorithms and
compare them to make a model selection. This is a very
tricky task, since often someone might use the wrong type of
dataset to make the model selection, thereby increasing bias
and resulting in models with poor generalizability. The
selection of the best algorithm is based on the internal vali-
dation process, using part of the data to measure perfor-
mance. In addition and depending on the problem, the
interpretability and transparency of each algorithm may
play a role on the final selection.

One of the main obstacles in radiomics is the low general-
izability, not only due to incorrect practices, but also due to the
vast variability of the feature representations that might reflect
differences between scanner vendors, scanner models and even
acquisition protocols. Contrary to other domains in healthcare,
radiomics is suffering from this lack of standardized inputs to
machine learning models; this may be responsible for the low
clinical usability. It is not a surprise that although thousands of
radiomic models have been published, only a very small
minority might end up useful in clinical practice.

Clinical applications of radiomics/
radiogenomics in lung cancer

Lung cancer was among the first fields at which radiomics
was aimed.32,33 The most common modalities were CT and
Positron-Emission Tomography-CT, given their leading role
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in the clinical diagnostic workup of patients with lung
cancer.

In 2014, Aerts et al. were the first to develop a radiomic
signature to predict overall survival in patients with lung can-
cer.34 They used data from 422 patients with non-small cell
lung cancer (NSCLC) from Maastro Clinic to construct the
radiomic signature, which they validated using another dataset
from Radboud University comprising 225 patients. In addi-
tion, they successfully validated their signature based on two
other datasets comprising patients with head and neck cancer.

An important part of this work was the biological valida-
tion that was done assessing associations and correlations
between radiomic features and gene expressions. In 2018, a
publication by another group challenged this radiomic sig-
nature by arguing that the presented radiomic signature was
predictive of the tumour volume and not overall survival.35

Furthermore, radiomics was shown to be able to quantify
tumour phenotypic characteristics non-invasively. In an
early study by Wu et al. published in 2016,33 they investi-
gated the association between radiomic features and the
tumour histologic subtypes (adenocarcinoma and squamous
cell carcinoma). To predict histologic subtypes, they
employed various machine-learning algorithms and feature
selection techniques while they independently evaluated pre-
diction performance.

More recently several studies associating or combining
radiomics and genomics, termed as radiogenomics, have
emerged. Zhou et al.36 showed that CT Hounsfield attenua-
tion measurements and lesion margins were correlated with
cell-cycle genes, while the presence of irregular borders and
ground glass opacities in the lesion was correlated with epi-
dermal growth factor receptor (EGFR) expression. In a
study by Rizzo et al.,37 CT features such as the presence of
air bronchogram, pleural retraction, small lesion size and
absence of fibrosis were associated with EGFR mutation,
whereas pleural effusion was associated with anaplastic lym-
phoma kinase mutation. Round shape, nodules in non-
tumour lobes and smoking were variables linked to KRAS
mutation.

Other, less frequent mutations such as RET and ROS1,
which comprise 1%–2% of all lung adenocarcinomas, have
also been assessed for associations with imaging features. In
a study of 26 patients, Gevaert et al.38 found that the pres-
ence of air bronchograms was associated with overexpres-
sion of the KRAS oncogene. Weiss et al.39 also found that
imaging features could predict the KRAS status of patients
with NSCLC. As a predictive marker, KRAS has been linked
to round shape, nodules in non-tumour lobes, multiple
small nodules, as well as, general radiomic profiles.

ARTIFICIAL INTELLIGENCE

The deep learning revolution

AI refers to computer systems that can interpret and/or
learn from data to perform certain tasks. Deep learning, a

subdomain of machine learning where computers use pow-
erful compute resources to learn high dimensional features
directly from large amounts of data, has led to a revolution
in the field of AI. Deep learning gained momentum in 2012
when Krizhevsky et al.40 showed that a convolutional neural
network had beaten (by a substantial margin) the best
performing algorithm in the ImageNet Large Scale Visual
Recognition Challenge, an annual competition where algo-
rithms compete to correctly classify and detect objects and
scenes in natural images.

A crucial difference with previous machine learning
methods is that deep learning uses large neural networks
with millions of parameters that are learned directly
from the raw data and corresponding labels. This is an
extremely powerful technology. In many fields, ranging
from autonomous driving for the auto industry to medical
image interpretation for the healthcare sector, deep learn-
ing methods have replaced previous machine learning
methods.

Deep learning in medical imaging

For medical image interpretation, deep learning has also
become the standard methodology of choice for tasks like
detection, segmentation and classification.41 The performance
of deep learning algorithms is reaching or even surpassing
human performance for an increasing number of tasks.41 Sev-
eral key exemplary papers have demonstrated this for tasks
such as skin lesion classification in dermatology,42 diabetic reti-
nopathy detection in ophthalmology,43 breast metastasis detec-
tion in pathology44 and lung cancer detection on low-dose
chest CT screening.45,46 The revolution arising from deep
learning technology has led to a substantial increase in the
number of approved medical devices based on AI in Europe
and the United States since 2015, with many being approved
for use in radiology.47 The sector is still in its infancy; peer-
reviewed evidence on the efficacy of these devices is currently
lacking for a large proportion of approved AI products.48 With
deep learning technology entering the healthcare market, it is
important for physicians involved in respiratory care to under-
stand what AI is and how it may affect their field in the near
future.

Current AI applications in thoracic imaging

Several review papers have been published that discuss AI
for thoracic imaging,49 or for various subfields within tho-
racic imaging, such as lung cancer screening,50 pulmonary
nodule management,51 chest x-ray classification,52 cardio-
vascular imaging,53 paediatric imaging54 or COVID-19 diag-
nosis and prognosis from CT and chest radiography
(CXR).55,56 The application options for AI in thoracic imag-
ing are diverse and extensive. A recent analysis of 100 CE-
approved products in Europe reported that chest radiology
is an important area for AI software, with 31 out of
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100 products addressing tasks in chest imaging.48 We will
now cover a few popular applications for AI in thoracic
imaging.

Publicly available datasets for lung nodules

Deep learning technology needs large amounts of data for
training, and therefore, the availability of publicly available
datasets is important for development and validation of AI
algorithms. When datasets have been released publicly, this
also leads to publications from many different research
groups, including more fundamental research groups focus-
ing on general computer vision with limited access to
medical data.

A classic application that has received a lot of attention
is the detection of lung nodules on CXR or CT (Figure 3).
The most used publicly available datasets for nodule detec-
tion on CT are the Lung Image Database Consortium
(LIDC)-Image Database Resource Initiative (IDRI) data-
base57 and the National Lung Screening Trial (NLST) data-
base (also has CXR images).58 For CXR, large databases with
images have been released, such as the Chest-Xray14,59

CheXpert,60 MIMIC-CXR61 and the PadChest62 database,
each consisting of more than 100 k images. The act of
releasing a dataset publicly, preferably in combination with
a competition, has been proven as an effective strategy to
attract community attention and investigate what
approaches work well for a certain application, and what
performance can be considered state-of-the-art. Examples of
competitions for lung nodules on CT are the LUNA16
challenge,63 the SPIE Lung X challenge,64 and the Kaggle
Data Science Bowl 2017.46 The results of the competition

are typically described in a scientific publication, which puts
the results into context for clinicians and describes what
future steps are needed in the field.

AI for pneumonia and tuberculosis detection

In addition to the detection of lung nodules, other exemplary
applications are the detection of pneumonia and tuberculosis.
A pneumonia detection challenge was organized by the Radi-
ology Society of North America, accompanied by the release
of 33,000 CXR images with pneumonia annotations, in an
attempt to reach out to the machine learning community to
develop algorithms that automatically identify potential pneu-
monia on CXR. The winning solutions are now available as
open-source software and can be taken up and further devel-
oped into certified medical products.

Tuberculosis detection is another topic of numerous AI
publications. Tuberculosis remains a leading cause of death
by infection. To eliminate this disease, improvements in
access to tuberculosis diagnostics are needed in developing
countries. The World Health Organization (WHO) has
identified the use of triage tests as one potential solution for
improving tuberculosis diagnostic pathways in resource-
limited settings. There is an increasing interest in using CXR
as a cheap pulmonary tuberculosis triage test, especially
when combined with automated AI analysis. A recent pro-
spective study compared two commercial AI products and
concluded that both products met the WHO-recommended
minimal accuracy for pulmonary tuberculosis triage tests.65

AI for quantification

Automatic quantification of disease is another area for AI
applications in thoracic imaging. Exemplary applications are
automatic emphysema quantification,66 automatic calcium
scoring,67 or quantification of diffuse lung diseases.68 These
applications provide accurate and reproducible quantifica-
tion results that may (e.g., in the case of automatic calcium
scoring) be used for cardiovascular disease risk prediction.69

AI in thoracic imaging: where do we stand?

What can AI do and what can it not do? An often heard rule
of thumb for what AI can do, introduced by Andrew Ng, is:
‘If a typical person can do a mental task with less than one
second of thought, we can probably automate it using AI
either now or in the near future’ (https://hbr.org/2016/11/
what-artificial-intelligence-can-and-cant-do-right-now).70

Thus, specific tasks such as localization and classification
of lesions, segmentation of organs and quantification of dis-
ease extent can currently be accurately performed by AI
solutions. Often, these AI applications target repetitive,
tedious and routine tasks for radiologists. At present, most
AI products are approved for clinical use as an aid to

F I G U R E 3 Example of the output of an artificial intelligence
(AI) algorithm for lung localization and nodule detection on chest
computed tomography (CT) imaging. The lung localization algorithm takes
a slice of a CT scan as input, and produces a bounding box around the left
lung and the right lung. The lung nodule detection algorithm takes a CT
scan as input, and produces bounding boxes around detected lung nodules,
which can be presented to radiologists as an aid for the detection of nodules
in chest CT images
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radiologists, but the first products that perform autonomous
assessment of images have entered the market.65,71 In tho-
racic imaging, a commercial product that can automatically
and autonomously evaluate a chest x-ray study has recently
obtained regulatory approval; the product automatically
generates a report if the device is confident that the study
has no actionable radiological findings.

The release of large public datasets has been crucial for
the development and commercialization of AI products for
thoracic imaging in the last decade. Large imaging datasets
combined with high-quality annotations can be used to
develop AI products that reach performance on par or sur-
passing physicians for specific tasks. This has resulted in the
large set of commercially available AI applications that are
entering clinical care. Therefore, the availability of more
data combined with high-quality annotations will be cru-
cially important to continue to improve AI technology and
to effectively validate these products on representative
multi-centre datasets. Federated learning, a novel technique
in which AI systems are trained using multiple decentralized
data sources while maintaining data anonymity, may prove
to be an effective technique that removes the current bar-
riers for data sharing.72

Important challenges for the adoption of AI technology
are integration into healthcare IT systems, current clinical
workflows and reimbursement. Integration of AI systems
into existing hospital systems such as the picture archiving
and communications system (PACS) is one of the obstacles
to widespread use of AI in hospitals. Suboptimal integration
hinders efficient workflow integration and hinders possible
reductions in reporting times. As radiologists are currently
experiencing high workloads, extra delays resulting from AI
interfacing with PACS or calling up studies are undesirable.
Second, with a few exceptions, there is no reimbursement
for the use of AI software. Therefore, the costs for the AI
software need to be covered by the hospital, which is prob-
lematic when direct cost savings are unclear.

X-RAY VELOCIMETRY

X-ray velocimetry (XV technology) integrates x-ray (fluoro-
scopic) imaging with unique image processing to produce
quantitative four-dimensional (4D) measurement of lung
tissue motion, and accurate calculations of lung ventilation.
In brief, the fundamental measurement principles of motion
used in XV technology are derived from a limited number
of cinefluoroscopic projection views to yield 4D measure-
ment of tissue motion to derive physiologically meaningful
measures of ventilation. Literature outlining the develop-
ment and validation of the method of measurement and
analysis that comprise XV technology are multidisciplinary
in nature, highlighting the innovation intersection between
clinical research, engineering, physics, physiology and bio-
mechanics. The studies essential in validating the transla-
tional approach underscore the respiratory physiological
principles and clinical application of the XV lung ventilation

analysis. XV has been utilized for well over a decade as a
research tool and is now seeing growing use in clinical
practice.

Technical development of XV technology

The XV technology was originally developed in the mid-
2000s from innovations in the fields of experimental
fluid mechanics, image processing, x-ray physics73–76

and in vivo x-ray imaging,77,78 designed specifically for
imaging of ventilation,79–83 airway surfaces,84–86 mucocili-
ary transport87–89 and blood flow.90,91 Significant technical
advancements that led to the derivation of XV technology
were: (1) the ability to measure motion in three spatial
dimensions using X-rays acquired at a single projection
angle92; (2) the ability to reconstruct, using multiple x-ray pro-
jections, a three-dimensional (3D) motion field without the
need to reconstruct a 3D image of the structure93,94 and (3) the
ability to accurately and reliably calculate regional ventilation
data from a 3D motion field.95

Origins in 3D flow measurement of opaque fluids

The first breakthrough component of XV was a method to
derive 3D motion measurements from two-dimensional
(2D) image sequences modified from particle image veloci-
metry.92 Investigators found that synchrotron-based x-ray
imaging enabled accurate velocity measurement of particle-
laden, opaque fluids in regular flow, by showing that intra-
image cross-correlation peaks from cinematic 2D x-ray image
sequence of a 3D flow represents a probability density func-
tion of velocities within the measurement volume. Further-
more, analysis of the cross-correlation peaks facilitates
accurate reconstruction of the 3D velocity field of the flow
(Figure 4A). 3D velocity reconstruction from only a single 2D
projection image sequence represented a significant break-
through, and it was subsequently shown that this new meth-
odology could be transferred from the synchrotron to smaller
laboratory x-ray systems96–98 and other imaging modalities,
including x-ray speckle imaging,99 microscopy,100,101 hologra-
phy102 and 2D projection images.103

The 3D flow measurement was extended to include the
full 3D, time varying motion field reconstructed from parti-
cle image velocimetry cross-correlation peaks derived from
image sequences obtained at multiple projection views.
Referred to as CT x-ray velocimetry the method is funda-
mentally similar to what is now known as XV technology.
This approach was used to measure blood flow through an
optically opaque arterial model, with x-ray images from
multiple projection angles. Minimizing the error between
the measured correlation functions and the analytically
modelled correlation functions for each imaged section,
facilitates 3D reconstruction of the velocity field (Figure 4B).
Dubsky et al. detailed accuracy via analysis through gener-
ated image sequences containing features that undergo a
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mathematically calculable yet complex motion, which
showed that the average error for all velocity reconstructions
was less than 2% of the maximum velocity of the known
input motion field.94

Regional ventilation calculation from measured
motion fields

A significant milestone in XV technology is the ability to
accurately and reliably calculate regional ventilation from
the 3D velocity measurements based on the principle that
the ventilation of the local tissue is approximated by the
local tissue expansion.95 The ventilation assumption is pred-
icated on the conservation of airflow entering and leaving
the lungs, with the volume of transported air being closely
described by the volumetric expansion of the lung tissue.
Measured tissue velocities in the 3D vector field have three

components (X, Y and Z) and therefore nine spatial partial
derivatives. The expansion (mathematically described as the
divergence, or the Jacobian) is calculated from these spatial
derivatives and is a scalar value that describes the local tissue
expansion and contraction at the corresponding point, dem-
onstrated to closely approximate the specific ventilation
field.

Reinhardt and co-authors earlier presented an almost
identical concept of using spatial derivatives of the motion
field.104,105 In this work, multiple volumetric CT images cap-
tured at different breath phases were used to produce a 3D
motion field and the spatial derivatives are referred to as the
Jacobian. Reinhardt et al.104 compared the Jacobian to addi-
tional measurements of regional specific ventilation obtained
using Xe-CT imaging. The Jacobian has subsequently been
used in other inspiratory-expiratory studies,106,107 and
can also be used with other technologies that involve the
acquisition and comparison of multiple x-ray CT images

F I G U R E 4 Preclinical experiments validating the accuracy and validity of lung volume measures using XV technology, with (A) and (B) showing bench-
top measurements of fluid flow validated against computer modelling; and (C) and (D) showing in vivo measurements of ventilation in rabbit lungs validated
against plethysmography. (A) Reconstructed 3D blood velocity flow fields measured using XV. For clarity only half the sample is plotted, with reduced vector
resolution in all dimensions. Vector colours represent velocity magnitude and are validated against computational models of the flow field. (B) CT XV
reconstruction of flow field through helical geometry. A section of the result has been rendered as transparent for visualization of the flow. The results
indicate the ability of CT XV to simultaneously measure the 3D structure and velocity of flow through complex geometries. (C) In vivo measurements of
ventilation in rabbit lungs with validation of integrated divergence (volume) measurements from XV technology against volume measures from
plethysmography. A scatter plot shows strong correlation between two quantities. (D) Time series of lung volume co-plotted with divergence demonstrated a
direct link between divergence and tissue expansion
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through the breath, in particular four-dimensional com-
puted tomography.108–113

The accuracy of the divergence calculation depends
strongly on both the accuracy of the raw measurements and
the method with which the spatial gradients are calculated. In
the case of XV technology, the gradient calculation method
developed by Fouras and Soria dramatically reduces such
errors from derivatives that are susceptible to increased ran-
dom error due to noise (measurement error), without a pro-
portionate loss of spatial resolution. Divergence has been
validated as equivalent to ventilation. Fouras et al.95 used pre-
clinical animal models to demonstrate a very strong correlation
with independent plethysmographic measurements of lung vol-
ume throughout the breath (R2 = 0.98) (Figure 4C,D).95

XV technology in preclinical studies

Since its development, XV technology and its components
have been applied to a large number of animal studies to
measure regional lung ventilation, and to provide
researchers and clinicians with useful insights into lung
function and disease processes.

XV to quantify regional ventilation in bleomycin
model of lung disease

The first reported use of XV technology to assess regional lung
ventilation in animal models examined changes following
exposure to bleomycin, a well characterized experimental dis-
ease model that results in pathological changes to lung struc-
ture and function.95 Lung tissue motion derived from x-ray
cinefluoroscopic sequences of the breathing lung was obtained
in control and bleomycin-treated mice (36-h and 6 days after
exposure) that were verified to have different pulmonary func-
tion using plethysmography-derived lung compliance and
tidal volume measurements. Moreover, histological images of
control and bleomycin-treated lungs corresponded with
healthy and localized regions of pathology, respectively.

The normalized XV divergence values showed that, at
36-h post treatment, in bleomycin-treated mice 14% of lung
regions displayed expansion twice the control average com-
pared with less than 5% for control lungs. Furthermore, at
6 days post treatment, 47% of treated lung regions in the bleo-
mycin group showed differences twice the control average,
compared with less than 4% for saline-treated mice. Physio-
logically relevant acute changes in ventilation distribution
related to disease pathogenesis were evident using XV technol-
ogy well before detectability by plethysmography or CT.

XV to study CF-like lung disease model

XV technology is a valuable tool for the assessment of lung
diseases such as CF, to investigate the functional capacity of
lung tissue in healthy and transgenic β-ENaC mice that

develop a spontaneous CF-like lung disease with airway
mucus obstruction and chronic airway inflammation.114

Specifically, the authors used the regional expansion (vol-
ume change) to derive time-resolved airflow measurements
overlaid onto a segmented airway tree structure. Regional
filling defects were identified as an area of reduced expan-
sion and increased airflow time constant corresponding to a
histological section showing mucus blockage in the bron-
chial tree that feeds the respective lung lobe. The anatomical
association validates the ability of the regional lung ventila-
tion map to assist in the assessment of lung health.

XV technology to quantify changes in an ARDS
model

Using XV technology, Kim et al.115 investigated the contribu-
tion of mechanical ventilation in increasing the anatomic
dead space in mice. Increased dead space is an important
prognostic marker in early acute respiratory distress syn-
drome (ARDS) that correlates with mortality. The authors
used XV to generate detailed 3D tissue expansion maps that
allowed precise measurements of lung tidal volumes. As with
previous studies, Kim et al.115 estimated the relative contribu-
tion of airway volumes to the total tidal volume. They showed
that the airway volumes increased over time with exposure to
mechanical ventilation without a concomitant increase in
tidal volume. The findings suggest that anatomic dead space
increases progressively with exposure to positive pressure
ventilation and may represent a pathological process. XV
technology allows in vivo derivation of airway volume mea-
surements in mice, which has not been possible to date.

Clinical use of XV technology

XV is a software only technology and requires no special
equipment for image acquisition. The technology uses C-arm
fluoroscopy, a standard imaging technology found in hospi-
tals and many outpatient radiology facilities around the
world. As such, images used to generate XV ventilation
reports are captured with existing conventional C-arm fluoro-
scopic systems which are compatible with the XV protocol.
The first clinical validation of XV technology was performed
to quantify lung function in a cohort of patients undergoing
radiation therapy for various thoracic cancers (excluding lung
cancers).116,117 In this study regional lung ventilation was
quantified and compared to the current gold-standard diag-
nostics of spirometry and CT. Specifically, changes in lung
function were assessed at 4 and 12 months after radiotherapy.
For each participant, fluoroscopic images of lungs during
spontaneous breathing were obtained at five distinct angles
across the chest (anterior–posterior, �36� and �72�). Image
sequences were acquired to capture at least one complete,
continuous breath (�4–6 s) at each of the five angles. Imag-
ing was performed with the patient in a supine position dur-
ing tidal breathing. Automatic Exposure Control setting of
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the detector on the x-ray system was active to ensure the cap-
tured images were acquired with the highest level of contrast.
Whenever possible, images covered the entire lungs in the
field of view. Standard clinical data (including CT studies and
spirometry) were collected from each patient.

The output analysis includes layers of 4D display of the
volume distribution and the individual frequency distribution.
Coloured maps demonstrating regional ventilation of the
lungs at peak tidal inspiration were generated for each patient
(Figure 5A). Additional analysis was performed to include
lobar segmentation of the volume distribution (Figure 5B).

Analysis revealed correlations between XV-derived
ventilation data and CT and spirometry.117 Specifically, ven-
tilation heterogeneity (a marker of how uniform or non-uni-
form airflow in the lungs is) and ventilation defect
percentage (which quantifies lung tissue with relatively low
specific ventilation) were correlated with forced expiratory
volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC).117

More importantly, the results highlighted the advantage of the
XV technology over standard tests by providing regional
quantification of ventilation.116

When some parts of the lungs are affected by disease,
healthy regions may overcompensate, masking the disease
from the global functional measures. Several patients in the
study with normal FEV1 and FEV1/FVC values at baseline
and at 4 months after radiotherapy showed decline in lung
function at 12 months. It was expected that these patients
may have had a reduction in lung function as a result of radio-
therapy. However, XV was demonstrated to be more sensitive
in measuring alterations in regional lung function over time,
with the ability to detect changes at the 4-month timepoint.

These results indicate XV technology has a great poten-
tial to detect subtle changes in lung function earlier than
available from standard pulmonary function tests. The
results of this study demonstrated that not only is XV tech-
nology consistent with the standard tests, but in many cases,
it offers a superior richness and sensitivity, enabling detec-
tion of even subtle functional losses well before lung struc-
ture is irreversibly affected by disease, meaning that
treatment may be applied early.117

Furthermore, compared to standard CT protocols
(not being ultra-low-dose, as described above), XV imaging
requires a significantly lower radiation dose to the patient
(as approved by the FDA, XV technology delivers
0.2–0.5 mSv, compared to a standard thoracic CT dose of
3–6 mSv, taking note that XV provides functional information,
while CT provides primarily structural information) and as
such can be repeated over a short time interval which is ideal
for monitoring disease progression/response to treatment.

In addition, assessment of treatment outcomes using
global measures is hindered, making it a major challenge for
development of novel biologics or delivery methods. Further-
more, as XV imaging is performed during tidal breathing, it
is less dependent on the patient’s compliance compared to
standard imaging and spirometry that require breath-hold or
other respiratory manoeuvres. This means that XV imaging
can be offered to severely ill patients who are unable to per-
form breathing manoeuvres or young children who may not
be able to comply with technical instructions.

This study also validated the repeatability of the mea-
surements by comparing results (1) obtained for multiple
sets of image sequences on the same day and (2) those
obtained on two different days, approximately 2 weeks apart
(before the initiation of radiotherapy).118 In the first
instance, the comparison allows to gauge natural breath-to-
breath variations and accuracy of the technique. Compari-
son between scans acquired on two separate days is useful in
determining the repeatability of the measurements.

Both analyses demonstrated that the XV can deliver out-
puts with high repeatability and reproducibility. Overall, the
performance, reproducibility and safety of the XV technol-
ogy make it ideal for clinical and research use and future
studies should determine its utility across different lung
conditions.

DISCUSSION

In this review, a selection of innovations in chest imaging have
been introduced and elucidated. ULD CT techniques, with

F I G U R E 5 (A) Distribution of regional
lung ventilation during XV scanning is
shown using a colour scale where red
represents underventilation, green represents
average ventilation and blue represents
hyperventilation relative to the mean regional
lung volume expansion. The visualization
maps show a mid-coronal slice and axial
slices from the upper, middle and lower
zones at peak inspiration. (B) Lobe-wise XV
analysis performed using an automated
anatomy-based segmentation
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radiation dose getting close to that of a chest x-ray examina-
tion, combined with novel reconstruction methods, have great
promise for use in CT lung cancer screening. While studies so
far mainly focused on image quality and lung nodule detec-
tion rate, more evidence is needed on the impact on lung nod-
ule measurement and categorization, prior to potential
implementation in screening settings. The introduction of
PCD technology heralds a new era in CT imaging with much
promise for chest imaging, such as high spatial resolution/low
noise imaging of interstitial lung disease, and improved spec-
tral imaging, available in each CT acquisition.

Radiomics is a fast-evolving technology that has not yet
translated to the clinics as much as was expected. It has the
potential to support treatment selection while it may predict
oncological outcomes such as response rate, progression free
survival and overall survival. Further work needs to be done
to accelerate radiomics translation, in areas such as image
standardization, availability of large datasets and finally,
explainable models that can gain the trust of the end user.

Deep learning technology has revolutionized the field of
AI and has become the methodology of choice in medical
image interpretation. A new wave of certified AI products is
becoming available for clinical use and respiratory physi-
cians will start to see radiological reports created with the
help of AI. In the next 5 years, deep learning technology will
evolve and AI solutions in thoracic imaging will become
more mature. More and more data will need to be made
available, either publicly in an anonymous dataset or via fed-
erated learning approaches. As a result, the availability and
performance of AI products in thoracic imaging will evolve.
Prospective multi-centre validation studies will be per-
formed to estimate the clinical impact of AI solutions on
patient outcome and the results of these studies will be cru-
cial for the adoption and reimbursement of AI software.

XV technology provides a platform for the 4D measure-
ment of lung tissue motion, and subsequent calculation of
lung ventilation. XV has been successfully validated through a
range of preclinical and clinical studies, providing insight into
respiratory diseases and treatments, as well as complex physi-
ological processes. Importantly, these studies have verified the
accuracy of the XV technology, quantified the measurement
uncertainties, demonstrated repeatability and validated the
technology against existing gold standard methods.

The described innovations in chest imaging also have
important interactions, for example, AI solutions for auto-
mated lung nodule detection may help the introduction of
ULD CT in the clinical realm, and optimized spectral evalu-
ation in PCD CT may have added value in radiomics ana-
lyses of lung tumours. This necessitates increasing
multidisciplinary collaboration between the clinical, biomed-
ical and technical realms, to together bring the potential of
new techniques and indications in chest imaging further and
into the clinic.
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