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Neural responses to visual stimuli exhibit complex temporal dynamics, including subadditive temporal summation, response reduc-
tion with repeated or sustained stimuli (adaptation), and slower dynamics at low contrast. These phenomena are often studied in-
dependently. Here, we demonstrate these phenomena within the same experiment and model the underlying neural computations
with a single computational model. We extracted time-varying responses from electrocorticographic recordings from patients pre-
sented with stimuli that varied in duration, interstimulus interval (ISI) and contrast. Aggregating data across patients from both
sexes yielded 98 electrodes with robust visual responses, covering both earlier (V1–V3) and higher-order (V3a/b, LO, TO, IPS) reti-
notopic maps. In all regions, the temporal dynamics of neural responses exhibit several nonlinear features. Peak response ampli-
tude saturates with high contrast and longer stimulus durations, the response to a second stimulus is suppressed for short ISIs
and recovers for longer ISIs, and response latency decreases with increasing contrast. These features are accurately captured by a
computational model composed of a small set of canonical neuronal operations, that is, linear filtering, rectification, exponentia-
tion, and a delayed divisive normalization. We find that an increased normalization term captures both contrast- and adaptation-
related response reductions, suggesting potentially shared underlying mechanisms. We additionally demonstrate both changes and
invariance in temporal response dynamics between earlier and higher-order visual areas. Together, our results reveal the presence
of a wide range of temporal and contrast-dependent neuronal dynamics in the human visual cortex and demonstrate that a simple
model captures these dynamics at millisecond resolution.
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Significance Statement

Sensory inputs and neural responses change continuously over time. It is especially challenging to understand a system that
has both dynamic inputs and outputs. Here, we use a computational modeling approach that specifies computations to con-
vert a time-varying input stimulus to a neural response time course, and we use this to predict neural activity measured in the
human visual cortex. We show that this computational model predicts a wide variety of complex neural response shapes,
which we induced experimentally by manipulating the duration, repetition, and contrast of visual stimuli. By comparing data
and model predictions, we uncover systematic properties of temporal dynamics of neural signals, allowing us to better under-
stand how the brain processes dynamic sensory information.

Introduction
The manner in which neural responses change over short time
scales, from milliseconds to seconds, is important for under-
standing cognitive, perceptual, and motor functions. Neural
dynamics are critical for decision-making (Gold and Shadlen,
2007; Wang, 2012), motor planning (Churchland et al., 2012),
and perception (Heeger, 2017), and they are important for
achieving improved performance in artificial neural network
models (Kubilius et al., 2019; Spoerer et al., 2020). Even for
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simple static stimuli, neural responses in sensory cortex exhibit
interesting and complex temporal dynamics. For example, neural
responses in visual cortex start to decrease when a static visual
stimulus is prolonged in time (subadditive temporal summa-
tion), reduce to stimuli that are repeated (adaptation), and rise
less rapidly for low contrast stimuli (phase delay).

Studies of temporal dynamics in visual cortex typically mea-
sure neural responses with a tailored set of stimuli designed to
investigate one particular kind of temporal dynamics. For exam-
ple, one study might show visual stimuli that vary in duration to
investigate how neural activity sums over time (Tolhurst et al.,
1980), whereas another study might show repeated stimuli to
investigate neural response reductions because of adaptation
(Motter, 2006), and yet another study might vary the level of
stimulus contrast to study how input strength affects the rise and
fall of neural responses over time (Albrecht et al., 2002). These
phenomena are also often studied with different measurement
techniques and different computational models.

Even when the same computational model is used across dif-
ferent stimulus manipulations, model parameters may be fit sepa-
rately to different experiments (Zhou et al., 2019), leaving open
the question of whether a single model, with a single set of param-
eters, can simultaneously account for the multiple phenomena.
Here, we investigated multiple temporal dynamics in a single data-
set by measuring neural responses to visual stimuli that varied
systematically in three different ways—duration, repetition, and
contrast. We measured electrocorticographic (ECoG) recordings
of human visual cortex, which track neural responses at the milli-
second scale with high spatial and temporal precision. From each
electrode and for each stimulus, we extracted the time-varying
broadband power (50–200Hz). Using different stimulus mani-
pulations in the same electrodes allows us to investigate links
between phenomena and ask whether they can be explained by
the same computational mechanism. For example, we demon-
strate that reducing stimulus contrast and repeating a stimulus
result in surprisingly similar changes in temporal dynamics of
neural population responses and link these changes to specific
computational model components.

By mapping the electrodes to a probabilistic retinotopic atlas
within each participant and then aggregating measurements over
multiple participants, we collected a large, comprehensive sample
of neural responses from multiple visual areas in human visual
cortex, covering earlier (V1–V3a/b) and higher-order (LO, TO,
IPS) retinotopic maps. Testing the same stimuli in the same

participants across multiple visual areas clarifies the qualitative simi-
larities across areas as well as the quantitative differences. For exam-
ple, our approach allows us to address discrepant claims about
temporal window length in the visual hierarchy as there is some evi-
dence both in support of (Hasson et al., 2008; Weiner et al., 2010;
Honey et al., 2012) and against (Fritsche et al., 2020) the claim that
temporal window length increases along the visual hierarchy.

The article is structured as follows. We first examine the differ-
ent temporal dynamics resulting from each stimulus manipulation
(changes in duration, repetition, and contrast) and their corre-
sponding nonlinear effects in area V1. We show that these modu-
lations are well captured by a delayed normalization model fit
simultaneously to all stimulus types, and we perform a systematic
comparison with reduced versions of the model, demonstrating
the contribution of each individual canonical computation to its
ability to fit the data. Finally, we investigate to what extent these
temporal dynamics vary both across and within visual areas.

Materials and Methods
Subjects
Data were measured from 11 participants (six females) who were under-
going subdural electrode implantation for clinical purposes. Eight partici-
pants (five females) were included in the dataset after data preprocessing
(see below). Data from nine participants were collected at New York
University (NYU) Grossman School of Medicine, and two participants
were tested at the University Medical Center Utrecht (UMCU) in The
Netherlands. Written informed consent to participate in this study was
given by all the patients. The study was approved by the NYU Grossman
School of Medicine Institutional Review Board and the ethical committee
of the UMCU, in accordance with the Declaration of Helsinki (2013). All
participants were implanted with standard clinical subdural grid and/or
strip electrodes. Several NYU participants were additionally implanted
with standard clinical depth electrodes. For most participants, electrode
implantation and location were guided solely by clinical requirements.
Two NYU participants consented to the additional placement of a small,
high-density grid (PMT), which provided denser sampling of underlying
cortex. Detailed information about each participant and their implanta-
tion is provided in Table 1 and alongside the dataset provided on
OpenNeuro (see below, Data Availability).

ECoG recordings
NYU
Stimuli were shown on a 15 inch MacBook Pro laptop. The laptop was
placed 50 cm from the participant’s eyes at chest level. Screen resolution
was 1280 � 800 pixels (33 � 21 cm). Before the start of the experiment,

Table 1. Overview of patient data included in this dataset

Subject Age Sex Site Trials Hemi Implantation Coverage Visual no. Matching areas No. included

P01 30 F UMCU 12 L Strip, depth Lat-occ, lat-par, vent-temp 9 TO1, LO1, PHC2 0
P02 18 F UMCU 6 R Grid, strip Med-occ, lat-occ, lat-temp, vent-temp 24 V1v, V1d, V2v, V3v, V3a, V3d, IPS0 9
P03 27 M NYU 12 L Grid, strip, depth Lat-par, ant-temp, post-vent, frontal 24 V2d, V3d, V3a, V3b, TO1, IPS0-3, SPL1 4
P04 28 M NYU 10 R Grid, strip, depth Lat-occ, ant-temp, frontal 6 V3d, V3a, TO1 2
P05 31 F NYU 12 R 2� grid, strip, depth Lat-occ, lat-par, frontal, ant-temp 40 V2v, V3v, V3d, V3b, LO1, LO2, TO1, IPS2-3, hV4, PHC1 3
P06 19 F NYU 12 L Grid, strip, depth Med-occ, lat-occ, lat-par, ant-temp, frontal 26 V1d, V2v, V3d, V3b, hV4, TO1, IPS0, PHC2 2
P07 41 F NYU 24 L Grid, strip, depth Lat-occ, lat-par, med-occ, ant-temp, frontal 17 V1v, V1d, V2d, V3d, V3a, IPS0-3, FEF 7
P08 47 M NYU 12 R Grid, strip, depth Lat-par, ant-temp 4 LO2, TO1 0
P09 25 M NYU 24 L, R Bilateral grid, strip, depth Lat-occ, lat-par 8 TO1, PHC2 0
P10 23 M NYU 36 R Grid, HD grid, strip, depth Lat-occ, lat-par, post-vent 123 V2d, V3d, V3a, V3b, LO1, LO2, TO1, IPS0-2 45
P11 19 F NYU 36 L Grid, HD grid, strip, depth Lat-occ, lat-par, post-vent 100 V3b, LO1, LO2, TO1, IPS2 26

Columns refer to the following: Subject, subject code in dataset. P, Patient. Age, age of patient at time of recording in years. Sex, patient sex (M, male; F, female). Site, hospital where recording took place (NYU, UMCU). Trials,
Number of trials collected per stimulus condition. Hemi, implanted hemisphere (L, Left; R, right). Implantation, type of electrodes implanted. Grid, Standard clinical grid; strip, standard clinical strip; depth, depth electrodes; HD grid,
high-density grid. Coverage, approximate overview of visual cortex covered (Lat, lateral; med, medial; vent, ventral; par, parietal; occ, occipital; temp, temporal; ant, anterior; post, posterior). Visual no., number of electrodes that
had a match with either one of the retinotopic atlases used for initial electrode selection (see below, Materials and Methods). Matching areas, matched retinotopic maps according to the maximum probability atlas by Wang et al.
(2015). This includes depth electrodes that were not analyzed in the current study. No. included, number of electrodes included in the final dataset, after rejection of depth electrodes, and epoch and electrode selection (see above,
Materials and Methods). Note that for a few subjects, no electrodes survived the selection procedure. Although not all subjects contributed to the results reported in this article, we include all patients for whom data was collected
and preprocessed in the overview, because alternative data pruning and electrode selection methods on the publicly available data may yield other inclusion results.
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the screen luminance was linearized using a lookup table based on
spectrophotometer measurements (Cambridge Research Systems).
Recordings were made using one of two amplifier types, NicoletOne
amplifier (Natus Neurologics), bandpass filtered from 0.16 to 250Hz
and digitized at 512Hz, and Neuroworks Quantum Amplifier (Natus
Biomedical) recorded at 2048Hz, bandpass filtered at 0.01–682.67Hz,
and then downsampled to 512Hz. Stimulus onsets were recorded along
with the ECoG data using an audio cable connecting the laptop and
the ECoG amplifier. Behavioral responses were recorded using a
Macintosh wired external numeric keypad that was placed in a
comfortable position for the participant (usually on the lap) and
connected to the laptop through a USB port. Participants self-initi-
ated the start of the next run by pushing a designated response but-
ton on the number pad.

UMCU
Stimuli were shown on a NEC MultiSync E221N LCD monitor
positioned 75 cm from the participant’s eyes. Screen resolution was
1920 � 1080 pixels (48 � 27 cm). Stimulus onsets were recorded
along with the ECoG data using a serial port that connected the
laptop to the ECoG amplifier. As no spectrophotometer was avail-
able at UMCU, screen luminance was linearized by reverting the
built-in gamma table of the display device. Data were recorded
using a Micromed amplifier at 2048 Hz with a high-pass filter of
0.15 Hz and a low-pass filter of 500 Hz. Responses were recorded
with a custom-made response pad.

Stimuli
The code mentioned in this article and all code used for generating
the stimuli and for experimental stimulus presentation can be
found at https://github.com/BAIRR01/BAIR_stimuli and https://
github.com/BAIRR01/vistadisp.

Visual stimuli for the purpose of estimating changes in neural
temporal dynamics were generated in MATLAB, release 2018b.
Stimuli were shown within a circular aperture with a radius of 8.3°
visual angle using Psychtoolbox-3 (https://psychtoolbox.org/) and
were presented at a frame rate of 60 Hz. Custom code was developed
to equalize visual stimulation across the two recording sites as much
as possible; for example, all stimuli were constructed at high resolu-
tion (2000 � 2000 pixels) and subsequently downsampled in a site-
specific manner so that the stimulus was displayed at the same visual
angle at both recording sites (corresponding Matlab functions:
stimMakeSpatiotemporalExperiment.m and bairExperimentSpecs.
m). Stimuli consisted of grayscale bandpass noise patterns, which
were created following procedures outlined in Kay et al. (2013a).
Briefly, the pattern stimuli were created by low-pass filtering white
noise, thresholding the result, performing edge detection, inverting
the image polarity so that the edges are black, and applying a band-
pass filter centered at three cycles per degree (createPatternStimulus.
m). All stimuli were presented within a circular aperture; the remain-
der of the display was filled with neutral gray (Fig. 1A). The spatial
pattern we used has been shown to effectively elicit responses in most
retinotopic areas (Kay et al., 2013b; Zhou et al., 2018).

After generating independent pattern stimuli for each trial, stimuli were
assigned to one of the following three different stimulus conditions (Fig.
1B): duration, ISI, or contrast (stimMakeSpatiotemporalExperiment.m).
Duration and ISI trials were generated using the same parameters as in
Zhou et al. (2018). For duration trials, a single pattern stimulus was shown
at full contrast for one of six durations that ranged between 17 and 533ms.
For ISI trials, a single full-contrast pattern stimulus was shown for a fixed
duration (134ms) twice in a row, with one of six interstimulus intervals
whose duration varied between 17 and 533ms. Duration and ISIs were
powers of two times the monitor dwell time (1/60 s). For contrast trials,
contrast varied from 6.25% to 100% in five steps of powers of two. Contrast
trials were shown at a fixed duration of 500ms. Together, all trial types
amounted to 17 stimulus conditions (six durations, six ISIs, and five con-
trasts). The stimulus durations, contrast, and interstimulus intervals were
chosen to span a large dynamic range based on pilot data in V1–V3 in both
fMRI and ECoG.

Experimental design and statistical analysis
Experimental procedure
Duration, repetition, and contrast conditions were divided across two
runtypes, one containing the duration- and ISI-varying trials and one
containing the contrast-varying trials, as well as an additional set of gra-
ting and density-varying stimuli that were not analyzed for the purpose
of the current article. Trials were presented with an intertrial interval
(ITI) that was randomly picked from a uniform distribution varying
between 1.25 and 1.75 s. For each runtype, two unique stimulus sequen-
ces were created containing randomly ordered trials and ITIs. With the
exception of participants P03 and P04 (who performed an earlier version
of the experiment), all participants were presented with the same stimu-
lus sequences. Each run contained 36 stimuli with three instances per
stimulus condition and lasted ;60 s. Screen flip times, as measured by
Psychtoolbox, were saved during stimulus presentation and compared
with the requested timings to ascertain that stimuli were presented with
high temporal accuracy (maximum estimated accumulated timing error
per run,,8 ms; maximum deviation of stimulus duration,,2ms).

For all runtypes, participants were instructed to fixate on a cross located
in the center of the screen and press a button every time the cross changed
color (from green to red or red to green). Fixation cross color changes were
created independently from the stimulus sequence and occurred at ran-
domly chosen intervals ranging between 1 and 5 s. For each task, partici-
pants completed each unique run at least once. Runs were then repeated
several times within the same experimental session or additional sessions
recorded on different days. The amount of data collected for each patient is
provided in Table 1. The experimenter stayed in the room during the
experiment. Patients were encouraged to take short breaks between runs.

ECoG data analysis
Data preprocessing
Data were read into MATLAB, release 2020b, using the FieldTrip
Toolbox (Oostenveld et al., 2011) and preprocessed with custom
scripts available at https://github.com/WinawerLab/ECoG_utils.
Raw data traces obtained in each recording session were visually
inspected for spiking, drift, or other artifacts. Electrodes that
showed large artifacts or showed epileptic activity were marked as
bad and excluded from analysis. Data were then separated into
individual runs and formatted to conform to the ieeg-BIDS (Brain
Imaging Data Structure) format (Holdgraf et al., 2019). Data for
each run were re-referenced to the common average across elec-
trodes for that run, whereby a separate common average was calcu-
lated per electrode group (e.g., one for grid and one for strip
electrodes; bidsEcogRereference.m). Next, a time-varying broad-
band estimate was computed for each run in the following way
(bidsEcogBroadband.m). First, the voltage traces were bandpass
filtered using a Butterworth filter (pass band ripples, 3 dB, stopband
attenuation 60 dB) for 10-Hz-wide bands that ranged between 50 and
200Hz. Bands that included frequencies that were expected to carry
line noise and their harmonics were excluded (for NYU, bands 60,
120, and 180Hz; for UMCU, 50, 100, and 150Hz). The power enve-
lope of each bandpass-filtered voltage time course was calculated as
the square of the Hilbert transform of the time course. The resulting
envelopes were then averaged across bands by taking the geometric
mean (ecog_extractBroadband.m). Unlike the arithmetic mean, taking
the geometric mean ensures that the resulting average is not biased to-
ward the lower frequencies. The re-referenced voltage and broadband
traces for each run were written to BIDS derivatives directories.

Electrode localization
Intracranial electrode arrays fromNYU participants were localized based
on preimplantation and postimplantation structural MRI images (Yang
et al., 2012). Electrodes from UMCU participants were localized from
the postoperative CT scan and coregistered to the preoperative MRI
(Hermes et al., 2010). Electrode coordinates were computed in native T1
space and visualized onto pial surface reconstructions of the T1 scans
generated using FreeSurfer (http://freesurfer.net). Visual maps of striate
and extrastriate cortex were generated for each individual participant
based on the preoperative anatomic MRI scan by aligning the surface
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topology with two atlases of retinotopic organization—an anatomically
defined atlas (Benson et al., 2014; Benson andWinawer, 2018) and a prob-
abilistically defined atlas derived from a retinotopic fMRI mapping dataset
(Wang et al., 2015; Figure 1C). Using the alignment of the participant’s
cortical surface to the FreeSurfer fsaverage subject, atlas labels defined on
the fsaverage were interpolated onto their cortical surface via nearest-
neighbor interpolation.

Electrodes were then matched to both the anatomic and the probabilis-
tic atlases using the following procedure (bidsEcogMatchElectrodesToAtlas.
m). For each electrode, the distance to all the nodes in the FreeSurfer pial
surface mesh were calculated, and the node with the smallest distance was
determined to be the matching node. The atlas value for the matching node
was then used to assign the electrode to one of the following visual areas in
the anatomic atlas (hereafter referred to as the Benson atlas): V1, V2, V3,
hV4, VO1, VO2, LO1, LO2, TO1, TO2, V3a, V3b, or none; and to assign it
a probability of belonging to each of the following visual areas in the proba-
bilistic atlas (hereafter referred to as the Wang atlas): V1v, V1d, V2v, V2d,
V3v, V3d, hV4, VO1, VO2, PHC1, PHC2, TO2, TO1, LO2, LO1, V3b, V3a,
IPS0, IPS1, IPS2, IPS3, IPS4, IPS5, SPL1, FEF, or none.

Data selection
The preprocessed data were analyzed for the purposes of this article
using custom MATLAB code available at https://github.com/irisgroen/

temporalECoG. First, a dataset was created by reading in the voltage and
broadband traces of each run from each participant from the corre-
sponding BIDS derivatives folders (tde_getData.m). Only electrodes
that had a match with one of the visual areas from either the Benson
atlas or the Wang atlas were selected for preprocessing. Only (high
density) grid or strip electrodes were included (i.e., depth electrodes
were excluded).

To combine the UMCU and NYU participants into a single dataset,
the UMCU data were resampled at 512Hz. Broadband and voltage
traces from each run were subsequently segmented into individual
epochs by extracting the neural time courses between [�0.1 and 1.2]
seconds relative to stimulus onset. Visual inspection of the data
indicated an obvious delay in response onset for the UMCU partici-
pants relative to the NYU participants. The cause of the delay could
not be tracked down, but it was clearly artifactual. To correct the
delay, UMCU data were aligned to the NYU data based on a cross-
correlation of the average event-related potential across all stimulus
conditions from V1 electrodes from three participants (1 UMCU, 2
NYU). The delay in stimulus presentation was estimated to be 72ms
(95% CI 63 to 85ms by bootstrapping across a total of 18 electrode
pairs), and stimulus onsets of all trials from the UMCU participants
were shifted according to this average delay (s_determineOnsetShift
UMCUvsNYU.m)

Figure 1. Experimental design, ECoG data, and delayed normalization model. A, Participants were shown large (16.6° diameter) grayscale pattern stimuli consisting of connected curved line
segments. Unique individual stimuli were used for each stimulus condition. B, Stimulus time courses were varied in three different ways. For duration trials, a single full-contrast stimulus was
presented for different durations ranging between 17 and 533 ms. For repetition trials, a full contrast stimulus was presented twice for 134 ms, with an ISI ranging between 17 and 533 ms.
For contrast trials, a single stimulus was presented at a fixed duration (500 ms) with levels of contrast ranging between 6.25 and 100%. C, Electrode positions from an example participant over-
laid on a pial surface reconstruction with predicted visual area locations. In this visualization, a surface node in the pial mesh was assigned a color if it had a nonzero probability of being on a
visual region according to the full probability map from Wang et al. (2015). If the electrode had a nonzero probability of being in multiple regions, the region with the highest probability was
assigned. A high-resolution figure containing each participant’s electrode positions and retinotopic atlas projections is provided at OpenNeuro (https://openneuro.org/datasets/ds004194), and
interactive 3D renderings for each individual participant can be generated using tde_mkFigure1_1.m at https://github.com/irisgroen/temporalECoG. D, Visual depiction of the DN model, first
presented in Zhou et al. (2019). This linear-nonlinear gain model takes a stimulus time course as input and produces a predicted response time course as output by applying both linear and
nonlinear computations. Inset (left), The initial linear part consists of convolution with an IRF parameterized as a difference of two gamma functions, with free parameters t 1 (time constant)
and w (weight of negative to positive gamma). This is followed by a nonlinear part consisting of rectification, exponentiation with exponent n, and division by a semisaturation constant s ,
plus a delayed copy of the input that is also rectified and exponentiated. The delay is implemented as a convolution of the linear response with an exponentially decaying function of time con-
stant t 2 (lower left). Inset (right), This model form constitutes a temporal implementation of divisive normalization, as first proposed by Heeger (1992).
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Voltage epochs were baseline corrected by subtracting the average
prestimulus amplitude within each trial. Broadband epochs were con-
verted to percentage signal change by pointwise dividing and subtracting
the average prestimulus baseline (average broadband power between
�100 and 0ms relative to stimulus onset) across all epochs within each
run. We then performed two consecutive data trimming steps, (1) epoch
selection and (2) electrode selection (tde_selectData.m).

Epoch selection was performed using both the voltage and broad-
band epochs. Epochs were automatically rejected according to the
following criteria (ecog_selectEpochs.m): (1) a difference in voltage
between consecutive samples larger than 200mV anywhere in the epoch
and (2) the maximum broadband amplitude in the epoch outside the
time window [0.05, 0.85] relative to stimulus presentation exceeds the
average of the maximum response across trials inside the stimulus pre-
sentation window by 3 SDs. Across participants, on average 2.5% of
epochs were rejected (SD, 0.6%; minimum, 1.7%; maximum, 3.2%).

Electrode selection was performed based on the broadband epochs
and the electrode locations. To be included in data analysis, electrodes
had to meet one criterion (ecog_selectElectrodes.m), that is, an above-
threshold correlation between two independent halves of the data (split-
half reliability). To compute this measure for each electrode, all epochs
for a given trial type were randomly assigned to one of two splits. Within
each half, epochs of the same trial type were averaged and then con-
catenated across trial types, and the coefficient of determination (R2) was
calculated between the two concatenated time series. Electrodes with a
low split-half reliability (R2 , 0.22) were excluded.

For three participants, this electrode selection procedure resulted in
all their electrodes being rejected from analysis. For the eight remaining
participants, 70.5% of electrodes on average were rejected (SD, 14.5%;
minimum, 50%; maximum, 92%; Table 1, subject-specific data).

Data summary
The data preprocessing, electrode localization, and data selection proce-
dures outlined above resulted in a total of 98 electrodes with robust vis-
ual responses covering visual areas V1, V2, V3, V3a, V3b, hV4, LO1,
LO2, TO1, TO2, IPS0–IPS4 (Table 2, overview of electrodes per area).
The broadband epochs of selected electrodes were averaged across
all trials within a stimulus condition, resulting in 17 response time
courses per electrode, which constituted the data for computational
model fitting.

Probabilistic electrode assignment
When assigning individual electrodes to visual areas, we used a boot-
strapping procedure that took into account the probability of each elec-
trode overlapping with a visual retinotopic region. In this procedure, we
repeatedly (for n bootstraps) assigned electrodes to visual areas in

accordance with the probability distribution of the matched surface
node of each electrode across areas determined by the Wang atlas
(Wang et al., 2015), resulting in a distribution of bootstrapped electrodes
for each visual area. From these distributions we then computed sum-
mary statistics (median or mean) and confidence intervals across neural
responses or model predictions for each visual area. Before conducting
the repeated assignments, we rescaled the probability values in the atlas
to exclude the none probabilities, which ensured that each electrode
would always get assigned to an area (e.g., if an electrode had 60% proba-
bility of belonging to V3b, 20% probability of belonging to V3a, and
20% probability of belonging to none, it would get assigned to V3b 75%
of the time and to V3a 25% of the time). To guarantee robust estimates,
we only report results from areas that had at least 10 electrodes with a
nonzero probability of being positioned on that area. This resulted in the
exclusion of area hV4. We additionally grouped TO1 and TO2 into a
single area, TO and areas IPS0-4 into a single area IPS.

Computational modeling
Model fitting: temporal dynamics
We fit models of temporal dynamics to the 17 broadband time courses
for each individual electrode (tde_fitModel.m). Each model takes stimu-
lus time courses as input and predicts neural response time courses as
output. For analyses focusing on describing different temporal phenom-
ena in V1 (Figs. 2-4) and comparisons of model performance across dif-
ferent model forms or participants (see Figs. 7-10, 12), models were fit
separately to individual electrodes, and parameters or metrics derived
from these fits were then averaged within visual areas using the probabil-
istic assignment bootstrapping procedure described above. For analyses
that characterized changes in temporal dynamics along the visual hierar-
chy (see Figs. 11, 13–14), we instead conducted repeated (n = 1000) fits
to the average time courses across electrodes within an area, whereby for
each fit the average time course per area was computed after performing
the probabilistic assignment, yielding a slightly different average and
thus different model fit each time. Although results and conclusions
were not qualitatively different, we found that in higher visual areas, this
averaging-then-fitting procedure yielded slightly more robust estimates
compared with fitting individual electrodes and subsequently averaging
them. For analyses illustrating similarities in contrast and adaptation
time courses (see Figs. 5, 6), model predictions were generated after elec-
trodes were first averaged probabilistically within V1.

Models were fit using Bayesian adaptive direct search (BADS; Acerbi
and Ma, 2017). BADS alternates between a series of fast, local Bayesian
optimization steps and a systematic, slower exploration of a mesh grid
(https://github.com/lacerbi/bads provides code and a further explanation
of the algorithm). Using BADS resulted in slightly more robust fits to
the data compared with two built-in MATLAB alternatives, fmincon
and lsqnonlin; however, results and conclusions did not change qualita-
tively when using these optimizers, and we implemented all three
options in our fitting code (tde_fitModel.m). Model performance was
evaluated using the cross-validated coefficient of determination (R2)
computed via 17-fold leave-one-out cross-validation, whereby each of
the stimulus conditions was once left out of the fitting procedure and
then predicted based on the parameters estimated from the remaining
16 stimulus conditions. Model R2 was computed by averaging across the
R2 values for the 17 left-out stimuli. Model parameter values and sum-
mary parameters (see below) were estimated based on fits to the full
dataset.

Computational models of temporal dynamics
The delayed normalization (DN) model and its reduced versions (see
below) are implemented as stand-alone functions in https://github.com/
irisgroen/temporalECoG, folder temporal_models. Each model is paired
with a JavaScript Object Notation (JSON) metadata file containing pa-
rameter descriptions, starting points, and upper and lower bounds that
were used when fitting the model. As detailed below, models differ in
the number and types of parameters fitted. In addition to the model-spe-
cific parameters, two nuisance parameters were fitted for all models, shift
(delay in response onset relative to stimulus onset), and scale (gain of the
response) to take into account differences between electrodes or visual

Table 2. Overview of electrodes and patients per visual area

Visual
area

Number of
electrodes

Median number of
electrodes per bootstrap Contributing patients

V1 12 7 Patients 2, 3, 6, 7, 10
V2 37 12 Patients 2, 3, 4, 5, 6, 7, 10
V3 56 16 Patients 2, 3, 4, 5, 6, 7, 10, 11
V3a 35 4 Patients 3, 4, 7, 10, 11
V3b 50 17 Patients 3, 4, 7, 10, 11
LO1 73 19 Patients 3, 4, 5, 7, 10, 11
LO2 34 9 Patients 3, 10, 11
TO 12 3 Patients 3, 10, 11
IPS 23 4 Patients 7, 10, 11

Columns refer to the following: Visual area, name of retinotopic map. Ventral and dorsal maps of early visual
areas (V1–V3) were combined. Areas TO1 and TO2 were combined into a single area TO, and IPS0–IPS4
were combined into a single area IPS (see above, Materials and Methods). Number of electrodes, number of
electrodes with nonzero overlap with each retinotopic area, according to the full probability retinotopic atlas
by Wang et al. (2015). Note that the sum is larger than the total number of electrodes included in the data-
set (n = 98) because electrodes can probabilistically map onto several areas. Median number of electrodes
per bootstrap, for a given bootstrap, electrodes are sampled with replacement and probabilistically assigned
to one visual area at a time. Note that the sum is smaller than the total number of electrodes included in
the dataset because some electrodes had a nonzero probability of overlapping with hV4, which was excluded
from this report (see Materials and Methods) but was still included in the area assignments. Contributing
patients, patients who contributed electrodes for each visual area.
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areas in response onset latency and overall response magnitude (i.e.,
responses in V1 are much higher than in later visual areas). We tested
the following models.

Delayed normalization model
Our main model of interest was the DN model (Fig. 1D), previously
described in Zhou et al. (2019). The core idea of the model is that
the stimulus drive is divisively normalized by delayed population activity
(here, delayed via a low-pass filter). There is a long history of implement-
ing models with a delay in the normalization pool (Heeger, 1992, 1993;
Mikaelian and Simoncelli, 2001; Tsai et al., 2012; Sinz and Bethge, 2013).
Zhou et al. (2019), their Fig. 7, contains a more elaborate discussion on
the relation of the DN model with other implementations of delayed
gain control mechanisms. Because prior model implementations were
either conceptual, meaning not fit to data (Heeger, 1992) or fit to spe-
cific types of data (Zhou et al., 2019), it was necessary to implement a
specific formulation that could be applied to a wide variety of ECoG
data, as we have here. Zhou et al. (2019) demonstrated that the DN model
was able to predict compressive temporal summation (in ECoG data to
stimuli of a single duration), adaptation (in fMRI responses to stimuli of
varying durations and interstimulus intervals), and contrast dynamics (in
nonhuman primate multiunit activity recordings from V1). Here, we
tested whether the same model could predict all three of these phenomena
simultaneously in ECoG data. We largely reuse Zhou et al.’s (2019) imple-
mentation, which included a parameterized impulse response function,
exponentiation of the driven activity, and an exponential decay filter
applied to the normalization pool. The DN model is defined by a linear,
nonlinear, and gain control structure and is described by the following set
of equations.

First, a linear response (RL) is computed by convolving an input
stimulus time course S of length t (dimensions 1� t, with values ranging

between 0 and 1) with an impulse response
function (IRF) h1, consisting of a weighted dif-
ference of two gamma functions as follows:

RL ¼ S � h1ðt 1;wÞ;
h1ðt 1;wÞ ¼ te�t=t1 � w � te�t=1:5t1 ;

(1)

in which t is time, w the weight on the second
(negative) gamma function, and t 1 is a time
constant determining the shape of the IRF.
Symbols in parentheses are parameters. RL, S,
and h1 are functions of time; we omit t for sim-
plicity. Note that each individual gamma func-
tion here is a simplification of the gamma
function provided in Boynton et al. (1996, their
Eq. 3), whereby the phase delay of the IRF is
fixed at value 2, as in Zhou et al. (2019).
Moreover, as in Zhou et al. (2019), we assumed
the peak timing of the second (negative) gamma
function to be 1.5 times the first (positive)
one, leaving only t1 and w as the free param-
eters of the linear step. This version of the
DN model (DN.m) was used for all analyses
with the exception of the model reduction
analysis (see Figs. 7, 8), where we compare
this model to models with a more flexible
IRF, which has two additional free parameters
—one for the phase delay and one for the time
constant of the negative gamma function (see
next section).

The linear response (RL) is then converted
into a nonlinear response, RLN, by applying a
full-wave rectification and an exponentiation
with exponent n (which is fitted), as follows:

RLN ¼ jRLjn: (2)

The final step is divisive normalization of the nonlinear response RLN
with a low-pass filtered version of RL that is also rectified and exponentiated
to the same n. In addition, an exponentiated semisaturation constant s is
added to the denominator as follows:

RDN ¼ RLN

s n 1 jRL � h2ðt 2Þjn
h2ðt 2Þ ¼ e�t=t2 :

(3)

The low-pass filtering here is achieved by means of convolution with
an exponential decay function h2 with time constant t2.

As noted in Figure 1D, Equation 3 has the form of canonical
divisive normalization (Carandini and Heeger, 2011), in which a
numerator (reflecting the rectified and exponentiated linear input)
is divided by a denominator consisting of a normalization pool
and a semisaturation constant, which each are also raised to the
same exponent n as the numerator. Here, the normalization pool consists
of a delayed version of the numerator, which means that the input drive is
essentially normalized by a delayed version of itself. This yields an output
time course that is characterized by a transient response rise followed by a
decay to a sustained response level.

To summarize, for the main version of the DN model used through-
out, the following five parameters were fitted in total: t1 (time constant
of the IRF), w (weight of the negative and positive IRFs), n (exponent),
s (semisaturation constant), and t2 (time constant of the exponential
decay). Model parameters and bounds were initialized using values used
in Zhou et al. (2019).

Delayed normalization model, fully parameterized and deconstructed
In addition to the original model proposed by Zhou et al. (2019), we
tested reduced versions of that same model in which nonlinear

Figure 2. Subadditive temporal summation in neural responses in human V1. A, Compressive temporal summation in neu-
ral responses illustrated by two stimulus time courses (17 and 33 ms duration, gray thin lines) and corresponding ECoG broad-
band time courses (black thick lines). Doubling stimulation duration does not result in a doubling of the response, as predicted
by a linear prediction, computed as the sum of the shortest duration response and a shifted and scaled copy of that response
(dotted line). B, Sum of broadband response time courses between 0 and 1 s after stimulus onset for each stimulus duration
(black) and the predicted response by the DN model (red), normalized to the response to the longest duration stimulus
(533 ms). Compressive temporal summation is evident as the deviation of both data and model from the linear prediction ex-
trapolated from the longest duration stimulus (dotted line). Data points indicate median across repeated samples of V1 electro-
des (total n = 12; median n per bootstrap = 7; Table 2), taking into account their probability of overlap with a retinotopic
atlas (see above, Materials and Methods). Error bars and shaded regions indicate 68% confidence intervals across 10,000 boot-
straps of electrode assignments. C, Average ECoG broadband time courses in V1 (black) for all stimulus durations measured
(17–533 ms), along with the average prediction by the DN model (red). Shaded regions indicate 68% confidence intervals
across 1000 bootstraps of electrode assignments. This figure and all following figures can be reproduced with the code con-
tained in the mkFigures folder in https://github.com/irisgroen/temporalECoG. This figure is produced with mkFigure2.m.
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computations were consecutively added on top of the purely linear
first step of the model. The motivation for including this model
construction analysis was to investigate how much each step con-
tributed to the overall predictive performance of the model. As
explained above, we additionally adapted the model so that the IRF
used for linear convolutions was less constrained, allowing the
time constant of the negative gamma function and the phase delay
of both gamma functions to be fitted in optimization so that it
could capture as much variance in the data as possible with a maxi-
mally flexible IRF (total number of fitted parameters is four; t1pos,
t1neg, phase delay r, and w; LINEAR.m). We then added full-wave
rectification (LINEAR1RECTF.m; same parameters as LINEAR.m),
exponentiation (LINEAR1RECTF1EXP.m; adding parameter n), nor-
malization without delay (LINEAR1RECTF1EXP1NORM.m; adding
parameter s ), and finally, normalization with delay (LINEAR1
RECTF1EXP1NORM1DELAY.m; adding parameter t 2), which is
equivalent to the DN model (DN.m), except that the IRF is less con-
strained. Model parameters and bounds were initialized using the same
values as for the DN model and can be found in the JSON metadata of
the fitting code in https://github.com/irisgroen/temporalECoG.

Summary metrics
To characterize the temporal dynamics of the broadband time courses,
we computed several summary metrics on both data and model predic-
tions (tde_computeDerivedParams.m).

Time-to-peak. We computed the time interval between stimulus
onset and the maximum (peak) of the response time course (in seconds)
based on responses or model predictions for the longest duration, full
contrast stimulus (533ms), which is the condition of maximal stimula-
tion and thus the conditions where the response is overall expected to be
greatest.

Full-width at half-maximum. The difference between the time
point (relative to stimulus onset) at which the response has risen to
half of the maximum and the time point at which the response has
decayed again to the same half-way point (in seconds) was com-
puted based on neural response or model prediction time courses
to short duration stimuli (e.g., 17 ms), which have the least amount
of sustained level activation and therefore the most symmetric
response shapes.

Ratio sustained/transient. This is the response magnitude at the sus-
tained level divided by the transient response magnitude (maximum/
peak). For estimates of the sustained level, we took the response level at
stimulus offset for the longest duration stimulus in the dataset (533 ms).
To achieve robust estimates of the offset, data and model predictions
were smoothed using a moving average filter with a span of 150 data
samples (;290 ms; tde_mkFigure4.m). The moving average is symmet-
ric around each data point and, hence, does not systematically shift the
timing of the peak.

Recovery from adaptation. This consists of the relative magnitude of
response of the second stimulus relative to the first stimulus in the
repeated stimuli conditions. The goal of this procedure is to estimate
which part of the neural time course reflects the continuing activation to
the first stimulus and which part reflects new neural activity elicited by
the second stimulus. For each electrode, we compute an estimate of the
response to the first stimulus by averaging together (1) the time course
of an actual 134ms stimulus presented in isolation (the fourth duration-
varying condition), which includes all time points in entire epoch, and
(2) each of the ISI-varying conditions but only including time points up
to the onset of the second stimulus (tde_computeISIrecovery.m). The
reason for additionally including these partial time courses instead of
using the 134ms duration stimulus only is that it gives us a more robust
estimate of the response to the first stimulus (e.g., of the transient peak).
Importantly, the estimated response to the first stimulus never includes
data points after a second stimulus was presented. We then sub-
tracted this average time course from each of the ISI-varying stim-
ulus responses, yielding an estimate of the response of the second
stimulus corrected for the response to the first stimulus. We then
computed relative recovery by taking the maximum (peak) of the
corrected second stimulus time courses and comparing it with the

peak response of the average first stimulus estimate. Using the
summed response across all time points in the time course for
which a stimulus was present rather than the peak of the time
course yielded qualitatively similar results.

C50. For both the neural data and the model predictions, per-
centage contrast for which response magnitude reaches 50% of the
response to a 100% contrast stimulus was estimated by fitting a
Naka-Rushton function (Naka and Rushton, 1966; Albrecht and
Hamilton, 1982) to the maxima of the response time courses for
each of the five contrast levels we measured. This equation takes
the following form:

ResponseðCÞ ¼ Rmax � Cn

Cn 1Cn
50

1 offset; (4)

where C is the stimulus contrast level, Rmax is the maximum response
amplitude, C50 the contrast at which the curve reaches half height, and
exponent n controls the steepness of the sigmoid (fitNakaRushton.m).
Taking the sum rather than the peak of the time course as the response
per contrast level yielded qualitatively similar results.

Data availability
All code used for the purpose of this article can be found at the GitHub
repositories mentioned above. The ieeg-BIDS-formatted data, deriva-
tives, the processed dataset and model fits are available on OpenNeuro
(https://openneuro.org/datasets/ds004194).

Results
We first examined how each of our three stimulus manipulations
(duration, repetition, and contrast) affected the temporal dynam-
ics of ECoG broadband time courses in area V1.

Neural responses in human V1 exhibit subadditive temporal
summation
First, systematic variations of stimulus duration demonstrated
the presence of subadditive temporal summation in neural
responses in V1 (Fig. 2). When a stimulus doubles in duration,
its resulting neural response is reduced relative to the linear pre-
diction, that is, a sum of the responses to the shorter stimulus
and a time-shifted copy of that response (Fig. 2A). This demon-
strates that the additional visual exposure resulting from a longer
presentation duration does not accumulate linearly. Comparison
of summed neural responses across all stimulus durations indeed
shows evidence of subadditive summation; throughout the 30-
fold range measured in our experiment (17ms to 533ms), the
obtained responses deviate systematically from the linear predic-
tion, with responses to longer stimuli much smaller than the lin-
ear prediction extrapolated from the briefest stimulus (Fig. 2B).

The reason for this can be understood by looking at the aver-
age response time courses themselves (Fig. 2C). The largest
response is the initial transient. For short duration stimuli, this is
the only part of the response. At longer durations, there is also a
lower-amplitude sustained response. Summed responses in
Figure 2B reflect the combination of both the transient and sus-
tained level activity; at longer durations, the lower-amplitude
sustained component makes up an increasingly large fraction of
the response.

We find that this temporal subadditivity in ECoG broadband
responses is well captured by a delayed normalization model
(Fig. 1D). The model accurately predicts the rapid increase in
response at short durations and the slower increase at longer
durations (Fig. 2B). Moreover the model time courses accurately
fit both the transient and the sustained levels of neural response
across different stimulus durations (Fig. 2C).
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Neural responses in human in V1
exhibit response suppression because
of adaptation
Second, repetitions of stimuli with differ-
ent ISIs demonstrated the presence of ad-
aptation in neural responses in V1 (Fig.
3). Adaptation is evident as a reduction
in stimulus-evoked response because of
the presence of a preceding stimulus and
is most pronounced when the two stim-
uli are presented close together in time
(Fig. 3A). Adaptation effects are nonlin-
ear; although a linear model predicts no
change in response magnitude because of
preceding stimuli, the neural data reveal
strong suppression for a stimulus that is
presented in close temporal proximity
to another stimulus, which gradually
recovers as the ISI increases (Fig. 3B).
These adaptation effects are clearly
visible in the response time courses to
the separate stimuli (Fig. 3C), where
it can be seen that the response to the
second stimulus achieves near-full recov-
ery by the longest ISI tested (533ms).
Notably, these adaptation effects are well
captured by the delayed normalization
model, as indicated by the red lines in
Figure 3B,C, although there are slight
underpredictions for the response to the
second stimulus at short ISIs.

Neural responses in human in V1
exhibit slower dynamics with reduced
contrast
Third, we observed contrast-dependent
temporal dynamics of neural responses in
V1, despite the fact that the temporal
structure of the stimulus time course itself
did not differ across the contrast condi-
tions (each stimulus was presented at
a single duration of 500ms). Increasing
stimulus contrast resulted not only in an
increase in peak response magnitude (Fig.
4A, left), but the response shape also
changed in other ways independent of the
peak magnitude, showing increased time-
to-peak with lower contrast (phase delay)
and a relatively less pronounced transient
relative to the sustained level response (Fig.
4A, right). This result differs from the
descriptive model in Albrecht et al.
(2002) in which the effect of contrast is
modeled as a shift and scale in the
response shape.

We quantified these dynamics by
computing three different summary
statistics from the response time course
of each electrode at each contrast level,
which each again showed deviations from
linearity (Fig. 4B). Summed responses over
time give rise to a contrast response func-
tion that progressively increases for higher

Figure 3. Adaptation of neuronal responses to stimulus repetition in human V1. A, Example of adaptation to a repeated
stimulus, showing time courses for two stimuli of equal duration with a short (33 ms) and a long (533 ms) interstimulus inter-
val (gray thin lines) and their corresponding ECoG broadband time courses (black thick lines). Short intervals lead to a strong
suppression of the response to the second stimulus, and the response recovers with longer intervals. B, Recovery from adapta-
tion for each condition, expressed as the difference in maximum response for the second stimulus compared with the maxi-
mum response of the first stimulus (black dots) along with the predicted recovery by the DN model (red line). Adaptation is
evident from the deviation of both data and model from the linear prediction (dotted line). Data points indicate median across
probabilistically assigned V1 electrodes (total n = 12; median n per bootstrap = 7; Table 2, computed as in Figure 2B. C,
Average broadband time courses (black) in V1 for interstimulus intervals between 0 and 533 ms, along with predictions by the
DN model (red), computed as in Figure 2C. This figure is produced using tde_mkFigure3.m.

Figure 4. Contrast-dependent temporal dynamics of neuronal responses in human V1. A, Average ECoG broadband
responses in V1 for different levels of contrast (6.25�100%), superimposed (left) and superimposed and peak normalized
(right). Decreasing stimulus contrast results not only in a decrease in peak amplitude (left) but also a shift in peak latency and
a decrease in the ratio of transient to sustained level of response (right). B, Summary statistics of contrast-dependent responses
derived from individual electrodes (black dots) and DN model predictions (red line). Left, Contrast response functions, measured
as summed broadband power between 0.05 and 1 s after stimulus onset. Middle, Time-to-peak. Right, Ratio of sustained
response level (response magnitude at stimulus offset) to transient response level (maximum response level). Data points indi-
cate median across probabilistically assigned V1 electrodes (total n = 12; median n per bootstrap = 7; Table 2, computed as in
Figure 2B. C, Average ECoG broadband time courses in V1 (black) along with predictions by the DN model (red), computed as
in Figure 2C. This figure is produced using tde_mkFigure4.m.
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contrasts (Fig. 4B, left). Estimates of time-
to-peak at each contrast level show that
peak latency sharply decreases with
increasing contrast (Fig. 4B, middle).
A comparison of the sustained level
response (at stimulus offset) com-
pared with the transient level (peak
response) shows that the difference
between these two measures decreases
as contrast decreases because of a less
pronounced transient (Fig. 4B, right).
All three effects are again also quali-
tatively captured by the DN model,
resulting in highly accurate model
predictions across all contrast levels
(Fig. 4C). The model predictions are
not perfect; they slightly underesti-
mate the height of the transient part
of the response for lower contrasts,
resulting in elevated estimates of the
sustained/transient response ratio (i.e.,
values closer to one; Fig. 4B). This slight
model failure parallels the underpredic-
tion of the response to a second stimulus
at short ISIs.

In sum, the V1 results show that there
are several robust nonlinear temporal dy-
namics in ECoG responses in human V1
that are all consistent with a time-dependent normalization and
thus well described by the DN model. We note that the model
captures well-known nonlinear phenomena (e.g., contrast
response function), as well as phenomena that are perhaps less
well characterized in population responses in human visual cor-
tex, such as temporal summation and short-latency visual
adaptation.

Contrast and repetition effects lead to similar response
reductions in V1
An advantage of testing many stimuli in the same experiments is
that we can directly compare the effects of different stimulus
manipulations. We showed nonlinearities with respect to con-
trast manipulations (Fig. 4) and with respect to stimulus repeti-
tion (Fig. 3). Here, we ask how the two effects compare and how
the DNmodel simultaneously accounts for them both.

First, zooming into the broadband time courses contrast
responses (same data as in Fig. 4A) at the first 200ms after stim-
ulus onset clearly shows that lower stimulus contrast leads to
more slowly rising responses, and to a change in response shape,
with less distinction between transient and sustained responses
(Fig. 5, top left). Interestingly, responses to repeated stimuli, after
subtracting the influence of the first stimulus (see above, Materials
and Methods) have remarkably similar shapes (Fig. 5, top right).
The similarity of the effects of both contrast and repetition on the
response dynamics is predicted by the DN model (Fig. 5, bottom
row). Therefore, both the data and model suggest the possibility
that V1 responds to a recently viewed stimulus similarly to a novel
but low-contrast stimulus. One difference between model pre-
diction and data are that in the predictions, the responses for
all stimuli start rising at the same time (but at different rates),
whereas in the data, the onset latency appears to be delayed
for low contrast and short repetitions.

Inspecting the inner workings of the delayed normaliza-
tion model helps understand why these responses look so

similar and how the model accounts for the two effects
simultaneously. In the model, the input drive is repre-
sented by the numerator, whereas the normalization pool is
represented by the denominator (Fig. 1D). In Figure 6,
these two components of the model are plotted separately
for two different contrasts and two different ISIs. This
shows that contrast and adaptation effects are both driven
by differences in the normalization pool (denominator),
but that for contrast, the effect can be attributed to the
semisaturation constant (Fig. 1D, the left hand of the de-
nominator), whereas for repetition, the effect can be attrib-
uted to the normalized input drive (i.e., the right hand of
the denominator).

At high stimulus contrast, the semisaturation constant is neg-
ligible, and the numerator rises faster than the denominator,
leading to a transient (Fig. 6, top left). At low contrast, the nu-
merator never rises above the minimum possible value of the de-
nominator, which is set by sn (Fig. 6, bottom left; see above,
Materials and Methods). The main difference between the two
contrast conditions, thus, is the driven response relative to sn.
For repeated stimuli, the driven response is effectively the same
regardless of ISI, and the denominator rises and decays similarly
for both the first and second stimulus. However, when ISI is long
(Figure 6, top right), the denominator has decayed more than
when it is short (Figure 6, bottom right). Hence, for short ISIs,
the ratio of numerator to denominator for the second stimulus is
lower. The main difference between the two repetition condi-
tions is thus the level of pre-existing normalization.

In summary, neural responses rise more slowly and are
suppressed both when contrast is reduced and when stimuli
are repeated with short intervals. According to the DN
model, for contrast, this is because of a larger input drive
(numerator) than background neural activity (sn), whereas
for repetition, the reduction is because of an pre-existing
delayed normalization (Lph2). Thus, the DN model is able to
simultaneously predict the effects of both of these stimulus

Figure 5. Comparison of contrast and repetition effects in ECoG data and DN model predictions. Top left, Average broadband
time courses in V1 for the contrast-varying stimuli during the first 200 ms after stimulus onset. Darker lines indicate increasing
contrast. Responses are stronger and rise faster with increasing contrast. Top right, Average broadband time course for the sec-
ond stimulus in each repetition condition, after subtracting the response to the first stimulus (see above, Materials and
Methods). Darker lines indicate increasing ISI. Responses are stronger and rise faster with longer ISIs. Bottom row, DN model
predictions derived using parameters from fitting to the average time courses (top row) for contrast-varying stimuli (left) and
repeated stimuli (right). This figure is produced using tde_mkFigure5.m.
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manipulations because it can achieve response reductions
through either one of these terms.

Delayed normalization predicts temporal phenomena
throughout visual hierarchy
Next, we examined to what extent each of the canonical com-
putations in the DN model contribute to its ability to predict
neural responses for variations in duration, repetition, and
contrast. To this end, we computed cross-validated explained
variance for reduced versions of the model, starting with a lin-
ear model with fully parameterized IRFs (see above, Materials
and Methods), after which each of the nonlinear operations in
the DNmodel (rectification, exponentiation, normalization, nor-
malization with delay; Figure 1D) were added in turn (Figure
7A). We find that delayed normalization is a key component in
raising the prediction accuracy. Adding nonlinear operations to
a purely linear model gradually increases the ability to explain
responses in V1, and a clear gain in explanatory power is
observed when adding the final step of delayed rather than in-
stantaneous normalization.

Importantly, this pattern of results holds not only in V1
but in all retinotopic maps in which we had sufficient elec-
trode coverage, including V2, V3, and higher-order lateral-
occipital and parietal-occipital maps. Because accuracy is
computed on left-out data (cross-validation), the result is not
guaranteed simply because of adding more free parameters for
each model. Indeed, there are some instances where adding

parameters makes the fits less accurate
(V1, 1Exponentiation vs
1Normalization).

In addition, Figure 7A shows that the
version of the delayed normalization
model with fully parameterized IRFs is
on par with the more constrained DN
model (in which the phase delay and
time constants of the negative gamma
function are fixed) as used in our analy-
ses so far (see above, Materials and
Methods), indicating that the data do not
sufficiently constrain the detailed shape
of the IRF and that the chosen IRF
constraints are adequate for the cur-
rent dataset.

The reduced explanatory power of the
deconstructed models is coupled with a
reduced ability to predict the different non-
linear temporal phenomena induced
by our stimulus manipulations (tem-
poral summation, repetition suppression,
slower contrast dynamics; Figs. 2-4).
Although compressive temporal summa-
tion and repetition suppression can to
some extent be captured by reduced
models that consist of canonical compu-
tations but lack the delayed normaliza-
tion component (Figure 7B, top row),
delayed normalization is critical to pre-
dict the slower dynamics associated with
changes in stimulus contrast (Figure 7B,
bottom row). In general, across visual
regions, improvements in explained
variance were most pronounced for
the duration and contrast conditions,

with reduced models performing relatively well when predict-
ing responses to stimuli varying in repetition interval (Fig. 8A,
cross-validated explained variance separated by condition and
B for time course predictions for each deconstructed model
across all stimulus conditions).

In addition to model reduction, we also compared the delayed
normalization model to a few alternative models, in particular
two-channel models proposed by (Stigliani et al., 2017, 2019),
and an implementation of delayed divisive normalization via
feedback (Heeger, 1992). Although the two-channel model from
Stigliani et al. (2019) performs nearly on par with the DN model
in terms of explained variance (Fig. 9A) and approximates tem-
poral summation and adaptation effects to some degree, it fails
to capture contrast-related dynamics (Fig. 9B,C). The feedback
normalization model (Heeger, 1992) is very similar to the DN
model it its ability to explain temporal phenomena. This suggests
that delayed normalization can be implemented with multiple
different underlying mechanistic models, either assuming feed-
back or not.

Characterizing temporal dynamics throughout visual
hierarchy using the DNmodel
Having established that the DN model predicts ECoG responses
with high accuracy not only in V1 but in multiple visual regions,
we next used it to investigate how temporal dynamics change
along the visual hierarchy. Note that we use the term “visual hier-
archy” as an approximation. By nearly any metric, V2 is a later

Figure 6. Illustration of how the DN model predicts similar effects of low-contrast and repetition. DN model numerator
(solid lines) and denominator (dashed lines) for high contrast (top left), low contrast (bottom left), long ISI (top right), and
short ISI (bottom right) for the model parameters fit to the average V1 response. (But note that no gain factor is applied, so
the output units are relative to stimulus contrast.) With high contrast, the numerator quickly rises and thereby diminishes the
influence of the denominator, which is slightly elevated at onset because of the semisaturation constant s n. With low contrast,
the denominator term is bigger relative to the input drive, resulting in a slower, reduced response. For long ISIs, the denomina-
tor has sufficient time to decrease in between stimuli, but with shorter ISIs, the denominator is still increased because of
delayed normalization from the first stimulus, leading to a reduced response to the second stimulus. In both cases, the
response rises more slowly, and response magnitude is repressed because of a larger denominator term. This figure is produced
using tde_mkFigure6.m.

Groen et al. · Temporal Dynamics in Human Visual Cortex J. Neurosci., October 5, 2022 • 42(40):7562–7580 • 7571



area than V1, and V3 later than V2, and all the other areas later
than V3. However, the hierarchical relationship among the areas
beyond V3, if any, is uncertain.

A first hint of differences with visual hierarchy can be
seen in the fitted DN model parameters shown separately for
each visual area (Fig. 10). For example, the value of t1 (time
constant of the IRF) appears to increase in higher visual
areas. However, we are cautious about comparing fitted pa-
rameters across areas directly because (1) although explained
variance is still relatively high in higher areas, it is less than
in early visual regions, which may imply poorer parameter
estimates, and (2) the fitted parameters (to some degree)
trade off against each other (Zhou et al., 2019, interpreting
DN model parameters). Instead, we examine differences in
temporal dynamics by computing various summary metrics
(see above, Materials and Methods) from data and model
time courses and comparing both model and data metrics
across visual areas.

Temporal summation windows increase in higher visual
areas
The responses to stimuli that vary in duration revealed a system-
atic change in temporal summation between visual areas (Fig.
11). Compared with V1, responses in, for example, V3b rise
more slowly and stay elevated for a longer period of time, result-
ing in wider responses and higher sustained levels of response
relative to the transient (Fig. 11A). We quantified these differen-
ces in response shapes across visual areas by computing three dif-
ferent summary metrics, which each capture a different aspect of
the response dynamics, on both the data and DN model predic-
tions (see above, Materials and Methods).

Relative to V1, all three measures increased in higher visual
areas; the slower rise was reflected in increasing time-to-peak
(Fig. 11B), the broadening of the transient was reflected in
increasing full-width at half-maximum (Fig. 11C), and rela-
tively higher sustained activity was reflected in a sustained/
transient ratio that tended to become larger (Fig. 11D),

Figure 7. Delayed normalization explains multiple temporal dynamics in multiple visual areas. A, Average cross-validated explained variance (coefficient of determination) across all stimulus
conditions in V1–IPS for the DN model along with deconstructed versions of the model from which each of the canonical nonlinear computations depicted in Figure 1D was removed in turn.
Relative to a purely linear model (blue), adding nonlinear canonical operations of rectification, exponentiation, and delayed normalization each increase the model’s ability to capture the var-
iance in the dataset. Moreover, a full delayed normalized model with a constrained IRF (red) performs equally well as the more unconstrained IRF (2 additional free parameters, orange). B,
Nonlinear temporal phenomena (subadditive temporal summation, repetition suppression, and contrast-related dynamics) in V1 as predicted by the deconstructed models. Bottom row,
Delayed normalization is especially necessary to capture slowed response dynamics with low stimulus contrast. Error bars indicate 68% confidence intervals across 10,000 bootstraps of electrode
assignments. This figure is produced by tde_mkFigure7.m.
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Figure 8. Delayed normalization is especially important for explaining contrast-related dynamics. A, Average cross-validated explained variance in V1–IPS for the DN model along with
deconstructed versions of the model, separated by stimulus manipulation. Models were fit to all conditions simultaneously but are here evaluated separately for the duration, repetition, and
contrast-varying stimuli. Error bars indicate 68% confidence intervals across 10,000 bootstraps of electrode assignments. B, V1 time courses with deconstructed DN model predictions from
Figure 7 overlaid, for all stimuli. A linear model consisting of only a biphasic IRF fails to explain the neural responses across conditions. Adding canonical nonlinear computations, including in-
stantaneous normalization, results in increased model performance in capturing the overall response shape, mostly for the duration and repetition conditions. Adding a temporal delay in nor-
malization is especially critical for capturing changing temporal dynamics for contrast-varying stimuli (e.g., time-to-peak, sustained/transient ratio). Data and model predictions were averaged
across electrodes using 1000 bootstraps of electrode assignments. This figure is reproduced using tde_mkFigure8.m.
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although this latter summary metric was more variable
across electrodes compared with the first two metrics.
Overall, these summary metrics reflecting differences in
temporal summation differ most between a group of earlier
visual areas (V1–V3, V3a) and the later areas. These patterns
were largely consistent when computed separately within individ-
ual participants (Fig. 12).

Temporal adaptation windows do not differ systematically
between visual areas
In contrast to the pattern with temporal summation, adaptation
to repeated stimuli showed less evidence of varying systemati-
cally across areas (Fig. 13). Although the response to the second
stimulus in V3b is on average higher than that in V1 (Fig. 13A),
this appears to result from the continued response to the first
stimulus even after the second stimulus onset in V3b, rather than

to less adaptation or a systematically different rate of recovery. In
both areas, full recovery was achieved by the longest ISI meas-
ured (533ms). Consistent with these observations, we did not
observe a clear difference in the rate of recovery from adaptation
across visual areas. To quantify this, we expressed the magnitude
of the response to the second stimulus relative to the first stimu-
lus separately for each ISI and visual area, yielding a measure of
recovery from adaptation over time per area. Although
areas V2, V3, and V3a recovered somewhat more slowly
than V1 in both the data (Fig. 13B) and DN model predic-
tions (Fig. 13C), area V3b did not. Indeed, when comparing
the estimated ISI at which the response is nearly fully recov-
ered (80%) for all areas shows that for both the data and the
model, no systematic change in this measure is observed,
with several higher-order visual regions having a similar re-
covery as V1 (Fig. 13D).

Figure 9. Temporal models differ in their ability to predict multiple temporal dynamics. A, Cross-validated explained variance in V1–IPS for the DN model compared with a model imple-
menting history-dependent normalization via feedback (Heeger, 1992) and two 2-channel (two-temporal channel; TTC, and adaption1 sigmoid; A1S) models (Stigliani et al., 2017, 2019).
B, Nonlinear temporal phenomena in V1 (same data as in Fig. 7B) as predicted by the alternative models. C, V1 time courses with alternative model predictions overlaid for all stimulus types.
Two-temporal channel models can predict temporal summation and repetition suppression effects to some degree but fail to capture contrast-induced temporal dynamics. In contrast, the feed-
back model performs on par with the DN model. Model implementations and initialization parameters and bounds used during fitting can be found in the folder temporal_models in https://
github.com/irisgroen/temporalECoG. This figure is produced using tde_mkFigure9.m.
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Opposite effects of contrast on response amplitude and
latency across visual areas
In a third and final comparison of visual areas, we examined
responses as a function of contrast (Fig. 14). Interestingly, we
observed opposite effects of contrast on response amplitude and
timing across visual areas. Amplitude differences between low-
and high-contrast stimuli become smaller in higher visual areas
(greater invariance to contrast), whereas time-to-peak differences
tend to get larger (greater sensitivity to contrast).

The amplitude effects can be seen by comparing responses
across different contrast conditions within a given area; compared
with V1, responses in V3b are relatively enhanced for low-contrast
stimuli (Fig. 14A). Similarly, compared with V2, responses in TO
are relatively enhanced for low-contrast stimuli (Fig. 14B). We
quantified this pattern by fitting a Naka-Rushton equation to the
peak responses for both the data and the DN model predictions
(see above, Materials and Methods). The C50 parameter is the con-
trast at which the response reaches half its maximum, with lower
values indicating steeper rises in contrast response functions. This
measure showed a downward trend along the visual hierarchy in
both the data and the model predictions (Fig. 14C), indicating that
less contrast is needed to elicit a robust response in higher com-
pared with lower visual areas. Although the data and model predic-
tions agree in showing decreasing C50 in higher areas, there is an
overall offset between data and model, with the model predicting
slightly higher C50 parameters overall. This matches our previous
observation of small but systematic underpredictions of the tran-
sient response at low contrast noted in Figure 4C.

Differences in the time-to-peak between low- and high-
contrast stimuli are more pronounced in the highest visual

areas. This is illustrated in Figure 14D, which shows the
same data as in Figure 14B but with each condition normal-
ized to its peak (Fig. 4A, right, for same data in V1). Both V2
and TO show a greater and shallower slope at lower contrast
(Fig. 14D). However, in area TO the range in latencies is
larger compared with that of V2. To quantify these effects,
we calculated the time-to-peak for each contrast (Fig. 14D,
dashed vertical lines) and measured the range (difference
between minimum and maximum value) across contrast lev-
els in each area for both the data and the model (Fig. 14E).
Although the range is relatively constant in early areas V1–
V3, both data and model show an upward trend in the time-
to-peak range across contrast conditions in the highest visual
areas. This suggests that unlike response amplitude, response
latency becomes more sensitive to contrast in higher visual
areas.

Changes in temporal dynamics across visual areas
To summarize the comparisons across areas, we find that the
temporal dynamics of neural responses differ across the visual
areas we measured in several different ways. Most changes seem
to reflect increasing invariance in higher visual areas, demon-
strating, for example, less dramatic effects of changing stimulus
duration on neural response shapes or less effect of changing
contrast intensity on response amplitude, compared with lower
visual areas. However, not all of our analyses were indicative of
increased invariance along the visual hierarchy. In particular, re-
covery from adaptation remained fairly stable, suggesting that
the rate of adaptation does not change systematically across areas
or that our measurements were not sensitive enough to pick up

Figure 10. Fitted DN model parameters for all visual areas. The DN model has five model parameters that were fitted across all stimulus conditions: t 1 (time constant of
the IRF), w (weight of the negative and positive IRFs), n (exponent), s (semisaturation constant), and t 2 (time constant of the exponential decay), as well as two nuisance
parameters, shift (delay in response onset relative to stimulus onset) and scale (gain of the response). Data points indicate median across probabilistically assigned electro-
des. Error bars indicate 68% confidence intervals across 10,000 bootstraps of electrode assignments to visual areas. Initialization parameter values and bounds used during
fitting can be found in JSON metadata files accompanying the code provided in the folder temporal_models in https://github.com/irisgroen/temporalECoG. This figure is pro-
duced using tde_mkFigure10.m.
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differences in this response property. (We return to this below in
Discussion). In addition, response latency becomes more sensi-
tive to stimulus contrast in higher visual areas. Importantly,
changes in response properties between low and higher visual
areas were to a large extent recapitulated by the DN model, sug-
gesting that the model captures temporal response dynamics not
just in early visual regions but across visual cortex more broadly.

Discussion
We demonstrated several nonlinearities in the neural dynamics
of visual cortex, for example, saturation as stimulus contrast and

duration increase, suppression for repeated stimuli at short inter-
vals, and slower onsets at low contrast. Although each of these
has been demonstrated previously an important goal in systems
neuroscience is to understand how apparently disparate phenomena
might be linked (Wandell et al., 2015). Here, we showed that a
delayed normalization model predicts these responses in multiple
human retinotopic maps.

Fitting one model to many stimuli
This DN model was developed to account for similar temporal
phenomena in separate, independent studies (Zhou et al., 2019).
Although that work showed that a single model form could

Figure 12. Temporal summation windows vary across individual participants. Time-to-peak, Full-width at half-maximum and sustained/transient ratio computed from the data but sepa-
rately for each electrode and then grouped by visual area within each individual patient (colored data points) as well as across all patients (black data points and line). Note that the average
here is not identical to the data shown in Figure 11B–D, where summary statistics were computed based on average time courses per area; here, they were calculated per individual electrode
and then averaged. Data points indicate median across repeated samples of electrodes, taking into account the probability of overlap of each electrode with a retinotopic atlas (see above,
Materials and Methods). Error bars and shaded regions indicate 68% confidence intervals across 1000 bootstraps of electrode assignments. Although individual electrode data are noisy, and
there is substantial variety among individual patients, most patients show trends toward longer temporal summation windows for higher visual areas as evidenced by increase in time-to-peak,
response width, and sustained to transient ratios. This figure is produced using tde_mkFigure12.m.

Figure 11. Temporal summation window sizes increase in higher visual areas. A, Top, Average broadband ECoG responses for stimuli of increasing duration for an early (V1) and higher vis-
ual area (V3b). Table 2 shows the number of included electrodes per area. Bottom, DN model predictions for these same data. Compared with V1, responses in V3b rise more slowly and stay
up longer, resulting in wider responses and higher sustained levels of response relative to the transient level. B–D, Three summary metrics derived from both the neural responses (black) and
DN model predictions (red), separately for all visual areas in the dataset. Time-to-peak, computed from the neural response and model prediction to the longest duration stimulus (533ms, B).
Note that we use this duration as an example to compare across regions, and that the predicted time will be slightly different for other stimulus durations (with similar relative differences
across regions). Full-width half-maximum, computed from the neural response and model prediction to the shortest duration stimulus (17 ms, C). Ratio of sustained (response level at stimulus
offset) relative to the maximum response (peak), computed from the neural response and model prediction to the longest duration stimulus (D). Data points indicate means, and error bars
indicate 68% confidence intervals across 1000 response averages and corresponding DN model fits using probabilistically assigned electrodes. This figure is produced using tde_mkFigure11.m.
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account for a wide variety of neural data, the various datasets
were fit separately because they came from different experiments,
measurement types, and species. Temporal dynamics and fitted
parameters differed substantially across datasets; for example,
the time to peak of single-unit macaque V1 data were tens of ms
but more than 100ms for human ECoG broadband. A key
advance here is that for a given cortical site, a single instance of
the DN model fit simultaneously to many stimulus types cap-
tures temporal dynamics arising from temporal summation, ad-
aptation, and variation in contrast.

Parallels between responses to repeated and low-contrast
stimuli
A surprising observation is that response time courses to a
repeated stimulus at high contrast and a nonrepeated stimulus at
low contrast are remarkably similar. The delayed normalization
model accounts for this through the time-varying relationship
between stimulus drive and normalization. At low contrast, the
stimulus drive never gets large relative to the normalization, and
for repeated stimuli, there is lingering normalization from the
first stimulus.

The similarity in responses does not imply that the two
stimulus dimensions are perfectly conflated in the brain. For
example, monkeys can detect stimulus repetitions regardless
of contrast, implying some contrast-independent stimulus
memory (Mehrpour et al., 2020). Nonetheless, the parallels in
ECoG responses raise the prospect that behavioral measures,
for example, detection thresholds or response time, will show
similar patterns for the two stimulus manipulations and might

be explained by a single model. Such a model could clarify
how stimulus contrast interacts with cognitive phenomena
like the attentional blink (Raymond et al., 1992). A dynamic
normalization model has recently been used to explain behav-
ioral effects of temporal attention (Denison et al., 2021). Our
findings suggest that a dynamic normalization model might
also explain how effects of temporal attention interact with
stimulus contrast.

Links among ECoG, fMRI, and single-unit electrophysiology
We quantified ECoG responses as the time-varying broadband
envelope. Field potential results differ dramatically depending on
the measure. For example, the broadband response, but not the
steady-state evoked potential, shows subadditive spatial summa-
tion (Winawer et al., 2013). Narrowband gamma oscillations and
broadband power elevations show different stimulus selectivity
(Ray and Maunsell, 2011; Hermes et al., 2015, 2019). We studied
the broadband response because it appears most strongly con-
nected to other measures, including fMRI (Hermes et al., 2017),
spiking (Miller et al., 2009; Ray and Maunsell, 2011), and behav-
ior (Miller et al., 2014), thereby facilitating comparisons with
those studies.

The temporal phenomena we report have been demonstrated
with fMRI and single-unit physiology. However, these methods
leave open some questions better addressed with ECoG. For
example, fMRI visual responses show subadditive temporal sum-
mation (Boynton et al., 1996; Huettel and McCarthy, 2000; Birn
et al., 2001; Mukamel et al., 2004; Zhou et al., 2018). These effects
could reflect a mixture of nonlinear summation in the BOLD

Figure 13. Temporal adaptation windows do not differ systematically between visual areas. A, Top, Average broadband ECoG responses to repeated stimuli with increasing ISI for an early
(V1) and a higher visual area (V3b). Table 2 shows the number of included electrodes per area. Bottom, DN model predictions corresponding to these same data. Compared with V1, responses
in V3b recover at a similar rate, with full recovery being achieved at the longest ISI measured (533ms). B–D, Recovery from adaptation across visual areas. Although most higher visual areas
show a somewhat slower recovery compared with V1 (e.g., V3a) some areas show a similar or faster recovery (e.g., V3b, LO1), and error bars are highly overlapping, suggesting no systematic
change in recovery across the visual hierarchy. Measured recovery from adaptation across ISIs for V1-IPS (B, calculated the same way as in Fig. 3B). Predicted recovery from adaptation based
on the DN model when simulating responses across a range of ISIs (C). Estimation of the ISI at which recovery is 80% of the response to the first stimulus, calculated for both neural data and
DN model (D). Data points indicate means, and error bars indicate 68% confidence intervals across 1000 response averages; corresponding DN model fits using probabilistically assigned electro-
des. This figure is produced using tde_mkFigure13.m.
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signal and neural activity. Here, we demonstrated temporal
subadditivity in population responses in human ECoG, paral-
leling single-cell recordings (Tolhurst et al., 1980). Similarly,
fMRI shows response suppression to repeated stimuli (Grill-
Spector et al., 2006). However, responses to stimuli separated
by short intervals cannot be measured independently with fMRI,
whereas ECoG allows for separate estimations of the response
time courses. Mirroring single-cell recordings (Motter, 2006),
we find that adaptation is associated with both a reduction of
response amplitude and slower rise time.

The ECoG measures also provide important data not easily
obtained in animal studies. We made systematic comparisons of
temporal dynamics across many visual areas, which is typically
not feasible in microelectrode recordings.

Changes in temporal dynamics across visual areas
Several studies find that time scales of temporal processing
become longer ascending the visual hierarchy (Hasson et al.,
2008; Weiner et al., 2010; Honey et al., 2012; Mattar et al., 2016;
Zhou et al., 2018), paralleling increases in spatial receptive fields
(Maunsell and Newsome, 1987). In contrast, a recent fMRI study
reported no differences in the recovery time of repetition

suppression across visual areas (Fritsche et al., 2020). We
replicated both patterns, suggesting there is not a single
processing time scale per area. When temporal dynamics
are characterized by the period over which responses sum,
we find systematic increases in time scale from earlier to
higher areas (Fig. 11). However, when characterized as re-
covery time from adaptation (Fig. 13), time scales were rela-
tively constant, consistent with Fritsche et al. (2020). These
patterns are not contradictory as both are also observed in
the model fits, indicating that even a relatively simple
model can result in complex behavior.

Another property that varies across visual areas is contrast
sensitivity (Tootell et al., 1998; Avidan et al., 2002; Lu and Roe,
2007). As with temporal windows, the degree of contrast invari-
ance depends on the quantification. Specifically, response ampli-
tudes become more invariant in higher visual areas, but response
latencies do not; if anything, higher areas show greater latency
differences. Thus, some information about stimulus contrast
remains in the neural responses of later areas. The fact that sensi-
tivity to contrast remains in the response timing but not ampli-
tude means that measurements that average across a trial (like
fMRI or mean spike rates) will miss this feature.

Figure 14. Opposite effects of contrast on response amplitude and timing across visual areas. A, Top, Average broadband ECoG responses to stimuli with increasing contrast for an early (V1)
and a higher visual area (V3b). Table 2 shows the number of included electrodes per area. Bottom, DN model predictions corresponding to these same data. B, Average broadband ECoG
responses to stimuli with different contrasts in early visual area V2 (left) and higher visual area TO (right), superimposed. Dashed lines indicate maximum amplitude in each condition. Time
courses were slightly smoothed for illustrative purposes only. C, C50 for each visual area, computed both from the data and model predictions. D, Same data as in B, with each time course nor-
malized to its peak, which illustrates differences in response rise. Dashed lines indicate time-to-peak in each condition. E, Range in time-to-peak across contrast for each visual area for both
data and DN model predictions. Data points in C and E indicate means, and error bars indicate 68% confidence intervals for 1000 response averages of probabilistically assigned electrodes. This
figure is produced using tde_mkFigure14.m.
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Space and time
Some changes in dynamics across visual areas parallel findings in
the spatial domain; for example, spatial receptive fields and tem-
poral summation windows increase in higher areas. However,
spatial and temporal properties are not perfectly separable.
To make analyses tractable, we kept spatial stimulus proper-
ties (other than contrast) constant. Our stimuli effectively
drive responses in multiple visual maps, especially V1–hV4
(Kay et al., 2013b; Zhou et al., 2018), but higher maps may
respond better to more complex stimuli (Sayres and Grill-
Spector, 2008; Arcaro et al., 2009; Silson et al., 2016). We
recently found that ventral-temporal and lateral-occipital
ECoG responses were several times larger for naturalistic
images than for simple textures, with the amount of adapta-
tion depending on the category preference of the electrode
(faces, bodies, objects; Brands et al., 2021). A complete char-
acterization of temporal dynamics thus also requires incor-
porating spatial stimulus properties (and vice versa). An
important yet unachieved goal for the field is a space-time
model that simultaneously accounts for spatial summation,
stimulus selectivity, and temporal dynamics throughout vis-
ual cortex.

Model failures and limitations
Although the DN model captured many response variations, we
also noted some small but systematic model failures. The model
underpredicts the transient response at low contrasts and for
short ISI repeats. The DN model produces response transients
because of sluggish normalization, whereas other models account
for transient and sustained responses with distinct temporal
channels (Horiguchi et al., 2009; Stigliani et al., 2017, 2019). It is
likely that neither type of model is complete. Although multiple-
channel models do not explain slower dynamics at low contrast,
incorporating multiple channels into the driven responses of a
DN model might help ameliorate model failures at low contrast
and short ISIs.

Our results are subject to several limitations. First, not all par-
ticipants contributed data to all maps. When differences in
response properties are expected to be small (say, V1 vs V2), var-
iability across participants may be larger than the map differen-
ces (Fig. 12). Therefore, our comparisons focused primarily on
coarse groupings, earlier (V1–V3) versus later maps. Second,
we did not measure retinotopic maps in individual participants
leading to some uncertainty in electrode assignments. For this
reason, we developed a probabilistic resampling method to incor-
porate this uncertainty into our measures of variability. Third, we
did not have electrodes with sufficiently reliable responses in ven-
tral stream regions beyond V3. Those regions could exhibit differ-
ent temporal dynamics than lateral-occipital and dorsal-parietal
maps (Stigliani et al., 2019), which may or may not be well cap-
tured by the DN model. An important future direction is to mea-
sure temporal dynamics in neural population responses with more
extensive sampling of ventral visual cortex.

The fact that the same model form accurately fits responses in
several cortical areas does not imply that each area is computing
the same thing. Rather, it implies that some aspects of the
responses are captured by a common model form (although dif-
fering in parameters). There is in fact evidence that cortical areas
with very different stimulus selectivity, V1 and MT, manifest a
similar computational architecture, differing primarily in their
inputs rather than computations (Heeger et al., 1996). Fitting a
single model form (such as a spatial receptive field) with separate
parameters to different locations in the visual pathways facilitates

comparisons. More generally, our model of any area, say V1, is
not a model of what that area computes but rather a model that
summarizes the computations of the complete circuitry from eye
to brain, including feedforward, lateral, and feedback pathways
sampled at that location. Some of the delayed temporal normal-
ization measured in the V1 responses may be inherited from ear-
lier processing stages or arise from feedback from higher areas.
This is the same logic used when, say, measuring the receptive
field of a visual neuron in terms of visual field locations.

Finally, this dataset may serve as a useful benchmark for
testing other models. As an example, we computed predic-
tions for our data from a few previously published models
(Heeger, 1992; Stigliani et al., 2017, 2019; Fig. 9). To facilitate
model comparison, we make the data publicly available with
open code that implements models modularly, allowing fitting
multiple models to the same data using automated cross-vali-
dation and area comparison.

References
Acerbi L, Ma WJ (2017) Practical Bayesian optimization for model fitting

with Bayesian adaptive direct search. Adv Neural Inf Process Syst
30:1834–1844.

Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast
response function. J Neurophysiol 48:217–237.

Albrecht DG, Geisler WS, Frazor RA, Crane AM (2002) Visual cortex neu-
rons of monkeys and cats: temporal dynamics of the contrast response
function. J Neurophysiol 88:888–913.

Arcaro MJ, McMains SA, Singer BD, Kastner S (2009) Retinotopic organiza-
tion of human ventral visual cortex. J Neurosci 29:10638–10652.

Avidan G, Harel M, Hendler T, Ben-Bashat D, Zohary E, Malach R (2002)
Contrast sensitivity in human visual areas and its relationship to object
recognition. J Neurophysiol 87:3102–3116.

Benson NC, Winawer J (2018) Bayesian analysis of retinotopic maps. Elife 7:
e40224.

Benson NC, Butt OH, Brainard DH, Aguirre GK (2014) Correction of distor-
tion in flattened representations of the cortical surface allows prediction
of V1-V3 functional organization from anatomy. PLoS Comput Biol 10:
e1003538.

Birn RM, Saad ZS, Bandettini PA (2001) Spatial heterogeneity of the nonlin-
ear dynamics in the FMRI BOLD response. Neuroimage 14:817–826.

Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analy-
sis of functional magnetic resonance imaging in human V1. J Neurosci
16:4207–4221.

Brands AM, Devore S, Devinsky O, Doyle WK, Flinker A, Winawer J, Groen
A II (2021) Adaptation of neural responses to naturalistic visual catego-
ries in low- and high visual cortex. In: European Conference on Visual
Perception. Available at https://doi.org/10.1177%2F03010066211059887.

Carandini M, Heeger DJ (2011) Normalization as a canonical neural compu-
tation. Nat Rev Neurosci 13:51–62.

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P,
Ryu SI, Shenoy KV (2012) Neural population dynamics during reaching.
Nature 487:51–56.

Denison RN, Carrasco M, Heeger DJ (2021) A dynamic normalization model
of temporal attention. Nat Hum Behav 5:1674–1685.

Fritsche M, Lawrence SJD, de Lange FP (2020) Temporal tuning of repetition
suppression across the visual cortex. J Neurophysiol 123:224–233.

Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev
Neurosci 30:535–574.

Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural
models of stimulus-specific effects. Trends Cogn Sci 10:14–23.

Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N (2008) A hierarchy of tem-
poral receptive windows in human cortex. J Neurosci 28:2539–2550.

Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis
Neurosci 9:181–197.

Heeger DJ (1993) Modeling simple-cell direction selectivity with normalized,
half-squared, linear operators. J Neurophysiol 70:1885–1898.

Heeger DJ (2017) Theory of cortical function. Proc Natl Acad Sci U S A
114:1773–1782.

Groen et al. · Temporal Dynamics in Human Visual Cortex J. Neurosci., October 5, 2022 • 42(40):7562–7580 • 7579

http://dx.doi.org/10.1152/jn.1982.48.1.217
https://www.ncbi.nlm.nih.gov/pubmed/7119846
http://dx.doi.org/10.1152/jn.2002.88.2.888
https://www.ncbi.nlm.nih.gov/pubmed/12163540
http://dx.doi.org/10.1523/JNEUROSCI.2807-09.2009
https://www.ncbi.nlm.nih.gov/pubmed/19710316
http://dx.doi.org/10.1152/jn.2002.87.6.3102
https://www.ncbi.nlm.nih.gov/pubmed/12037211
http://dx.doi.org/10.7554/eLife.40224
http://dx.doi.org/10.1371/journal.pcbi.1003538
https://www.ncbi.nlm.nih.gov/pubmed/24676149
http://dx.doi.org/10.1006/nimg.2001.0873
https://www.ncbi.nlm.nih.gov/pubmed/11554800
https://www.ncbi.nlm.nih.gov/pubmed/8753882
https://doi.org/10.1177%2F03010066211059887
http://dx.doi.org/10.1177%2F03010066211059887
http://dx.doi.org/10.1038/nrn3136
https://www.ncbi.nlm.nih.gov/pubmed/22108672
http://dx.doi.org/10.1038/nature11129
https://www.ncbi.nlm.nih.gov/pubmed/22722855
http://dx.doi.org/10.1152/jn.00582.2019
https://www.ncbi.nlm.nih.gov/pubmed/31774368
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038
https://www.ncbi.nlm.nih.gov/pubmed/17600525
http://dx.doi.org/10.1016/j.tics.2005.11.006
https://www.ncbi.nlm.nih.gov/pubmed/16321563
http://dx.doi.org/10.1523/JNEUROSCI.5487-07.2008
https://www.ncbi.nlm.nih.gov/pubmed/18322098
http://dx.doi.org/10.1017/s0952523800009640
https://www.ncbi.nlm.nih.gov/pubmed/1504027
http://dx.doi.org/10.1152/jn.1993.70.5.1885
https://www.ncbi.nlm.nih.gov/pubmed/8294961
http://dx.doi.org/10.1073/pnas.1619788114
https://www.ncbi.nlm.nih.gov/pubmed/28167793


Heeger DJ, Simoncelli EP, Movshon JA (1996) Computational models of
cortical visual processing. Proc Natl Acad Sci U S A 93:623–627.

Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF (2010)
Automated electrocorticographic electrode localization on individually
rendered brain surfaces. J Neurosci Methods 185:293–298.

Hermes D, Miller KJ, Wandell BA, Winawer J (2015) Stimulus dependence
of gamma oscillations in human visual cortex. Cereb Cortex 25:2951–
2959.

Hermes D, Nguyen M, Winawer J (2017) Neuronal synchrony and the rela-
tion between the blood-oxygen-level dependent response and the local
field potential. PLOS Biol 15:e2001461.

Hermes D, Petridou N, Kay KN, Winawer J (2019) An image-computable
model for the stimulus selectivity of gamma oscillations. Elife 8:e47035.

Holdgraf C, et al. (2019) iEEG-BIDS, extending the brain imaging data struc-
ture specification to human intracranial electrophysiology. Sci Data
6:102.

Honey CJ, Thesen T, Donner TH, Silbert LJ, Carlson CE, Devinsky O, Doyle
WK, Rubin N, Heeger DJ, Hasson U (2012) Slow cortical dynamics and
the accumulation of information over long timescales. Neuron 76:423–
434.

Horiguchi H, Nakadomari S, Misaki M, Wandell BA (2009) Two temporal
channels in human V1 identified using fMRI. Neuroimage 47:273–280.

Huettel SA, McCarthy G (2000) Evidence for a refractory period in the he-
modynamic response to visual stimuli as measured by MRI. Neuroimage
11:547–553.

Kay KN, Winawer J, Rokem A, Mezer A, Wandell BA (2013a) A two-stage
cascade model of BOLD responses in human visual cortex. PLoS Comput
Biol 9:e1003079.

Kay KN, Winawer J, Mezer A, Wandell BA (2013b) Compressive spatial
summation in human visual cortex. J Neurophysiol 110:481–494.

Kubilius J, Schrimpf M, Kar K, Hong H, Majaj NJ, Rajalingham R, Issa EB,
Bashivan P, Prescott-Roy J, Schmidt K, Nayebi A, Bear D, Yamins DLK,
DiCarlo JJ (2019) Brain-like object recognition with high-performing
shallow recurrent ANNs. arXiv:1909.06161.

Lu HD, Roe AW (2007) Optical imaging of contrast response in macaque
monkey V1 and V2. Cereb Cortex 17:2675–2695.

Mattar MG, Kahn DA, Thompson-Schill SL, Aguirre GK (2016) Varying
timescales of stimulus integration unite neural adaptation and prototype
formation. Curr Biol 26:1669–1676.

Maunsell JHR, Newsome WT (1987) Visual processing in monkey extrastri-
ate cortex. Annu Rev Neurosci 10:363–401.

Mehrpour V, Meyer T, Simoncelli EP Rust NC (2020) Pinpointing the neural
signatures of single-exposure visual recognition memory. Proc Natl Acad
Sci U S A 118:e2021660118.

Mikaelian S, Simoncelli EP (2001) Modeling temporal response charac-
teristics of V1 neurons with a dynamic normalization model.
Neurocomputing 38-40:1461–1467.

Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling
in the brain surface electric potential. PLoS Comput Biol 5:e1000609.

Miller KJ, Honey CJ, Hermes D, Rao RP, denNijs M, Ojemann JG (2014)
Broadband changes in the cortical surface potential track activation of
functionally diverse neuronal populations. Neuroimage 85:711–720.

Motter BC (2006) Modulation of transient and sustained response compo-
nents of V4 neurons by temporal crowding in flashed stimulus sequences.
J Neurosci 26:9683–9694.

Mukamel R, Harel M, Hendler T, Malach R (2004) Enhanced temporal non-
linearities in human object-related occipito-temporal cortex. Cereb
Cortex 14:575–585.

Naka KI, Rushton WAH (1966) S-potentials from colour units in the retina
of fish (Cyprinidae). J Physiol 185:536–555.

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysio-
logical data. Comput Intell Neurosci 2011:156869–156869.

Ray S, Maunsell JHR (2011) Different origins of gamma rhythm and high-
gamma activity in macaque visual cortex. PLoS Biol 9:e1000610.

Raymond J, Shapiro K, Arnell K (1992) Temporary suppression of visual
processing in an RSVP task: an attentional blink? J Exp Psychol Hum
Percept Perform 18:849–860.

Sayres R, Grill-Spector K (2008) Relating retinotopic and object-selective
responses in human lateral occipital cortex. J Neurophysiol 100:249–267.

Silson EH, Groen IIA, Kravitz DJ, Baker CI (2016) Evaluating the correspon-
dence between face-, scene-, and object-selectivity and retinotopic orga-
nization within lateral occipitotemporal cortex. J Vis 16(6):14 1–21.

Sinz F, Bethge M (2013) Temporal adaptation enhances efficient contrast
gain control on natural images. PLoS Comput Biol 9:e1002889.

Spoerer CJ, Kietzmann TC, Mehrer J, Charest I, Kriegeskorte N (2020)
Recurrent neural networks can explain flexible trading of speed and accu-
racy in biological vision. PLOS Comput Biol 16:e1008215.

Stigliani A, Jeska B, Grill-Spector K (2017) Encoding model of temporal
processing in human visual cortex. Proc Natl Acad Sci U S A 114:
E11047–E11056.

Stigliani A, Jeska B, Grill-Spector K (2019) Differential sustained and tran-
sient temporal processing across visual streams. PLOS Comput Biol 15:
e1007011.

Tolhurst DJ, Walker NS, Thompson ID, Dean AF (1980) Non-linearities of
temporal summation in neurones in area 17 of the cat. Exp Brain Res
38:431–435.

Tootell RBH, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno
MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in
humans. Proc Natl Acad Sci U S A 95:811–817.

Tsai JJ, Wade AR, Norcia AM (2012) Dynamics of normalization underlying
masking in human visual cortex. J Neurosci 32:2783–2789.

Wandell BA, Winawer J, Kay KN (2015) Computational modeling of
responses in human visual cortex. In: Brain mapping (Toga AW, ed), pp
651–659. Academic.

Wang L, Mruczek REB, Arcaro MJ, Kastner S (2015) Probabilistic maps of
visual topography in human cortex. Cereb Cortex 25:3911–3931.

Wang X-J (2012) Neural dynamics and circuit mechanisms of decision-mak-
ing. Curr Opin Neurobiol 22:1039–1046.

Weiner KS, Sayres R, Vinberg J, Grill-Spector K (2010) fMRI-adaptation and
category selectivity in human ventral temporal cortex: regional differen-
ces across time scales. J Neurophysiol 103:3349–3365.

Winawer J, Kay KN, Foster BL, Rauschecker AM, Parvizi J, Wandell BA
(2013) Asynchronous broadband signals are the principal source of the
BOLD response in human visual cortex. Curr Biol 23:1145–1153.

Yang AI, Wang X, Doyle WK, Halgren E, Carlson C, Belcher TL, Cash SS,
Devinsky O, Thesen T (2012) Localization of dense intracranial electrode
arrays using magnetic resonance imaging. Neuroimage 63:157–165.

Zhou J, Benson NC, Kay KN, Winawer J (2018) Compressive temporal sum-
mation in human visual cortex. J Neurosci 38:691–709.

Zhou J, Benson NC, Kay K, Winawer J (2019) Predicting neuronal dynamics
with a delayed gain control model. PLOS Comput Biol 15:e1007484.

7580 • J. Neurosci., October 5, 2022 • 42(40):7562–7580 Groen et al. · Temporal Dynamics in Human Visual Cortex

http://dx.doi.org/10.1073/pnas.93.2.623
https://www.ncbi.nlm.nih.gov/pubmed/8570605
http://dx.doi.org/10.1016/j.jneumeth.2009.10.005
https://www.ncbi.nlm.nih.gov/pubmed/19836416
http://dx.doi.org/10.1093/cercor/bhu091
https://www.ncbi.nlm.nih.gov/pubmed/24855114
http://dx.doi.org/10.1371/journal.pbio.2001461
http://dx.doi.org/10.7554/eLife.47035
http://dx.doi.org/10.1038/s41597-019-0105-7
https://www.ncbi.nlm.nih.gov/pubmed/31239438
http://dx.doi.org/10.1016/j.neuron.2012.08.011
http://dx.doi.org/10.1016/j.neuroimage.2009.03.078
https://www.ncbi.nlm.nih.gov/pubmed/19361561
http://dx.doi.org/10.1006/nimg.2000.0553
https://www.ncbi.nlm.nih.gov/pubmed/10806040
http://dx.doi.org/10.1371/journal.pcbi.1003079
https://www.ncbi.nlm.nih.gov/pubmed/23737741
http://dx.doi.org/10.1152/jn.00105.2013
https://www.ncbi.nlm.nih.gov/pubmed/23615546
http://dx.doi.org/10.48550/arXiv.1909.06161
http://dx.doi.org/10.1093/cercor/bhl177
https://www.ncbi.nlm.nih.gov/pubmed/17264252
http://dx.doi.org/10.1016/j.cub.2016.04.065
https://www.ncbi.nlm.nih.gov/pubmed/27321999
http://dx.doi.org/10.1146/annurev.ne.10.030187.002051
https://www.ncbi.nlm.nih.gov/pubmed/3105414
http://dx.doi.org/10.1016/S0925-2312(01)00529-X
http://dx.doi.org/10.1371/journal.pcbi.1000609
https://www.ncbi.nlm.nih.gov/pubmed/20019800
http://dx.doi.org/10.1016/j.neuroimage.2013.08.070
http://dx.doi.org/10.1523/JNEUROSCI.5495-05.2006
https://www.ncbi.nlm.nih.gov/pubmed/16988039
http://dx.doi.org/10.1093/cercor/bhh019
https://www.ncbi.nlm.nih.gov/pubmed/15054073
http://dx.doi.org/10.1113/jphysiol.1966.sp008001
https://www.ncbi.nlm.nih.gov/pubmed/5918058
http://dx.doi.org/10.1155/2011/156869
https://www.ncbi.nlm.nih.gov/pubmed/21253357
http://dx.doi.org/10.1371/journal.pbio.1000610
https://www.ncbi.nlm.nih.gov/pubmed/21532743
http://dx.doi.org/10.1037/0096-1523.18.3.849
http://dx.doi.org/10.1152/jn.01383.2007
https://www.ncbi.nlm.nih.gov/pubmed/18463186
http://dx.doi.org/10.1167/16.6.14
https://www.ncbi.nlm.nih.gov/pubmed/27105060
http://dx.doi.org/10.1371/journal.pcbi.1002889
https://www.ncbi.nlm.nih.gov/pubmed/23382664
http://dx.doi.org/10.1371/journal.pcbi.1008215
https://www.ncbi.nlm.nih.gov/pubmed/33006992
http://dx.doi.org/10.1073/pnas.1704877114
https://www.ncbi.nlm.nih.gov/pubmed/29208714
http://dx.doi.org/10.1371/journal.pcbi.1007011
https://www.ncbi.nlm.nih.gov/pubmed/31145723
http://dx.doi.org/10.1007/BF00237523
http://dx.doi.org/10.1073/pnas.95.3.811
https://www.ncbi.nlm.nih.gov/pubmed/9448245
http://dx.doi.org/10.1523/JNEUROSCI.4485-11.2012
https://www.ncbi.nlm.nih.gov/pubmed/22357861
http://dx.doi.org/10.1016/B978-0-12-397025-1.00347-X
http://dx.doi.org/10.1093/cercor/bhu277
https://www.ncbi.nlm.nih.gov/pubmed/25452571
http://dx.doi.org/10.1016/j.conb.2012.08.006
https://www.ncbi.nlm.nih.gov/pubmed/23026743
http://dx.doi.org/10.1152/jn.01108.2009
https://www.ncbi.nlm.nih.gov/pubmed/20375251
http://dx.doi.org/10.1016/j.cub.2013.05.001
https://www.ncbi.nlm.nih.gov/pubmed/23770184
http://dx.doi.org/10.1016/j.neuroimage.2012.06.039
https://www.ncbi.nlm.nih.gov/pubmed/22759995
http://dx.doi.org/10.1523/JNEUROSCI.1724-17.2017
https://www.ncbi.nlm.nih.gov/pubmed/29192127
http://dx.doi.org/10.1371/journal.pcbi.1007484
https://www.ncbi.nlm.nih.gov/pubmed/31747389

	Temporal Dynamics of Neural Responses in Human Visual Cortex
	Introduction
	Materials and Methods
	Results
	Discussion


