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Piezo proteins are mechanosensitive ion channels that can locally curve the membrane
into a dome shape [Y. R. Guo, R. MacKinnon, eLife 6, e33660 (2017)]. The curved
shape of the Piezo dome is expected to deform the surrounding lipid bilayer membrane
into a membrane footprint, which may serve to amplify Piezo’s sensitivity to applied
forces [C. A. Haselwandter, R. MacKinnon, eLife 7, e41968 (2018)]. If Piezo proteins
are embedded in lipid bilayer vesicles, the membrane shape deformations induced by
the Piezo dome depend on the vesicle size. We employ here membrane elasticity theory
to predict, with no free parameters, the shape of such Piezo vesicles outside the Piezo
dome, and show that the predicted vesicle shapes agree quantitatively with the corre-
sponding measured vesicle shapes obtained through cryoelectron tomography, for a
range of vesicle sizes [W. Helfrich, Z. Naturforsch. C 28, 693–703 (1973)]. On this
basis, we explore the coupling between Piezo and membrane shape and demonstrate
that the features of the Piezo dome affecting Piezo’s membrane footprint approximately
follow a spherical cap geometry. Our work puts into place the foundation for deducing
key elastic properties of the Piezo dome from membrane shape measurements and pro-
vides a general framework for quantifying how proteins deform bilayer membranes.
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In common with other organisms, vertebrates possess a variety of senses that respond
to mechanical stimuli (1). Despite intense efforts, the molecules and physical mecha-
nisms underlying vertebrate mechanosensation have long remained elusive. In 2010,
Piezo proteins—Piezo 1 and Piezo 2 in mammals—were discovered, which has led to
stunning progress in the elucidation of the molecular basis for mechanosensation (2).
Piezo channels are mechanosensitive ion channels that open in response to mechanical
force. They contain a central pore and three long arms that extend away from the pro-
tein center (3–5). The extended arms are made of transmembrane helices and do not
lie in a plane in their closed conformation, which induces the lipid bilayer membrane
to curve in between the arms (3). We refer to the Piezo ion channel protein plus the
curved lipid bilayer contained within the channel’s approximate perimeter as the Piezo
dome, with the lipid membrane connecting smoothly across the Piezo dome boundary.
Piezo channels are thus expected to deform the lipid membrane outside the Piezo
dome (6). We refer to the region of deformed lipid bilayer membrane outside the Piezo
dome as Piezo’s membrane footprint (7). The mechanical properties of the membrane
footprint may have interesting consequences for how Piezo responds to mechanical
stimuli and may serve to amplify Piezo’s sensitivity.
The theoretical study of lipid bilayer–protein interactions has a long and rich his-

tory, suggesting that protein-induced bilayer shape deformations can be captured by
membrane elasticity theory (7–12). Membrane elasticity theory should, therefore, be
able to account quantitatively for the membrane shape deformations induced by the
Piezo dome. In particular, if Piezo proteins are embedded in lipid bilayer vesicles,
membrane elasticity theory should be able to predict the shape of such Piezo vesicles
outside the Piezo dome. The aim of this paper is threefold. First, we provide quantita-
tive comparisons between the predicted and observed shapes of Piezo vesicles. We thus
test the continuum elasticity theory predicting the shape of Piezo’s membrane foot-
print, and develop a general framework for quantifying how proteins deform bilayer
membranes. Second, we employ our experimental measurements and theoretical pre-
dictions of Piezo vesicle shape to explore the coupling between Piezo and membrane
shape. In particular, we investigate to what extent the geometry of the Piezo dome can
be described by a spherical cap, as proposed previously based on cryoelectron micros-
copy (cryo-EM) and high-speed atomic force microscopy (HS-AFM) experiments
(3, 13). Third, a quantitative understanding of Piezo vesicle shape can be used to pro-
vide insight into the elastic properties of the Piezo dome underlying its mechanosen-
sory function, which we explore in the companion paper (14).
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This study uses mathematical concepts and methods that
might not be familiar to some readers. While the complete der-
ivations for equations are presented in SI Appendix, we still out-
line the mathematical concepts at each step in the text. The
paper is written, we hope, so that the logic can be followed and
appreciated even if mastering some details might require further
study (15–18).

Results

Measuring and Parameterizing Piezo Vesicles. Piezo 1 channels
were reconstituted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phocholine (POPC):1,2-dioleoyl-sn-glycero-3-phospho-L-serine
(DOPS):cholesterol (8:1:1) vesicles, frozen in vitrified ice, and
analyzed using cryo-EM tomography. Due to the intrinsic curva-
ture of Piezo, the channels nearly exclusively reconstitute with
their extracellular surface pointed toward the inside of the vesicle.
For tomographic analysis, we identified Piezo vesicles containing
Piezo near the outer edge of the vesicle, as viewed in projection
in electron microscopy (EM) images (Fig. 1A). Piezo vesicles are
identifiable because the Piezo C-terminal extracellular domain
(CED) (Fig. 1A) is visible adjacent to the membrane on the
inside of the vesicle. Images were then collected while tilting the
specimen stage between +42° and �42° (Fig. 1B). When three-
dimensional (3D) tomographic reconstructions were generated,
Piezo vesicles appeared to contain holes at opposite sides of the
vesicle due to the limited range of tilt angles. Because we initially
selected Piezo vesicles with Piezo near the outer edge of the vesi-
cle as viewed in projection in EM images, we could define a
cross-section of the vesicle that included Piezo and a band of
membrane encircling the vesicle’s long axis. In other words, if we

define Piezo’s location as the Piezo vesicle’s north pole, the tomo-
gram defines a continuous strip of membrane around the Piezo
vesicle that contains both the vesicle north and south poles, the
south pole being that region on the vesicle surface farthest from
Piezo (Fig. 1B). From this reconstruction, we cut out a plane
that contains the long axis of the Piezo vesicle intersecting the
north and south poles. This cutout is called the oriented Piezo
vesicle image. For each Piezo vesicle, the tomographic analysis
used here yields one oriented Piezo vesicle image. To be clear,
the shape of the oriented Piezo vesicle image is generally not
identical to the shape of the Piezo vesicle in projection in the
sample image. The shapes would be the same if the Piezo chan-
nel was exactly on the edge of the Piezo vesicle in the projected
EM image. The tomogram ensures that it is, within a small error,
on the edge in the oriented image.

Piezo is a trimer of identical subunits with threefold rota-
tional symmetry (Fig. 1C). The lipids used in the present study
form spherical vesicles in the absence of Piezo (3). Thus, we
expect that within a short distance away from Piezo, excess free
membrane folds will be minimized, and the threefold symmetry
of the Piezo channel will give rise to “smooth-rotational
symmetry” (i.e., order infinity) in the pure lipid membrane
part of the vesicle. This assertion is corroborated by Piezo
vesicles that appear circular in projection in EM images when
viewed along Piezo’s threefold axis. With this idea in mind, we
generated the complete 3D shapes of Piezo vesicles from the
oriented images as follows (Fig. 2). The midmembrane contour
of oriented Piezo vesicle images was digitized manually and
converted to a continuous, interpolated contour as shown. The
two sides of the interpolated contour, east and west, were
reflected about the long vesicle axis connecting the vesicle north

Fig. 1. Measuring Piezo vesicles. (A) Cryo-EM image of a single Piezo vesicle with the Piezo CED marked with a yellow pointer. (Scale bar, 25 nm.) (B) Sche-
matic of Piezo vesicle data collection and tomographic image reconstruction. (B, Left) Tilt series images are collected on the detector while tilting the sample
relative to the electron beam. (B, Center) A 3D tomogram is reconstructed from the tilt-series images. The gray background and yellow interior correspond
to one plane of the tomographic reconstruction. Part of the reconstructed vesicle is shown in green, and the Piezo CED is colored yellow. The dashed white
curve marks the intersection of the vesicle and a plane that includes the Piezo CED and the opposite “south” pole of the vesicle. (B, Right) The oriented Piezo
vesicle image shows the Piezo vesicle contour cut out from the intersecting plane, with the Piezo CED marked with a yellow pointer. (C) Top-down view
of the Piezo dome. The approximate position of the curved mid-bilayer surface of the Piezo dome is indicated in gray, and its intersection with the Piezo
protein is indicated in cyan. The ribbon model of Piezo1 (PDB ID code 6B3R) is colored yellow.
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and south poles. The sides were averaged to produce a symme-
trized Piezo vesicle profile, which we call the Piezo vesicle pro-
file, and which defines the 3D surface of the Piezo vesicle
through rotation about the central axis connecting the north
and south poles. The border between the Piezo dome and the
vesicle free membrane was defined by equating the surface area
of the membrane region surrounding the vesicle north pole to
the membrane surface area contained within Piezo’s approxi-
mate perimeter, AP , estimated from the channel’s atomic coor-
dinates (Protein Data Bank [PDB] ID code 6B3R). This is the
surface area of the Piezo dome, which includes the membrane-
filled space in between Piezo’s extended arms. To account for
uncertainty—both due to inherent experimental limitations
and due to the approximations used here—in defining the
border separating the threefold symmetric channel and the
smooth-rotationally symmetric free membrane, in the accompa-
nying paper, we consider variations in the Piezo dome area over
the range from 410 to 490 nm2 (14). We call the surface area
of the vesicle membrane outside the Piezo dome border AF , for
“free” membrane area. We specify the size of a vesicle using the
variable Rv , the radius of a hypothetical sphere comprising the
Piezo dome plus the free membrane: AP + AF = 4π R2

v .
Fig. 3 shows the 3D mid-bilayer surface of the free lipid

membrane in an idealized Piezo vesicle (Fig. 3A) and its profile
on a graph with the vesicle south pole at the origin (Fig. 3B).
We denote the arclength along the vesicle profile by s, with
s = 0 at the south pole and s = sb > 0 at the boundary where
the free membrane meets the Piezo dome. In the analysis to fol-
low, the free membrane region of a Piezo vesicle profile is rep-
resented parametrically with the horizontal rðsÞ and vertical
hðsÞ coordinates given as functions of arclength, s, as shown in
Fig. 3B. The coordinate system is thereby oriented so that rðsÞ
corresponds to the radial distance from the long vesicle axis to
a particular point on the vesicle surface and hðsÞ corresponds to
the height above the r axis.

Strategy to Predict Free Membrane Shape. Next, we focus our
attention on predicting the shape of the free membrane: that is,
the part of the vesicle corresponding to 0 ≤ s ≤ sb in Fig. 3B.
You might wonder, if we can simply measure the shape experi-
mentally, why would we want to predict it? The answer has

two parts. First, our aim in this study is ultimately to deduce
forces on Piezo from experimentally measured shapes of
vesicles, which we pursue in the companion paper (14). This is
possible only if we understand why the Piezo vesicles are shaped
the way they are, and prediction from theory is our working
definition of understanding. Second, a membrane elasticity the-
ory has been developed and tested over the past fifty years to
successfully account for the experimentally observed shapes in
pure lipid membrane systems, such as giant unilamellar vesicles
(19, 20). However, in our case, we are studying frozen small
unilamellar vesicles with a protein channel incorporated into

Fig. 2. Quantifying Piezo vesicle profiles. Oriented Piezo vesicle image obtained by cryo-EM tomography (Left). To quantify the Piezo vesicle shape, we man-
ually trace the midmembrane vesicle profile on the oriented Piezo vesicle image (cyan dots). (Scale bar, 26 nm.) (Right, i) We take the line of maximal length
from Piezo’s CED to the interpolated vesicle profile to correspond to the vesicle symmetry axis. Left–right averaging of the interpolated vesicle profile about
the vesicle symmetry axis yields the symmetrized Piezo vesicle profile (red curve). (Right, ii) We determine the Piezo dome boundary (green dots) by integrat-
ing out a vesicle surface area equal to the Piezo dome area, AP ≈ 450 nm2, starting at the intersection of the vesicle symmetry axis and the Piezo dome (the
vesicle north pole). (Right, iii) As inputs for the membrane elasticity theory of Piezo vesicle shape, we extract from the measured (symmetrized) vesicle pro-
files the free vesicle area AF , the in-plane radius of the Piezo dome rb , and the height of the Piezo dome boundary above the vesicle south pole opposite the
Piezo dome hb. For a given Piezo vesicle radius Rv , AF is determined by AF = 4π R2

v � AP , while the values of rb and hb follow directly from the observed posi-
tions of the Piezo dome boundary and of the vesicle south pole, respectively. (See also SI Appendix, Figs. S1 and S2.)

Fig. 3. Membrane elasticity theory of Piezo vesicle shape. (A) 3D illustra-
tion of Piezo vesicles. The curved shape of the midmembrane surface of
the Piezo dome (indicated in gray) deforms the free lipid bilayer membrane
in Piezo vesicles (indicated in blue). (B) Schematic of a Piezo vesicle profile
in the vesicle symmetry plane containing Piezo’s central pore axis. We
denote the arclength along the vesicle profile by s, with s = 0 at the vesicle
south pole opposite the Piezo dome and s = sb > 0 at the boundary (green
dots) between the Piezo dome (gray curve) and the free lipid bilayer mem-
brane outside the Piezo dome (blue curve). We represent the symmetry
axis of the Piezo vesicle by the h axis, the (in-plane) radial coordinate per-
pendicular to the h axis by r, and the angle between the tangent to the ves-
icle profile and the r axis (in the direction of increasing r) by ψ = ψðsÞ. For a
given Piezo vesicle, the free membrane shape minimizing the Helfrich
energy equation, Eq. 1, is determined by the values of three parameters,
which are indicated in blue: the free membrane area AF , the in-plane Piezo
dome radius rb , and the Piezo dome contact angle α = π� ψðsbÞ. We have
the cord length (radius of curvature) RP =

rb
sinα at the Piezo dome boundary.

As illustrated by the triangle relating the differentials ds, dr, and dh, the
shape variables satisfy the geometric relations _r = cosψ and _h = sinψ.
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them. Thus, we need to see how well the theory works in this
circumstance.
Before presenting the mathematical approach to membrane

shape prediction, we describe our basic strategy in words. We
observe Piezo vesicles that contain one part protein and another
part free lipid membrane. We have a theory for the shape
energy of free lipid membranes (21). This theory gives us an
energy equation for the free membrane that lets us put in the
free membrane shape and get out an energy. Note that we do
not have such a theory for the protein. In fact, this is ultimately
what we seek. So, for the free membrane part, how do we
begin? We consider the protein as an object in the vesicle that
exerts specific geometric constraints on the free membrane (i.e.,
boundary conditions), which we determine from experiments.
Then, we focus our attention on the free membrane part of the
vesicle and ask, given the boundary conditions and free mem-
brane area, what free membrane shape is associated with the
lowest energy? The core assumption here is that the lowest-
energy shape will correspond to the observed shape. In princi-
ple, one could try out all possible free membrane shapes that
satisfy the boundary conditions by putting them into the
energy equation and selecting the one that gives the lowest
energy, but there are an infinite number of possible shapes. In
practice, there is a mathematical approach (starting with the
energy equation, the free membrane area, and the boundary
conditions) to derive the lowest-energy shape (15–17). This is
what we mean by predicting the free membrane shape from the
energy equation.

The Energy Equation. The energy equation for the free mem-
brane shape, due to Helfrich, is

GM =
Kb

2
∫dA ðc1 + c2Þ2, [1]

where the constant Kb is the lipid bilayer bending modulus and
c1 and c2 are the principal curvatures of the midmembrane sur-
face, which are functions of position on the surface (21, 22).
The integral is carried out over the entire free membrane vesicle
surface. In words, every point on the free membrane surface is
associated with a curvature number equal to the sum of the
principal curvatures at that point. Eq. 1 says that the elastic
energy to bend the entire free membrane from a plane into its
curved shape, GM , is computed by squaring the curvature num-
ber at each point, adding the values up, and multiplying the
result by a constant, 12Kb: Because the lipids used in the present
study do not produce membranes with discernable spontaneous
curvature, Eq. 1 does not involve a term for “intrinsic” curva-
ture (i.e., its value is zero) (21). Nor does it have a term for the
Gaussian curvature, which is directly proportional to c1 c2,
because, as mandated by the Gauss–Bonnet theorem, the
Gaussian curvature contribution to Eq. 1 can be expressed as a
topological constant and a boundary term along the Piezo
dome perimeter. This boundary term is cancelled by a corre-
sponding boundary term due to the interior of the Piezo dome
for an identical Gaussian curvature elastic modulus of the lipid
bilayer inside and outside the Piezo dome and, thus, it should
not affect the free membrane vesicle shape (22). Also, note that
the Piezo vesicles were formed under conditions that preclude a
pressure gradient across the membrane. Thus, vesicle volume
is unconstrained, and the free membrane is under negligible
tension.
To derive the lowest-energy free membrane shape (that is, to

minimize the energy equation), we follow the path developed
for the study of axisymmetric vesicles (19, 23–25). We begin

by expressing Eq. 1 using variables corresponding to the
arclength parameterization of vesicle profiles (Fig. 3B). In addi-
tion to rðsÞ and hðsÞ, for convenience we introduce a third
variable ψðsÞ, which is the angle between a line tangent to the
vesicle profile and the r axis (Fig. 3B). The variables ψðsÞ, rðsÞ,
and hðsÞ, which we will call the shape variables, are related
to each other through the geometric relations _r = cosψ and
_h = sinψ ; it is understood that ψ , r , and h are functions of the
arclength parameter s, and the dot notation means derivative
with respect to s (Fig. 3B). Eq. 1 then becomes

GM = π Kb ∫
sb

0
ds r _ψ +

sinψ
r

� �2

, [2]

where _ψ and sinψ
r are the principal curvatures, c1 and c2, in the

arclength parameterization. When minimizing Eq. 2, certain
general conditions must be met. First, the geometric relations
_r = cosψ and _h = sinψ must be satisfied at every point on the
free vesicle profile, and second, the total free membrane area
must equal AF , the value of which will be determined from
experiment. These conditions are enforced by introducing
constraints into Eq. 2 through the mathematical method of
Lagrange multipliers, to produce a constrained energy equa-
tion,

eGM = ∫
sb

0
ds πKb r _ψ +

sinψ
r

� �2

+ 2π λa r

"
+ λrðsÞ ð _r � cosψÞ + λhðsÞ ð _h � sinψÞ

#
� λaAF , [3]

which is a function of the Lagrange multipliers λrðsÞ, λhðsÞ,
and λa as well as the shape variables and (or) their derivatives
with respect to s. The coefficients λrðsÞ and λhðsÞ in Eq. 3 asso-
ciated with the geometric constraints depend on s, and λa is a
constant coefficient for the term 2π r , which integrates to give
the free membrane area and must satisfy 2π∫ sb

0 ds r = AF . The
utility of the Lagrange multipliers is this: the values or func-
tional forms of the Lagrange multipliers are selected so that the
constraints are met after Eq. 3 is minimized (16). But notably,
when the constraints are met (i.e., when _r = cosψ , _h = sinψ ,
and 2π∫ sb

0 ds r = AF ), the terms multiplied by the Lagrange
multipliers vanish. This means that minimization of Eq. 3 will
yield what we seek: the minimum of our original energy equa-
tion, Eq. 2 or 1, for a vesicle in which the constraints are
satisfied.

The Hamilton Equations. For what comes next, we rewrite Eq. 3 as

eGM = ∫
sb

0
ds Lðψ , _ψ , r , _r , _hÞ, [4]

where L, called the Lagrangian, stands for the integrand in Eq. 3
and, without loss of generality, we omit the constant �λaAF in
Eq. 3 (17). If the right-hand side of Eq. 4 was an ordinary function,
say f ðx , y,…Þ, at a minimum point its value would not change
when x ! x + δx , y ! y + δy, … , and we would find the values
x = xmin, y = ymin,… associated with the minimum of f ðx , y,…Þ
by solving the derivative equations ∂f ðx, y,…Þ

∂x = 0, ∂f ðx, y,…Þ
∂y = 0,…

for x , y,…. Similarly, the minimum of Eq. 4 occurs when small
changes in the shape variables (i.e., ψ ! ψ + δψ , r ! r + δr , and
h ! h + δh) do not change the energy. By analogy to solving the
derivative equations of an ordinary function, we could find the
minimum energy form of the shape variables in Eq. 4 by solving
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“functional derivative” equations called Euler–Lagrange equations,
∂L
∂ψ � d

ds
∂L
∂ _ψ = 0, ∂L

∂r � d
ds
∂L
∂ _r = 0, and ∂L

∂h � d
ds
∂L
∂ _h
= 0, subject to specific

boundary conditions at s = 0 and s = sb (17). As a mathematically
equivalent alternative to solving the Euler–Lagrange equations
directly, we derive the minimum energy form of the shape varia-
bles by solving the Hamilton equations associated with Eq. 4
(18). The Hamilton equations facilitate the numerical calculation
of the free membrane shape of Piezo vesicles, and have the advan-
tage that the boundary conditions encoding the key physical
properties underlying Piezo vesicle shape can be imposed in a par-
ticularly transparent manner.
As outlined in SI Appendix, section S2, the Hamilton equa-

tions associated with Eq. 4 are derived by switching from _ψ , _r ,
and _h to pψðsÞ ≡ ∂L

∂ _ψ = 2π Kb r _ψ + sinψ
r

� �
, prðsÞ ≡ ∂L

∂_r = λr , and

phðsÞ ≡ ∂L
∂ _h
= λh in the Euler–Lagrange equations through the

Legendre transformation H ≡ pψ _ψ + pr _r + ph _h � L, where H is
known as the Hamiltonian (17, 18). pψ , pr , and ph are called
generalized momenta, in reference to the physical meaning that
these terms carry when describing dynamical systems in which
the independent variable is time instead of arclength (17, 18).
Following this Legendre transformation, rather than having one
Euler–Lagrange equation for each shape variable ψ , r , and h, we
have two first-order differential equations for each: one describing
how the shape variable changes as a function of s and the other
describing how its generalized momentum changes with s. The
Hamilton equations associated with Eq. 4 are

_ψ =
1
r

pψ
2π Kb

� sinψ

� �
, [5]

_r = cosψ , [6]
_h = sinψ , [7]

_pψ =
pψ
r
� ph

� �
cosψ + pr sinψ , [8]

_pr =
pψ
r2

pψ
4π Kb

� sinψ

� �
+ 2π λa , [9]

_ph = 0: [10]

Note that the Lagrange multipliers λrðsÞ and λhðsÞ were elim-
inated in the derivation of the Hamilton equations, but that
the associated geometric constraints on the free membrane are
preserved in Eqs. 6 and 7. The Lagrange multiplier for the free
membrane area, λa , enters the Hamilton equations through
Eq. 9; it is a parameter whose value must be determined from
experiments through measurement of AF . To apply the specific
free membrane area constraint to each vesicle under study, we
add to the system of Eqs. 5–10 a differential equation for the
membrane area up to an arclength s from the south pole, AðsÞ:

_A = 2π r : [11]

To predict the free membrane shapes of Piezo vesicles, we
solve the six Hamilton equations, Eqs. 5–10, and the area
equation, Eq. 11, subject to the boundary conditions at s = 0
and s = sb associated with Piezo vesicles.

Boundary Conditions and Input Parameters. For a Piezo vesi-
cle with the south pole at the origin of the r � h parametric
plot, we have, from geometry, ψðsÞ = 0 and rðsÞ = 0 at s = 0
(Fig. 3B). As shown in SI Appendix, section S3, ψð0Þ = 0 and
rð0Þ = 0 imply that pψð0Þ = 0. Since h does not appear explic-
itly in L, we are free to define hð0Þ = 0. Furthermore, the pro-
jected perimeter radius of the Piezo dome is given by rðsbÞ = rb

(Fig. 3B). We assume that, at s = sb , the free membrane and
Piezo dome surfaces are tangent to each other, because the lipid
membrane connects smoothly across the Piezo dome boundary.
Note that, at s = sb , a cord of length RP = rb

sinα, drawn perpen-
dicular to the membrane so that it connects the long vesicle
axis to the Piezo dome boundary, forms an angle α with the
h axis (Fig. 3B). We call α the contact angle. Therefore, from
geometry, ψðsbÞ = π� α. Note that the values of ψðsbÞ and
rðsbÞ are fixed in a Piezo vesicle by the shape of the Piezo
dome. By contrast, hðsbÞ is not fixed by Piezo because the
length hðsbÞ � hð0Þ can freely vary when GM is minimized [i.e.,
constrained physically by only the fixed values of ψðsbÞ, rðsbÞ,
and the free vesicle area, the vesicle could become shorter or lon-
ger, so its height is determined by the minimization of GM ].
Thus, we have what is called a zero-force or natural boundary
condition on hðsÞ at s = sb (15, 17). As shown in SI Appendix,
section S3, this means that phðsbÞ = 0. However, we already saw
that _phðsÞ = 0, Eq. 10, which is to say that phðsÞ is unchanged
over 0 ≤ s ≤ sb , and therefore phð0Þ = 0.

Another important aspect of the minimization of Eq. 4 is
that the integration domain length (i.e., the arclength sb) is not
fixed (23). Beginning at the south pole, the free membrane pro-
file could take a circuitous path in getting to the edge of the
Piezo dome as long as the boundary conditions already men-
tioned are satisfied and the free membrane area equals AF . As
shown in SI Appendix, section S3, the variable integration
domain length, together with the fact that s does not appear
explicitly in L, leads to prð0Þ = 0. For the membrane area, we
have Að0Þ = 0 and AðsbÞ = AF . Thus, in total, at s = 0 we have
the seven “initial” conditions

ψð0Þ = 0, rð0Þ = 0, hð0Þ = 0, pψð0Þ = 0,

prð0Þ = 0, phð0Þ = 0, Að0Þ = 0, [12]

with which to solve the six Hamilton equations, Eqs. 5–10,
and the area equation, Eq. 11. However, these equations are
associated with three parameters that are a priori unknown. We
already saw that λa , the Lagrange multiplier on the free mem-
brane area, and sb , the upper limit of the integration domain,
must be determined as part of the minimization of GM . In
addition, the vesicle profile curvature at the south pole, _ψ ð0Þ,
must be entered to solve Eqs. 5–11. To see this, note that the
right-hand side of Eq. 5 evaluates to _ψ ð0Þ as s ! 0, and thus,
_ψ ð0Þ must be specified to make Eq. 5 meaningful at s = 0.
While _ψ ð0Þ could in principle be estimated from the observed
vesicle profiles, it is difficult to measure curvature accurately.
For this reason, we set _ψ ð0Þ ≡ u0 (24) with the value of u0,
along with the values of λa and sb , to be determined from
experimental constraints on the shape of each measured Piezo
vesicle.

To solve the six Hamilton equations and the area equation,
Eqs. 5–11, associated with the three unknown parameters λa ,
sb , and u0, we supplement the seven initial conditions in Eq.
12 with three endpoint boundary conditions measured from
the Piezo vesicle profiles. As seen above, AðsbÞ must equal the
measured free membrane area AF , rðsbÞ must equal the mea-
sured in-plane Piezo dome radius rb , and ψðsbÞ must equal π
minus the Piezo dome contact angle α. In practice, because
obtaining the value of α involves taking the ratio of derivatives
of the observed vesicle profile, we cannot measure α as accu-
rately as a position on the vesicle profile. Thus, we use the mea-
sured position of hðsbÞ = hb in place of ψðsbÞ = π� α when
predicting the free vesicle shapes. Using an experimental value
for hðsbÞ in this way does not violate the zero-force boundary
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condition on hðsÞ at s = sb , which led to the initial condition
phð0Þ = 0 in Eq. 12. Employing a so-called shooting method
(SI Appendix, section S4), we repeatedly solve Eqs. 5–11 subject
to Eq. 12 to numerically adjust the values of λa , sb , and u0 so
as to satisfy the experimental constraints

hðsbÞ = hb , rðsbÞ = rb , AðsbÞ = AF [13]

for each measured Piezo vesicle. Thus, for each Piezo vesicle,
we use the measured values of the three experimental input
parameters hb (in place of α), rb , and AF to predict the free
membrane shape through minimization of the Helfrich energy
equation, without any free parameters.

Free Membrane Shapes. Tomograms were collected on seven
Piezo vesicles ranging in radius, Rv , from 12.1 to 36.2 nm. The
vesicle profiles are shown in red (Fig. 4). The dome boundary,
in green, marks the point where the Piezo dome meets the free
membrane as defined by a Piezo dome area AP = 450 nm2.
The coordinates of the dome boundary, rb and hb , together
with the free membrane area, AF , were used to solve the Ham-
ilton equations and the area equation, Eqs. 5–11, subject to the
initial conditions in Eq. 12 with the constraints in Eq. 13. The
calculated free membrane profiles, obtained with no free
parameters, are shown in blue. The calculated profiles conform
to the measured shapes of the Piezo vesicles, and thus, the

Helfrich energy equation appears to successfully predict the free
membrane shape.

There are several shortcomings of the approach used here
that may limit the agreement between experimental and theo-
retical results. In particular, the predicted free vesicle shapes
depend crucially on the measured values of hb , rb , and AF ,
which experiments can only yield approximately. Furthermore,
the tomograms of Piezo vesicles do not produce a continuous
vesicle surface around the long vesicle axis. As a result, we
expect the measured, oriented Piezo vesicle images to be tilted
slightly out of the planes defined by the vesicle cross-sections
and hence, to correspond only approximately to the predicted
vesicle cross-sections. Moreover, the location of the Piezo dome
boundary can only be defined approximately in experiments,
and the threefold symmetry of the Piezo protein is expected to
induce (slight) variations in the Piezo dome boundary condi-
tions around the long vesicle axis. In contrast, our theoretical
description of Piezo vesicles assumes perfect, smooth rotational
symmetry of the free membrane shape. Considering these limi-
tations, as well as the inevitable errors incurred when defining
the mid-bilayer surface in the oriented Piezo vesicle images, the
agreement between the predicted and measured free vesicle
shapes in Fig. 4 appears to be remarkably good.

Up to this point, we have described the mathematical
approach taken as one to find the minimum energy shape of the
free membrane subject to geometric constraints arising from the

Fig. 4. Quantitative prediction of Piezo vesicle shape. Symmetrized (measured) Piezo vesicle profiles (red curves) and predicted free membrane profiles
(blue curves) for Piezo vesicles with radii (1) Rv ≈ 12:1 nm, (2) Rv ≈ 13:7 nm, (3) Rv ≈ 24:7 nm, (4) Rv ≈ 25:1 nm, (5) Rv ≈ 27:6 nm, (6), Rv ≈ 35:0 nm, and (7)
Rv ≈ 36:2 nm. The approximate rmsds of the measured and predicted vesicle profiles are given by (1) 0.29, (2) 0.35, (3) 0.28, (4) 0.49, (5) 0.24, (6) 0.25, and (7)
0.44 nm. To calculate the blue curves we used, as inputs for the membrane elasticity theory of Piezo vesicle shape, the values of AF , rb , and hb measured for
each vesicle. The calculated free membrane profiles were obtained from the Helfrich energy equation, Eq. 1, without any free parameters. The oriented
Piezo vesicle image in Fig. 2, Left corresponds to vesicle 3. (Scale bars, 5 nm.)
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Piezo dome shape and the vesicle size. In fact, the approach
potentially identifies any shape that renders the free membrane
energy unchanged under small perturbations of the shape varia-
bles (15, 17). This could include a local instead of a global mini-
mum of the Helfrich energy equation, a maximum, or any other
stationary point. However, because our mathematical solutions
match the experimentally observed shapes of Piezo vesicles that
self-assembled under equilibrium conditions, it seems likely that
the predicted free vesicle shapes indeed correspond to the global
energy minimum of the free membrane shape.
Much consideration has been given to the concept that certain

membrane proteins might distort the shape of their surrounding
lipid bilayer membrane, creating a membrane footprint (6–12).
Based on the membrane elasticity theory of bilayer–protein inter-
actions, it has been proposed that the membrane footprint of
proteins may affect membrane protein function, assist with
membrane remodeling, yield bilayer-mediated protein interac-
tions, and induce protein cooperativity. But it has been challeng-
ing to measure quantitatively and predict how proteins deform
bilayer membranes, and hence to directly compare predicted and
observed membrane footprints. The free membrane shapes of
Piezo vesicles described here represent a direct measure of a pro-
tein’s membrane footprint, in the context of lipid bilayer vesicles,
and show that membrane elasticity theory can be used to predict
Piezo’s membrane footprint, thus linking membrane and protein
shape.

Piezo Dome Shapes. We next turn our attention to the parts of
Piezo vesicles that contain Piezo. The Piezo dome in profile,
shown in red between the green dome boundary marks (Figs. 4
and 5A), has a somewhat irregular shape. This is not surprising
since the Piezo dome contains the Piezo protein that is viewed
perpendicular to its randomly oriented threefold axis. Shape
irregularities notwithstanding, systematic differences in the
Piezo dome shape as a function of vesicle radius, Rv , are evi-
dent: in smaller vesicles, the Piezo dome is more curved, and in
larger vesicles, it is flatter.
Is there a simple way to understand the observed Piezo dome

shapes? We adapted the theory developed above for the free
membrane outside the Piezo dome to the interior of the Piezo
dome. The objective here is to determine whether the same
physical principle governing the free membrane shape outside
the Piezo dome—namely, minimization of the Helfrich energy
equation—can also be used to describe the Piezo dome shape.
Specifically, we minimized Eq. 1 through the solution of Eqs.
5–11 with the initial conditions in Eq. 12 but now employing,
as input parameter values, AðsbÞ = AP and the values of α
and rb associated with the predicted free membrane shapes in
Fig. 4. Note that s = 0 corresponds here to the vesicle north
pole rather than the vesicle south pole. The resulting Piezo
dome shapes, shown in blue, are seen to approximate the
observed Piezo dome shapes (Fig. 5A). Curiously, these calcula-
tions suggest that the interior of the Piezo dome behaves some-
what like a flexible membrane, even though the Piezo dome
contains the Piezo protein.
We also want to point out that the overall shape of the Piezo

dome is not very far from a spherical cap (Fig. 5A). The shape
of a spherical cap is conveniently specified through the cap radius
of curvature RP and the cap area Acap (26). From the geometry of
spherical caps, we see that RP and Acap can be used to define the
Piezo dome properties affecting membrane shape deformations

through α = cos�1 1� Acap

2π R2
P

� �
and rb =

Acap

π 1� Acap

4π R2
P

� �h i1=2
(Fig. 5B). Previous cryo-EM and HS-AFM experiments suggest

setting Acap = AP in these equations, so that the shape of the Piezo
dome is approximated by a spherical cap with fixed area AP and
variable radius of curvature RP (3, 13). When we thus graph α
and rb as a function of RP for the seven vesicles in Fig. 4, we find
that α and rb indeed vary as if the Piezo dome approximates a
spherical cap of fixed area (Fig. 5 C and D), suggesting that the
features of the Piezo dome affecting Piezo’s membrane footprint
can, approximately, be captured by a single parameter, the Piezo
dome radius of curvature RP . We use this result in our companion
paper to study the mechanical response of the Piezo dome to the
forces exerted by the surrounding lipid bilayer membrane (14).

Discussion

We have shown here that the Helfrich energy equation accu-
rately predicts the observed shapes of the free membrane in Piezo
vesicles over a range of vesicle sizes, without any free parameters.
While it is not possible to directly measure Piezo’s membrane
footprint in infinite, asymptotically planar membranes, our

Fig. 5. Coupling between Piezo and membrane shape. (A) Symmetrized
(measured) Piezo dome profiles in Fig. 4 (red curves), Piezo dome shapes min-
imizing the Helfrich energy equation, Eq. 1, subject to AðsbÞ = AP = 450 nm2

and the values of α and rb associated with the predicted free membrane
shapes in Fig. 4 (blue curves), and Piezo dome profiles corresponding to a
spherical cap with area Acap = AP and the in-plane Piezo dome radius rb associ-
ated with the predicted free membrane shapes in Fig. 4 (gray curves). As in
Fig. 4, the Piezo dome profiles correspond to Piezo vesicles with radii (A, 1)
Rv ≈ 12:1 nm, (A, 2) Rv ≈ 13:7 nm, (A, 3) Rv ≈ 24:7 nm, (A, 4) Rv ≈ 25:1 nm, (A, 5)
Rv ≈ 27:6 nm, (A, 6) Rv ≈ 35:0 nm, and (A, 7) Rv ≈ 36:2 nm. (Scale bars, 5 nm.)
(B) Schematic of the spherical cap model of the Piezo dome. The in-plane cap
radius rb and the cap angle α or, alternatively, the cap radius of curvature RP

and the cap area Acap completely define the geometric properties of the
spherical cap. (C) Piezo dome contact angle α and (D) in-plane Piezo dome
radius rb vs. radius of curvature RP for the predicted free membrane shapes
of the Piezo vesicles in Fig. 4 (points) and for a spherical dome (cap) with fixed
area Acap = AP (solid curves). For the Piezo vesicles, the values of α and rb asso-
ciated with the predicted free membrane shapes in Fig. 4 determine, as illus-
trated in Fig. 3B, the radius of curvature at the Piezo dome boundary through
RP =

rb
sinα. For the spherical dome, the calculated curves follow from the geo-

metric relations α = cos�1 1� Acap
2π R2P

� �
and rb =

Acap
π 1� Acap

4π R2P

� �h i1=2
associated

with spherical caps (26).
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results suggest that membrane elasticity theory accurately cap-
tures protein-induced lipid bilayer shape deformations from a
length scale corresponding to molecular sizes to at least a length
scale ∼100 nm.
Continuum elasticity theory implies that the free membrane

shape of a particular Piezo vesicle follows from the values of
three input parameters, which can all be estimated directly
from experiments. In particular, we found here that the values
of the free membrane area AF , the projected radius of the Piezo
dome rb , and the height of the Piezo dome boundary above the
opposite vesicle pole hb can be used to predict successfully the
free vesicle shape. Other choices for the experimental input
parameters could be used and give similar results.
Furthermore, we have shown here how Piezo changes its

shape as a function of vesicle size, with the Piezo dome
becoming less curved as the vesicle size is increased (13). We
find that both the geometric properties of the Piezo dome at
its boundary and the shape of the Piezo dome conform
approximately to a spherical cap with fixed area. Minimization
of the membrane bending energy within the Piezo dome
boundary also yields shapes close to the measured Piezo dome
shapes. This seems surprising, given that the Piezo dome is
not a uniform elastic membrane but contains the Piezo pro-
tein, and raises the fascinating prospect that the Piezo protein
may be similarly flexible as the surrounding lipid bilayer
membrane.
Instead of following the theoretical approach employed here,

we could have substituted the observed shapes of the (smoothed)
free vesicle membrane into the Helfrich energy equation and
hence, deduced the membrane deformation energy associated
with the observed free vesicle shapes. While this procedure
would yield similar results for the membrane deformation
energy, such an approach would be unable to predict the free
membrane shape. Importantly, the agreement between the pre-
dicted and measured free membrane shapes suggests that the
measured shapes correspond to minima of the Helfrich energy
equation. With such a physical understanding of Piezo vesicle
shape in hand, we can then ask: what would be the free mem-
brane shape if the Piezo dome geometry was perturbed, and
what would be the corresponding energy of the free membrane?
As we show in the companion paper, the answer to this question
allows calculation of the forces exerted by the Piezo dome on the
surrounding lipid membrane and, conversely, on the Piezo dome
by the surrounding lipid membrane (14). From such a quantita-
tive understanding of bilayer–protein interactions one can then
deduce, based on the observed vesicle shapes, elastic properties of
the Piezo dome underlying its mechanosensory function.
The simple version of the Helfrich energy equation employed

here only involves a single term—the membrane bending
energy—and only a single physical parameter—the bilayer bend-
ing rigidity, Kb—that can be measured directly in experiments.
The predicted free vesicle shapes are independent of the value
of Kb , and follow directly from minimization of the square of
the sum of the two principal membrane curvatures across the
free vesicle surface. The agreement between the predicted and
measured free vesicle profiles suggests that, within experimental
uncertainty, it is not necessary to account for effects other than
those captured by minimization of the membrane bending
energy, such as thermal fluctuations, bilayer coupling, or lipid
tilt, to account for the observed Piezo vesicle shapes. Inclusion of
such additional effects could further improve the agreement
between observed and predicted vesicle shapes. Our results also
suggest that the rapid freezing of Piezo vesicles for cryo-EM does
not induce substantial perturbations of the free membrane shape.

The agreement between predicted and measured free membrane
shapes may thus be taken as an indication that cryo-EM can be
used not only to accurately measure protein structures, but also
to quantify the 3D shapes of lipid bilayers deformed by mem-
brane proteins.

Materials and Methods

Proteoliposome Sample Preparation. Full-length mouse Piezo1 protein was
expressed using the BacMam method as previously described (3). mPiezo1 was
purified with a 6xHis tag at the C-terminus by cobalt affinity chromatography
and size exclusion chromatography. Proteoliposomes (Piezo vesicles) with the
lipid composition POPC:DOPS:cholesterol at a ratio of 8:1:1 (wt:wt:wt) were
prepared as previously described (13). To enrich the proteoliposomes for cryoe-
lectron tomography, the liposome sample was subjected to cobalt affinity chro-
matography following reconstitution.

Freshly prepared proteoliposome samples were supplemented with 3 mM
fluorinated fos-choline-8 (FFC-8) immediately before freezing. C-flat 200 mesh
gold R1.2/1.3 holey carbon grids were glow-discharged prior to use. A first drop
of 3.5 μL of proteoliposome sample was applied to the grid, incubated for 15 to
60 s, and then manually removed using a filter paper. Then, a second drop of
3.5 μL of proteoliposome sample was added, incubated for 15 s, and then blot-
ted once for 1 s with �1 force and plunged into liquid ethane using a Vitrobot
Mark IV (FEI Company, Hillsboro, Oregon) operated at 22 °C and 100% humid-
ity. The grids were then stored in liquid nitrogen until imaging.

Tilt-Series Data Collection. Tilt series were collected using a Titan Krios
(Thermo Fisher) with a Gatan Bioquantum energy filter (Gatan) and a direct
detector Gatan K3 (Gatan) at 300 keV. Data were collected symmetrically with a
tilt range of �42° to 42° in 3° increments using SerialEM with 400-ms frames
for each tilt image at a nominal defocus of 4 μm. The total dose per tilt series
collected was 103 e�/Å2, with dose rates of approximately 20 e�/pixel per sec-
ond at a pixel size of 2.6 Å. Full-frame alignment was performed using Motion-
Cor2 (27).

Tilt-Series Alignment. Tilt series were aligned using Appion-Protomo (28–30).
Tilt series were coarsely aligned, manually aligned, and then refined using a set
of alignment thicknesses. The best-aligned iteration was reconstructed for visual
analysis using Tomo3D simultaneous iterative reconstruction technique (SIRT)
(31, 32) after dose compensation using a previously described method (33).
Contrast transfer function (CTF) correction was not performed.

Tomogram Image Processing. The reconstructed tomograms were visualized
and analyzed in the 3DMOD. The coordinate of the Piezo1 C-terminal extracellu-
lar domain (CED) in every liposome was determined by fitting the PDB model of
mPiezo1 (PDB ID code 6B3R). The distance between the CED and the outer
membrane leaflet of the liposome was measured in the 3D reconstruction. The
region of membrane associated with the longest distance away from the CED is
defined as the Piezo vesicle south pole. The maximum projection plane (oriented
Piezo vesicle image) was determined by drawing a plane intersecting the CED
and the south pole.

The slice images of vesicles corresponding to the maximum projection plane
were processed using an in-house script on the MATLAB R2021a platform (34)
to annotate the mid-bilayer surface of the entire vesicle. Circles of diameter of
5.7 nm, the average distance between phospholipid head-group layers of our
sample from previous measurements (13), were placed by visual inspection
along the vesicle membrane defined by the head-group layers. The (x, y) coordi-
nates of the centers of these circles defined the midmembrane contour of the
vesicle within the maximum projection plane. A file of (x, y) coordinates was
used to generate a vesicle profile using the Interpolation command (with Inter-
polationOrder! 3) in Mathematica (35).

Prediction of Piezo Vesicle Shape. To predict the free membrane shapes of
Piezo vesicles in Fig. 4, we numerically solved Eqs. 5–11 subject to Eqs. 12 and 13
using Mathematica (35). We proceeded similarly in Fig. 5A to calculate the Piezo
dome shapes through minimization of Eq. 1. A detailed description of mathematical
derivations and methods can be found in SI Appendix, sections S2–S4.
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Data, Materials, and Software Availability. The tomograms of Piezo
vesicles are deposited in the EMDataBank (accession codes EMD-27569 (36) [vesicle
1], EMD-27571 (37) [vesicles 2 and 4], EMD-27568 (38) [vesicle 3], EMD-27567
(39) [vesicles 5 and 6], and EMD-27570 (40) [vesicle 7]). All other data are included
in the manuscript and/or supporting information.
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