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This study analyzes the description to examine the results of a new study and create the technique and also demonstrate the
effectiveness of this technique. In this ever-changing world, students are increasingly encouraged to use mobile phones primarily
to learn for educational purposes. The learning process is continuous and the goal has now been achieved. It has been replaced by
online learning. Due to mobile phones as well as the many feature-oriented applications, students can study at their own place and
use the application to spend their time understanding, because everything is accessible with a single click. To carry on the study we
applied mobile applications for online education system. Now, because the traditional method is taken into consideration, it is
normal to carry a bag full of books and copies and immerse yourself in the tradition of learning to write. However, it has been
found that not all students learn when he takes notes. Therefore, we must make sure that the student focuses only on one thing ata
time. To continue the research, we apply the N-cubic structure to q-rung orthopair fuzzy sets in multi-attribute group decision-

making problems. This structure solves the problems of multi-attribute group decision-making techniques more generally.

1. Introduction

Decision-making is an empathic process that allows the
selection of alternatives from a set of possible attributes. In
decision-making problems the data were ambiguous and
uncertain and the representation of data is no longer in real
number. For this purpose many researchers developed
different theories to handle such type of data. Among these
researchers, Zadeh [1] developed the theme of fuzzy set
(FS) theory that could determine uncertainty and vague-
ness in classic sets which are based on only two values logic
0 and 1. In 1975, Zadeh [2-4] further expanded his ideas to
interval-valued fuzzy sets (IVFS). Atanassov [5, 6] later

came up with the idea that using intuitionistic fuzzy sets
(IFS) to assist with the significance of the membership
value as well as the nonmembership value. Wang et al. [7]
defined some interval-valued intuitionistic fuzzy aggre-
gation operators with basic operations and properties.
Intuitionistic fuzzy set was generalized to the Pythagorean
fuzzy set (PFS) [8] which described the value of mem-
bership and nonmembership with the condition that the
square sum is less or equal to 1. PFS was generalized to
q-rung orthopair fuzzy set [9]. In 2018 Ali [10] defined a
new type of q-rung orthopair fuzzy sets where the domain
of the function defining a q-ROF set is the region made up
of orbits. To deal with the decision information, Liu and
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Wang [11] proposed the g-rung orthopair fuzzy weighted
averaging operator and the q-rung orthopair fuzzy
weighted geometric operator. Wei et al. [12] presented
q-rung orthopair fuzzy Maclaurin symmetric mean oper-
ators and their applications to potential evaluation of
emerging technology commercialization. Many researchers
[13, 14] used the different versions of q-rung orthopair
fuzzy sets in different field such as q-rung orthopair fuzzy
soft sets, q-rung orthopair fuzzy hypersoft sets, and their
operators. In 2012, Jun et al. [15] combined FS and IVES
and developed the theme of cubic set. In decision-making
theory aggregation operators is an important component.
The conflicting criteria are included in the multi-attribute
decision-making (MADM) task, and the conflicting criteria
are aggregated to solve the problem [13, 16]. Most ag-
gregation operators treat criteria on an individual basis;
they do not take into account how criteria interact with
each other or with common criteria. Kaur and Garg [17, 18]
developed cubic intuitionistic fuzzy aggregation operators,
which includes two components at the same time. One
component provides the degree of membership in the form
of an interval value for cubic intuitionistic fuzzy numbers
(CIFNs), as well as the second component, gives the degree
of nonmembership in the form of fuzzy values. Abbas et al.
[19] have described a modified version in CIFS that is
known informally as cubic Pythagorean fuzzy sets (CPES).
Zang et al. [20] generalized CPFS into cubic g-rung
orthopair fuzzy sets (CqROFSs). This allows decision-
makers to explain their ideas better in the context of a fuzzy
environment. In 2009, Jun et al. [21] defined negative-
valued functions as well as the N-structure. This paper is on
BCK/BCI algebra as well as subtraction algebra. Rashid
et al. [22] used the concept of the N-structure and de-
veloped the theme of N-cubic sets, aggregate operators, and
other concepts related to it. In 2020, Petrovic and Kankaras
[23] developed a hybridized IT2FS-DEMATEL-AHP-
TOPSIS multicriteria decision-making approach for the
selection and evaluation of criteria for determination of air
traffic control radar position. Agarwal et al. [24] discussed
the development of management tools and techniques in
decision-making for policy makers which are based on
scientific evidence. Ali et al. [25] developed Einstein
geometric aggregation operators using complex interval-
valued pythagorean fuzzy set with application in green
supplier chain management. We are currently employing
the N-structure concept for q-ROFSs. The Cq-ROFS is a
database that describes IVqROFS and q-ROFS in a way that
is related to uncertainty in the information. In order to
demonstrate how this structure might be used in decision-
making, we shall examine issues relating to the N-structure
of cubic q-rung orthopair fuzzy sets in this article. Al-
though this study can manage decision-making more ef-
ficiently than fuzzy sets, using it manually is not simple.
Therefore, we must create computer programming in order
to overcome these constraints. By merging the N-structure
with cubic q-ROF sets, this structure more specifically
overcame the uncertainty issues. N-cubic q-rung orthopair
tuzzy sets can effectively capture expert evaluation data and
minimize fuzziness in decision-making outcomes.
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2. Materials and Methods

In this section we recall some basic materials and methods.

Deﬁnitioril (see [6]). Let G#@ be universal set, then
q-ROFS H be defined as

i ={(50;®0; @G . )

where U~ (f) and O~ (f) are a mapping from Gto [0, 1], also
. H .. H
satisfy the condition as

0<U-<1,0s0-<1, 2)
and
.\ \4
0£<Uﬁ(g)> sl,Os(Qﬁ(g)) <1, (3)

where q > 1 for all §€G and represent the membership degree
and the nonmembership degree to set H.

Definition 2 (see [6]). Let G+ @ be universal set, then
(IVqQ-ROEFS) H be defined as

i -{(2U;®.05@Ig<C ) . 4)
where U~ (g) and Q- (g) are a mapping from G to [0, 1],
0@ -[07"@.0;° @), (5)

and
0;® =03 ®@.9;" @ . (6)

also satisfy the condition as

OsUﬁsl,OsQﬁsl, (7)

and
Os(UﬁU(§)>qs1,0S(QEU(§))qsl, (8)

where q > 1 for all g€G and represent the membership degree
and the nonmembership degree to set H.

Definition 3 (see [10]). Let X be the collection of some el-
ements. A cubic-q-rung orthopair fuzzy set is represented as
C={x,H®x),9(x)|x € X)}, where H(x) is an Interval-
valued-q-rung orthopair fuzzy set and 9(x) is a q-rung
orthopair fuzzy set. Here H(x) = {[OY, UY][QY, QY]} such
that 0< (OY)1+ (QY)<1and 9(x) = (U, Q) with 0< V9 +
09<1 where q > 1. It can be described as C= (H, 9), where
H = {[0%, 0V][QY QY]} and 9(x) = (U, Q) and it is known
as the cubic-q-rung orthopair fuzzy set number.

3. N-Cubic g-Rung Orthopair Fuzzy Set and
Hamy Mean Operators

This part develops the Nq-ROFS and NIVq-ROFS structures
and introduces the innovative NCq-ROFS structure. The



Computational Intelligence and Neuroscience

NCq-ROFS’s accuracy and score functions are defined. Both
N-cubic q-rung orthopair fuzzy Hamy mean operator and
N-cubic g-rung orthopair fuzzy power Hamy mean oper-
ator, as well as their characteristics and weighted forms, are
covered in this section.

Definition 4. Let X be the collection of some elements. A
Nq-ROFS define asN?®RO = {(x, Fyaro (x), Hyaro (X)):

x € X} such that —1< (=1)* ! ((Fyoro)™ + (Hyowo)*) <0,
where Fraro (x): X — [-1,0] and Hyero (x):
X — [-1,0].

Definition 5. A NIVq-ROEFS in a ¢ # X is define as

X, UNI\ -QRO (X) [UNI\ QRO, NIV QRO]
NIV-QRO _ < > (9)
QNIV QRO (X) [QNW QRO N]V QRO

with the condition
-1< (—1)2q+1<(UgCQRO)2q +(QIL\§CQRO)2q> <0, (10)

where [U;IV_QRO,UEW,QRO]: X — [-1,0] and [QIL\IW,QRO,
Q}\]JIWQRO]: X — [-1,0].

Definition 6. An NCq-ROFS in a ¢#X is define by the
structure NORO = [{x, T\ caro (X), Fycaro (X)): x € X}, where
rNCQRO = {<X, 6 NCQRO (X), QNCQRO (X)>: X € X} is an
N—IVQROFS and Fncaro = {(X, FNCQRO (X), HNCQRO (X)):
xeX} is an N-QROFS. Tyearo = { [Ukcanos
OFcaro > [Qficaro» Qcaro]}: X — D[-1,0] with the condi-

Here

condition—1 < (—1)2q+1 ( (FNCQRO)Zq + (HNCQRO )251) <0. For
simplicity it is denoted by N“RO = (T caro, Fycaro ).

Definition 7. An NCq-ROF set N°®O = (T caro, Fycaro ) in
¢#X is called internal NCq-ROF set if Fycaro €
[Ujcaro> Ojearo] - and - Hyearo € [Qfcaro» Qjearo] for all
x € X, otherwise we called it an external NCq-ROF set.

Definition 8. The score functions under R-order of NCq-
ROFNs

NiCQRO = {( [U;fqm s Ug‘CQRO ] > I:QI]:IFQRU s QIL\IJ‘CQKO ] ), (FNFQRD, HNlCQRO )},

o . < 11
tion that-1< (- l)qur1 ( (UECQRO )Zq + (Qgcqno)zq) <0 and (an
Fnecaro = {FNCQRO, HNCQRO}: X — [-1,0] with the is define as

29 29
Sesl ( 1+ (UII:]QQRO ) - (Q;QQRO ) >+
1(-1)""" |1 ‘ ‘ 4 4
S(NiCQRO) I — +(F2C%?QRO - HIZ\IqCQRO> > (12)
2 |4 LoNE [y A N i
( 1+ (UN_CQRO ) - (.QN_CQRO ) )
now for P-order, we get
2 24
( 1+ <UI]:I_CQR0 ) - (QII:ICQRO ) +
1(-1)%*" |1 ‘ ‘ ; »
S(NICQRO) f Z +<F12\ECQR0 - Hiﬁ;()n@) > (13)

24 24
( 1+ (UEQQRO ) - (QEQQRO ) >

and accuracy function is defined as



H(NO) -

1
2 2

with the condition that

FEO) <1,0 < H(NFR) <1,

1 1

—1§S(N (15)

Definition 9. The comparison rule for two NCq-ROFNs

Ny®O = {( [U;lmm, Oearo ] [Q;fqm, Qyearo ] ) (FNfQRo, Hycaro ) }

(16)
and
NSQRO = {( I:UII:T;:QRO N Ug;:mzo ] N I:QII:I;:QRO N Qg;:mm ] ), (FN;:QR() N HN;:QRQ ) } N
(17)

1
g 4
S(NCAR0) 1(-1)°!
! 2
1
1(_1)2(1+1 4
CQRO
S(Nl ) = 2
1
4
1(_1)2(3)+1
CQROY _
S(NTH) = -

29 29
< <UI]:ICQRO ) + (USCQRO > )+
2q+1 i i
1(-1)

24 24
( <QII:IiCQRO ) + (QEQQRO > )

2q 29

( 1+ <U§EQR0 ) - (Q]I:IiCQRo ) )+
29 29

( 1+ <Ugicoko ) - <QgiCQRO ) )

(1+(=7 = (=.2)+]]
(1+ (-2 - (-.)%)

L {0 (-99)

(1+ (=77 = =2+ 7]
(1+=2"9 - =1?) [

H{ (-3)*Y - (=5°?)
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2q 24
+(Flo + Hiawo ) | (14)

are defined as

(1) If S(NS®O) > g (NS®O), then NEWROLNS®RO_ (2) If
S(NTUO) = S(NFUO) (a)H(NY®O)>H (NF?),  then
NTHO-NTHEO (b)H (NTO) = H(NFH), then
NERO L NS®ROwhere 17 ~ 1 represent the “equivalent to.

Example 1. Assuming that NlCQRO ={([-.7,-.2],
[-.2,-1]), (-.3,-.5)} andNS®C = {([-.5,—.4], [-.4,-.3]),
(-.2,-.7)} are two NCq-ROFN:s, the score function under
R-order r are defined as

29 2q
A{Fao ko )
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(1+(=7)°=(=2°)+]]

7
s(vir) =G L)

{(=3)°-(=5°) ]
» % [(1.117585) + (1.000063)]
S(NT¥O) = - ’

+((0.000729) — (0.15625))

1
1| 7 [2117648]
CQRO\ _ —

S(Nj )—7 ,

| +(~.155521)

-1
S(NICQRO) = — [0.529412 - .155521],
2

-1
CQRO
S(NTH?) = —- (03744202},

S(NTC) = —.1872101. (18)
For

L 2q L 2q
1+ <UNCQRO ) - (QN_CQRO > +
1
1 (_1)2q+1 4

(1 #(08) " (0)) ]}
2 + NiCQRO - NiCQRO

"(FZN?CQRO - HIZ\ECQRO ) ( 19)

S(NFHO).8(NFH) =

(1+(=.5 = (=.9)+]]

2q+1 | 4
S(NZCQRO):il(_l)q 4 (1+(-.9% - (-.3)%)

H(=2M-(=7)M)

where g =3, then we get
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(1+(=.5%Y = (=.9D)+]]
1

1(_1)2(3)+1 4
= f

§(NG2R0) (1+ (-2 - (-.370)

L {22 - (=7

1 (1+(=5°=(-4°)+]]

1y |4
s(vg2r) < LCU ] (1 (- -30%) ||

H{ (=2~ (=7)°)

i [(1.011529) + (1.003367)]
s(N0) == , (20)

[ +((0.000064) — (0.117649))

1
4 [2:014896]
-1
CQRO\ _
S(N;¥0) =— ;

[ +(-0/117585)
-1

S(NF¥) = —1[0.503724 - 0117585],
2
-1

S(NS®0) = - [0.386139],

S(NFH) = -193069.

Now, Definition 10. Considering the collection of NCq-ROFS to
~.1872101> — 1930696 be Ny(A=1.2,...0),j20, k=0, if
§(NEUO ) 5(NG2HO) (1)
CQRO,_7;CQRO
N, >N,
1/j+k
ik 2 v N N (22)
NCq - ROFHM" (N}, N,,...,N,) = N .
q (N, N, n) n(n+1);; AYs
It is then referred to as an NCq-ROFHM operator. Theorem 1. Assuming that j>0, k>0 and j+k=0,N) =

(I'vp» Fny) (A = 1,2,...n) are a set of NCq-ROFNS, the results
of solving equation (22) are also NCq-ROFSs.
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NCq - ROFHM (A, Ay, ... A,) =

(Idempotency) ~ Consider N) = N(Ay,By)(A =12,

..n) be a collection of NCq-ROFNS, if alIN, are identical,

that s N,\ =N = (Ay, BN ) for all A, then NCg-
ROFHM* (Nl, 2 Np) =N

Proof As, Ny = N, VA we have
NCq - ROFHM** (N}, N,,..,N,)

N 1tk e (24)
<n(n+1);;N > =(NHYTT o N
(Monotonicity):Let «;, 83 (A = 1,2, ..n) represent the two
NCq-ROFN families, if a) <f5jVA = 1,2,...,n then
NCq - ROFHM™ (a}, a, . . ., ;) 05)
<NCq - ROFHM™ (8,, ,, . .. B.)-

Proof. Since, ay;<f, and a,<f, for A=1,2,.n and

s=1i+1,...,n, we have
oo < B B:. (26)
then
5 27
n(n+1))tzlsz/‘{ (n+1)/\zlsz_)‘l/3’\ﬁ (27)
S0,

(—1)25“1[<1 (0L
(—1)2ﬁ+1[<1_(om UNSk >2/n(n+1]
(—1)2c“1+1< (1—11“ 5
(—1)2q+1<1 <I_HA1 "

. 2\ 2/n(n+1)
<‘”2‘“‘“[(1-<UNA>J<UNS>“)Z°I) |
; e\ itk P24
(—1)251*‘(1—(1-113‘_111;‘_1(1—(QNA)Zq(l—(QNs)Z‘V‘)k)ﬂ( D>) )

1/2q(j+k)

K 2q)2/n(n+l)]

1/2q(j+k)

1/2q N

L zq; L 226\K ) 1
1- 1-(y,) ) ,
- (23)

1\ 2/n(n+1)\ 1tk 2q
Zq U \24
1-(08)9(1-(0%)") > ) )

1724 (j+k)

>

Uj+k Uj+k
> <<n(n+l)zzﬁ"ﬁ> '

A=1s=A
(28)

(s S5

A=1s=A

And,
NCq - ROFHM™ (4}, a5, . . ., ;) 09)
<NCq - ROFHM™ (8,, 5, ..., B,)-

(Boundedness). Between the max and min operators is the
NCq-ROFHM operator.

min (N}, N,....,N,) <NCq - ROFHM™ (N, N,, ..
<max (N}, N,,...,N,).

Ny (30)

O

Proof. Let ¢ =min(N,N,,...
N,
Using the aforementioned theorem, we obtain

,Np), d=max(N;, N,,...,

NCq - ROFHM™* (¢,¢, . .. ¢)
<NqQ - ROFHM* (N, N,,...,N,) (31)
<NCq - ROFHM* (d,d, ..., d).

And,

min (N}, N,,...,N,)<NCq - ROFHM" (N|,N,, ..

<max (N}, N,,...,N,).

SN (32)

O

Case 1. The assertion that the recommended NCq-ROFHM
operator transforms into the NCq-ROF basic HM operator if
j=k=(1/2).
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NCq - ROFHM"*"*(N,N,,...,N,)

. 2/n(n+1) 1/29 7
o o))
2/n(n+1) 1/29
o 29
(_1)2q+1 (1 - H;:ln?#l(l - (Unggs) ’ ) )
p g 2/n(n+1) * 1/2q
24 n n ! 4
(_1) a <HA—1HS—A<1 - \/((1 _(Q]I:IA) )(1 _(QIL\]A) >) ) >’ (33)
p = 2/n(n+1) = 1/2q ’
g n n q 4
e (e P )
2/n(n+1) \ 1724
2q+1 n n 2
(-1 <1 - Hl—lns—)\(l - (UNAUNS) ) > ’

1y <H§_1H§_A(1 - \j<<1 ~(0)")(1-(2))) )Z/rl(n+1)*1/2é>

Case 2. If j =k =1 then (14) change into

NCQ - ROFHM" (N ,N,,...,N,)

5 2¢\2/n(n+1) 1/4q
(1= (oo )

>

. 26 2/n(n+1) 1/49
<—1>2°'“(1 - (1- (0} 0%, )") )

24+1 n L\ Ly2a) e\ P2 "
(-1 1 - l—HA:IHS:A<1—1—(QNA) <1—(QN5) ))

(34)

2q+1 n n 24 2/n(n+1) 12
(-1) l—HA:IHS:A(l—(UNAUNS) ) ,

g g o\ 2m (e 12\ 2
(—1)%! <1 —(1 - HKZIH;’:A(l _<1 _(QNA)2q><1 _(QNS)2q>> ) )
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This means that it is also referred to as the N-cubic Q-rung Case 3. If j — 0, (34) is reduced to
orthopair fuzzy generalized interconnected square mean.

lim; o NCQ - ROFHM’*(N|,N,,...,N,) = <

1/j+k

(7))
(i o)) )

It is sometimes referred to as the N-cubic q-rung s fuzzy @ Case 4. If j=1 and k — 0, (27) becomes an N-cubic
generalized mean. g-rung orthopair fuzzy average mean.

<
<
(b
<
<

1/24
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Jim NCQ - ROFHM*™ (N ,N,, ...
—0

L on
(Lot
(T’l A=1"YA

Case 5. If j — 0,k — 0, then the existing NCq-ROFHM
change into

lim NqQ - ROFHM™ (N|,N,,...,N,)
Jé
(37)

= im (Lar,n]) " = af, ()
o\ @A=1"V2 A=1UN)
Note that we can get a variety of orthopair fuzzy sets by
varying the value of the parameter g. As an illustration, the
N-cubic Pythagorean fuzzy set is renovated by NCgq-
ROFHM if j=1 and k=1. In MADM situations, different
characteristics typically have significant advantages. Thus,
it appears that the NCq-ROFHM operator is indifferent
with this characteristic. The weighted version of the NCq-
ROFHM operator is defined as follows to address this
issue:

- (_1)2q+1(1 _ ®Q:1<1 _(UINA)ZL?)Z/”) ’

o -8

1
. o\ 1/n\~%
(—1)2q+1(1 - ®Z=1(1 _(UNA)2q> >2q’

(- enfi--0) )

Computational Intelligence and Neuroscience

'N,,)

1/2q A

1/2q

o (1-(1-en (oot )
(115 1--0%)")

1/2q

Definition 11. In this case, Ny = (Ay,By)(A=1,2,...,n)
be the NCq-ROFN family, the weight vector of NCq-ROFNs
is indicated by j>0,k>0, j+k=>0, and w= (w,
W,,...,w,) for all wy € [0,1] and Y}, w = 1.Then NCgq-
ROFWHM: [-1,0]" — [-1, 0] such that

NCq - ROFWHM?* (N|,N,,...,N,)

5 ; ' 1/j+k (38)
- <<+1> > Y (@Y <wst)"> .

A=1s=1

Theorem 2. Let N, = (ANA,BNA) A=1,2,...,n) be the
collection of NCq-ROFNs, j>0,k>0 and j+k>0, and w =
(wy, w,, ..., w,) represents the weight vector of NCq-ROFNS,
w, € [0,1] and Y)_, w = 1. Then, NCq-ROFNs are also in-
cluded in the resulting equation (38) as
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11
| 1 | 2n(n+1) \ 1240+ 7 ]
(—l)2q+1(1 H,\l " _(Ugh)2q> ) |
1 oG\ 122G |
oo )
. /28 >
( 1)2q+1(1 - (QL )4q/n(n+1))1/]+k>12q
A= 1 s=1 i
NCq - ROFWHM* (N\,N,,...,N,) =1 | .
(- 1)2‘“1(1 T, (0% )4q/n(n+1)>1/j+k>l/2q
A= 1 s=A
o\ 2/n(n+1) \ 124 G+k)
( 2q+1(1 H/\ ) (UNA)2q> ) ,
e 1729
(—1)2é+1(1_(1_1—[n Hn (Q )4q/n(n+1)>1/]+k> q
A=1""s=A\ 22N,
where
r 25\ W\ J/24 P k/2q
o (1= o)) ),
L osU
[UA)UA]Z jlzq N
24\ " 2\
( 1)2q+1(<1—<1—(05) ) ) <1_<1_<U£]) ) ) )
P quw, \’ fw k 1/2q
( 1)2q+1(1—(1_(0§)2q A) (1 (Qi)zq ) > ’
(o] = | .
o 2qw, \/ . K\ 124
0 (1-(1-(@)™ Y (1-(at)™ )
o w \ /24 w A\ K24
U, =( 1)2q+1(<1_(1_(011)2q) \) <1—(1—(US)24) ) >,

The relationship between the structure of the two attributes
can be established through the HM operator. Each attribute
is linked with other attributes of the HM operator. However,
when it comes to decision-making issues, this condition is

often not being met. To prevent the separation of charac-
teristics we can use different partitions to solve decision-
making problems because we remember the structure of
attribute relationships. There is no link between attributes.
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When they are divided by two partitions, the same attributes
present in partitions have a connection to each other. With
the typical HM operator, the partitions do not solve these
kinds of issues so we now provide the N-cubic gq-rung
orthopair fuzzy power Hamy mean operator with the ability
to let us know the issue. The condition given above can be
mathematically explained as: Let
N, = (ANA, BNA)(/\ =1,2,.n) be a collection of NCgq-

ROFNs, distributed into “g”  different partitions
FFLF,,...,F, with F,nF; and ULF; = [N}}F; = {N;,
; 1
NCq - ROFPHM’*(N|,N,,...,N,) ==
g j

Theorem 3. Let N)= (Ay,, By ) (A = 1,2,..n) be a family of

NCg-ROFNs, j>0,k>0 and j+ k>0, then equation (41) is

NCq - ROFPHM** (N|,N,,...,N,)

-

Where

2

g

|F|(|F|+l)klsA

—(_1)2%1(1‘“?_1<1‘((1—<1—(0L) ))2’|FI(IF|+1) itk >

")

oo on YY)
)
")

1lq+g
241 L 4q/|F,-|<|F,»|+1) ”f*"
(1) <H?_1(1—<1—(Qi)

k\1a*9g
1y (H;»”Ll (1 -(1-(ay i) “J+

g 1+ /j+k\ 19
(_1)%1(1_Hil(l_<(1—(1—(0,-)2q)2/IF1I(|F,I 1)>)11 ) > ’
(-1 (H?_l(l —(1 (A Ri (IFi|+1))1/f+k>1/q*g>

Computational Intelligence and Neuroscience

N, ... Njp }, where |F;| denotes the cardinality of parti-

tions F; and Y7, |F;| =n. By using above information,
NCQ-ROFPHM operator is defined as

Definition 12. Let N, = (Ay,, BNA) (A = 1,2,..n) be a family
of NCq-ROFNs,

j=0,k>0 and j+k>0. Then
[-1,0]" — [-1,0] and

NCq-ROFPHM

1/j+k
|F: || g

l z (Ni)t)j® (Nis)k> . (41)

used to generate a consequent equation that is likewise an
NCq-ROFN, as shown by

1/2q 7

(42)

1/24
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OF = (-0 (1 - T (1 - (ad, B )

Of = (0 (1 - (-, B))

QIL _ (_1)2q+1(Hsz|lH|stA| 1 B B ) (1 ~ Bi,ziis)k)”zq),
v - (_1)2q+1<H|AFI|IH|€IA| (1- sz\?m)j(l B Bzi)k)I/Zf]), (43)
U, = (_1)2q+1(1 HLLF1|1H|SF111|< (Ava ;;h )251))1/%“1)
Q. = (_1)2q+1<HRF1|1H|SF1/{ 1 Bi?ﬂ)j(l ~ Bi?is)k>1/2§>.
Theorem 4. Let j>0,k>0j+ k>0, (Idempotency) If all N; are same that Iis,

N, =N = (Ay, By)VA then
Ny =(Ax,By,)(A=1,2,...,n). (44) A N> PN

NCq - ROFPHM?*(N,N,,...,N,) = N = (Ay, By),

Be collection of NCq-ROFNs with g different subset (45)

Fy(A=1,2,...,n). Consequently, the NCq-ROFPHM oper-
ators have the following characteristics.
Proof

1/ j+k

. 1 g 2 |F,||F,| .
NCgq - ROEPHM™ (N ,Ny...,N, ) =— _ N, )Y ® (N
q ( 1 2 n) g ;<|F1|(|P,l+l);;§( 1/\) ( zs)

i

1/j+k 1/j+k
|§:| |F1 J J

-1 i( |<N>’®<N)) 1 i(#'i'%wk) : (46)
9\ i1 lF|(|F|+1)/1 1s=A g\ ia |F|(|F|+1) =1 s=A

18-

(Monotonicity) Let.M/\ = (AMA, BMA). (./1 =1,2,...,n) be N, = (ANA, BNA) A=12,...,n), AMA > ANAand BMA < BNA
a set NCq-ROFNs having the same partitioned structure as  for all, then

NCq - ROFPHM?* (M|, M,, ..., M) >NCq - ROFPHM?* (N|,N,,...,N;). (47)

Proof. Since, Ay, > Ay and By <By for all A using Def-
inition 6, we can obtaln M, SN 5 for all, then
Ay Al 2 Ay AR and
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) k
(- B (- 8)') "
. (48) Q =(—1)2‘?“<H‘F"'H'F"‘(1—(1—qu ) (1-B% )k) e
24+1 24 \/J 24 k M, A=1"1s=1 M,y M, =
> (0" (1-(1- B ) (1- B )), o (50)
(- 1)2‘?“<H‘F"H‘F"( -(1-BY )(1—327)) ):QN,.
Further, : (
o . 5 1/2 Hl
UMX. _ (_1)2q+1( HE\FI\IHIFz (1 _(Afv[ﬂB[;/HS)Zq)) qa > us,
o . . . 25 1/2q (49)
0 (1= (- (ad, B5,))) =0y,
N 1/2q 7
2 z/|Fi|<|F,-|+1) “f*k
o (e, (1-(( -0 -s”)
>
1/2q
1/]+k
24 2/|Fi|(|Fi|+1)
- 1>24“< H,&(l— (1—(1 ~(05,)")
' (51)
_ 1/2q A
1/]+k
24 2/|Ff|(|F,-|+1)
(- 1)““( nf’_1<1—<(1 ~(1-(0%)")
I/]+k
24 2/|Ff|(|Ff|+1)
- 1)”“( H?1<1 —((1 ~(1-(u%)")
4 c<NCq- ROFPHM’* (N ,N,,...,N,) <d. (54)
an O
[y (e (1—(1 CARR “J*k e
= Proof. Since  c¢=(max, (Ay), min, (By)),d= (min, (Ay),
/ < max, (By)),subsequently, based on the monotonicity, we
1/2g *
( 1)2é+1<n51<1(1(054 el e |+1) ”’*k ! 9) have
o NCq - ROFPHM*(c,c,...c) = ¢, (55)
ot (e (1-(1~(ag, I ”f*k "
=1 Ni and
<-1>za+l<nﬂ (1-(0-(ofgyriciny™ ) NCq- ROFPHM™ (d,d,....d)=d. (56
i=1 N,
) (52) As a result,
Then we use (37), we get c<NCq- ROFPHM’* (N|,N,,...,N,) <d, (57)
NCq - ROFPHM’* (M, M,,...,M,) (53) thus proved. Various particular examples of the

>NCq - ROFPHM’* (N ,N,,...,N,).

(Boundedness) Let c¢=(max,(Ay),min (By)),d=
(min, (Ay), max, (By)»,having a specific partition stricture
F,(A=1,2,...,n). Therefore,

NCgq - ROFPHM operator can be obtained by altering the
number of partitions and various values of the parameters
“j,k.” The NCq — ROFPHM operator renovate into usual
NCq - ROFPHM if g =1 as follows:
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2

NCq - ROFPHM’*(N,N,,...,N,) = <|F (FED)

By giving varied values to the parameters “j, k” and g = 1, we
can clearly obtain the situations covered in equations
(33)-(37). O

Definition 13. Let Ny = (Ay,By)(A =1,2,...,n) be a set

of NCq-ROFNs,

NCq - ROFWPHM’*(N|,N,,...,N,) =

Theorem 5. Let N, = (ANA’BNA)()L =1,2,...,n) be a
family of NCq-ROFNs where j>0,k>0and j+ k>0, and
w= (w,,w,,...,w,) represents the weight vector of NCq-

NCq - ROFWPHMZ* (NN, ...

(_1)271+1 (1
(_1)2é+1<

N,

n;a( (
m<b<

|E| |E| ;
Sy m)

A=1 s=A

1 2
5<®"'1<|a|(|a|+1>

. 4q/|F;| (|F;|+1 ”1”‘ Vg
(_1)2q+1<1—1;q_1<1_(1 _(QlL)‘” [ (I7:] )
3 1/;+k lg+g
4q/|F;| (|F;|+1
(_1)2q+1<1-[;q_1<1_<1 _(QIL) F:] (|| )

e

1y (H?_I( 1-(1-(opy I

15

1/j+k

1/ j+k
_ 2 S N7 N 58
(o i) e

=1s=1

j=20,k>0 and j+ k>0, and w = (w;,w,,...,w,) in-
dicate the weight vector of NCq-ROFNs w, € [1,0] and
Yi,w=1 Then NCq-ROFWPHM: [-1,0]" — [-1,0]
such that

1/j+k
al'lel"l (wyN,) @ (wisN,-s)"> > (59)

ROFNs, Y)_, w = 1. Then we get resultant equation by using
equation (59) that is also a NCq-ROFNs given by

1/2q A

) itk
>>2/|F|<|F| ) )

")
"))
)

1/2q

2q>)2/|F|(|F i+1)

(60)

U)2q>>2/|F|(|F|”)

i

1/]+k 1g*g

))
)
))
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where

OF = (-1 1- HAF"IH'F_;'L(l (1-(1—N‘“

oY = (1M 1- HAF"IH'SF;'( (1—(1—N7

( 1)2q+1 HIFtl HIF:\

QL — (_1)27]+1 (H|Fl| HIF:\

ai=<-1>2é+l(nen£;(1—<1—o:;m) (i-

4. Multi Attribute Group Decision-Making
Method as an Application

In this section we will use NCq-ROFWHM and NCg-
ROFWPHM operators to examine MAGDM problems, and
to show their applicability with the help of NCq-ROFNs. Let

A= {A A, ... ,Am} be a set of alternatives,
C= {C C, ... ,Cm} and attributes with weight vector
w= {wl,wz, e ,wn}, where w; € [0,1] and 3 w;=1. Let

A= {K LA g oA d} be a group of experts with eight

&= {fl,fz’ . ,Ed}/l =where &) € [0,1]
Zle &, = 1. Assume that the A th expert provides his opinion
{L2...

vector, and

regarding the alternatives A; = ,m} with regard to

the qualities C;= {1, 2
A _ [/ Al
N (4
ROF decision matrix is created as T = (N%)
that there are ¢

m} as a NCq-ROFNs
B’}\,~>.Using the expert’s preference, an NCq-

Consider
F, and

mxn*

g divisions of the set F|, F,, F5, ... .. ,

~(1-0z=tY (1- o

((
(1
(1) 0-0z) ™),
))
V)0
)

Computational Intelligence and Neuroscience

(61)

irz‘I)k

1s

that there is a specified connection structure between the
features while keeping in mind the natural relationship
structure. There is no link between qualities from different
partitions and those from the same partition. The established
operators are then used to address these decision-making
(DM) difficulties. Algorithm steps are provided by

Step 1: To normalize the decision matrix and obtain the

v S A
benefit and cost-type data. T = Ny = ( A* ,B}
N N~/
converting the value of the cost-type attributes first to

the value of the benefit-type attributes, and then

[

A < N’for benefit — type attribute of

C
lc > (62)

c
(N ?1-) for cost — type attribute of ~

where (N <BA A)L

Step 2: To aggregate all the normalized data. Tl—
(A=1,2,3,...,d) into a collective DM M = [V+] .. =

<A4 ,B* >
N N=

mxn
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v, = NCq- ROFWHM]k< N N N ‘i)
(—I)Zé”(z - —(ULNA)2‘?)2/”(””))1/%%),
Gl B v vl ,1 (0%1)251)2/"(%1))1/2‘?(1'*") ,
(—1)2é+1(1 — I I A(QL )2é/n(n+1)>1/j+k>1/2‘1 , .
| (—1)25”1(1 - IIy_, 1T A(Q )zq/n(n+1)>1/j+k>”2‘1 K
(- 1)2q+1<1 H)l pd A (UNA)Zq)Z/n(nﬂ))]/zq(ﬁk)’
(- I)Zq”<1 -1, I —A(QNA)Zq/n(nH)>1/2(j+k))1/2‘7 ’

where

CRCHE

o0 - o

Uy = (—1)25”1( 1- (1—((»)2‘1) )j q(l—(1_(05)zq)35>k/251>’

af = o ((1-(- @) (1- @) ) ).
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q=8

=7

q=5

=4

A4

HAl mA2 mA3

4,5,7,8.

FiGure 1: Ranking result for g

TasLE 1: For NCq-ROFDM of Q;.
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TaBLE 3: For NCq-ROFDM of Q;.
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TaBLE 4: For NCq-ROFDM of Q,.
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TaBLE 5: For normalized NCq-ROFDM of Q.
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TaBLE 6: Of normalized NCq-ROFDM of Q,.
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TaBLE 7: Of normalized NCq-ROFDM of Q;.
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TaBLE 8: Of normalized NCq-ROFDM of Q,.
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TaBLE 10: Ranking result for various values of parameter q.

Q Score values Ranking results
q=4 S, = —.5378,8, = —.5479, 8, = —.5248,S, = —.5406 A>A>ASA,
q=>5 S, = —.5389,S, = —.5499, S, = —.5348, S, = —.5443 A>A>ASA,
q=7 S, = —.5225,8, = —.5489, 8, = —.5129,S, = —.5460 A>A>ASA,
q=38 S, = —.5485,S, = —.5879,S, = —.5381,S, = —.5498 A>A>ASA,

TaBLE 11: Ranking result for different values of parameters j and k.

j And k Score values Ranking results
j=0k=1 S, = —.5286,S, = —.5759,S, = —.5148,S, = —.5463 Ay> A >A, > A,
ji=3k=1 S, = —.5409,S, = —.5592, S, = —.5948,S, = —.5873 A > A, > A, > A,
j=1k=3 S, = —.5825,8, = —.4489,S, = —.5879,S, = —.5260 A, >A, > A, > A,
j=0k=5 S, = —.5695,S, = —.5779,S, = —.5235,S, = —.5983 A>A > A > A,
j=5k=6 S, = —.5805,5, = —.5949, S, = —.5621,S, = —.5498 A > A > A > A,
j=7k=1 S, = —.5951,S, = —.5765,S, = —.5743,S, = —.5885 Ay > A, >A > A,
j=0k=3 S, = —.5195,5, = —.5669, S = —.5930,S, = —.5573 A >A > A, > A,
j=1k=0 S, = —.4585,S, = —.5379,S, = —.3981,S, = —.5198 Ay> A >A, > A,
j=5k=5 S, = —.5578,S, = —.5678,S, = —.5421,S, = —.5950 A> A >A, > A,
j=6k=4 S, = —.5085,S, = —.3459,S, = —.4081,S, = —.4985 A, >A > A > A,

Step 3: Assume a division form among the attributes to
arrive at the collective assessment values.

V,=(( A* ,B >)(i: 1,2,3,...m); (=1,2,3,
N~

Nit
n) of alternatives A;.

V;= NCQ-ROFWHP*(V,V,,...,V,). (65

Step 4: To find score values S(V,) of each alternative
AGi=1,23,...,m).

Example 2. In this section we provide a brief overview of
the outcomes of a brand-new technique and show its
efficacy. Utilizing the full potential of mobile apps for
online education, business administrators can check the
effectiveness of these programs. Four possibilities have
been suggested as possible options in the beginning stages.
Moodle A, LMS A,, Zoom A;, and NoonA, are the four
applications. There are four experts on the judgment
board, [El,E2,E3,E4] each with a different area of
competence. Take into account that A represents the
different expert weights, or A = (0.03,0.1,0.27,0.6). The
five interconnected characteristics listed by the assess-
ment committee are as follows: the app’s download, data
storage speeds, data loading speed in and battery use
(ClandC 2, C3 and C4, respectively). Assume represents
different attribute weights, for example,
w = (0.17,0.2,0.23,0.4). The two subsets of the five
qualities are separated based on how they relate to one
another fundamentally. F, ={C,,C;,Cs},F, ={C,,C,}.
Data in the form of NCq-ROFNs must be submitted by
experts for examination. The expert assessment statistics
are displayed in Tables 1-4, and E; = (i = 1,2, 3,4).

Step 1: Given that C; is a cost-type attribute, we
can normalize the decision-making data using

equation (62). The normalized data is displayed in
Tables 5-8.

Step 2: To obtain the entire decision matrix, use

equation (63). M = {U},, s = {<A[~]-, Bﬁ~>} . Ad-
4x5

ditionally, we set the parametersj=1,k=1,and g=3to
be true. This MAGDM seeks to identify the best choice.
The complete NCq-ROF decision matrix M is shown in
Table 9.

STEP 3: Use (23) to calculate all of the evaluation values
for each option, then use A; and U, to obtain the values
for each alternative’s A;(i=1,2,3,4) collective
evaluation.

U, = ([-.0000754307, —.0039453], [-.836279,
827616, (—.00345878, —.865973)),
([~.0000856423, —.0054665], [—.839751,
(-.00265612, —.860356)),
—.0039675], [-.836134, —.826964], (—.00467348,
—.863867)), U, = ([-.0000126569, —.0067831],
[-.830651, —.825320], (—.00679601, —.865328)).

STEP 4: We compute score values S (U;)of U; as follows:
S(U,) = -.57679527,8(U,) = —.5976312,8(U,) =
-.56140327,8(U,) = 0.5787565 as S(U;)>S(U;)>
S(T,)>S(0,).

Hence A;> A, >A,> A, and A; is best alternative.The In-
fluence of the parameter Values on the Ranking Results. In
the following section, we will investigate how the pa-
rameters ¢, f, and k impact the findings of the alternatives.
Put j=1,k=1 and g=3 in the previous computing
technique for our convenience and without losing gen-
erality. From Table 10, it is clear that the ranking out-
comes for the scenarios g = 4,5,7,8and A; > A, > A, > A,
are identical. Thus the ranking outcomes are shown as in
Figure 1, and finally, we can say that the other top options
remain the same when the parameter’s value changes.

Uz =
8 —.829231],
U; = ([-.0000346567,
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j=0,k=1 j=3,k=1 j=1,k=3 j=0,k=5

j=5, k=6

23

j=7,k=1  j=0,k=3 j=1,k=0 j=5,k=5 j=6,k=4

-0.05 -
~0.1 -
-0.15 -
0.2 -
-0.25 -
0.3 -
-0.35 -
~04 -
-0.45 -

~0.5 -
-0.55 -

-0.65 -
mAl mA2 mA3 A4

F1GURE 2: Ranking result for various values of parameters j and k.

These are different from the results obtained for j = 0 and
k = 1 having ranking results A, > A; > A, > A;. Asaresult, it
is possible to obtain varied ranking results by varying the
values of the parameters j and k. If one parameter is fixed and
the other is changed, the score and ranking results may
change, as shown in Table 11. We can observe that the values
of the parameters j and k affect the ranking outcomes, as
shown in Figure 2.

5. Conclusion

In this study, we focus on the structure of N-cubic q-rung
orthopair fuzzy sets. The score function under R-order and
the comparison rule for two N-cubic q-rung orthopair
fuzzy sets also define some aggregation operators, i.e.,
N-cubic g-rung orthopair fuzzy Hamy mean operator,
N-cubic gq-rung orthopair fuzzy weighted Hamy mean
operator, N-cubic q-rung orthopair fuzzy power Hamy
mean operator, and N-cubic q-rung orthopair fuzzy power
weighted Hamy mean operator. N-structure can enhance
decision-making performance. The recently discovered
N-cubic q-ROFSs, which combine NQ-ROFSs and
NIVqREFSs into a single structure, allow decision-makers
greater space to work on multi-attribute group decision-
making problems. As a result of the debate, we have dis-
cussed specific instances of the operators and created a
method for solving MAGDM problems using NCq-ROFNs.
In this study we analyze the use of mobile app in the
education sector. Further research, problem-solving, and
decision-making are possible to solve, and other operators
may be able to be created through this method. In future
someone can apply the N-cubic q-rung orthopair fuzzy sets
in different decision-making technique.
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