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Background. Liver hepatocellular carcinoma (LIHC) is among the most frequent causes of cancer-related death across the world
with a considerably poor prognosis. *e current study targeted providing a new type of LIHC from the perspective of the
glycolysis/cholesterol synthesis axis, predicting its prognostic characteristics, and exploring the potential role and mechanism of
the glycolysis/cholesterol synthesis axis in the occurrence and development of LIHC.Methods. Based on the two expression profile
data and clinical information of LIHC in *e Cancer Genome Atlas (TCGA) database and hepatocellular carcinoma database
(HCCDB), as well as glycolysis/cholesterol-related genes from the Molecular Signatures Database (MSigDB), unsupervised
consistent clustering method was used to identify molecular subtypes. In addition, the differential genes were identified by limma
package, and then the gene set was enriched, analyzed, and annotated by WebGestaltR package. At the same time, the immune
infiltration analysis of tumor samples was carried out using the ESTIMATE to evaluate the tumor immune score of the samples.
Finally, the differences in clinical characteristics among molecular subtypes were measured using univariate and multivariate Cox
analyses. Results. According to the median standardized expression levels of glycolysis/cholesterol production genes, samples were
divided into four groups (molecular subtypes): Quiescent group, Glycolysis group, Cholesterol group, and Mixed group. Sig-
nificant prognostic differences were observed among the four groups. In both TCGA and HCCDB18 datasets, the prognosis of
subtype Mixed was the worst, while Quiescent had a good prognosis. Cell cycle and oncogenic pathways were significantly
enriched in the Mixed group. In addition, glycolysis and cholesterol production gene expressions were related to the prognostic
LIHC subtype classification genes’ expression levels. Conclusion. Metabolic classification regarding glycolysis and cholesterol
production pathways provided new insights into the biological aspects of LIHC molecular subtypes and might help to develop
personalized therapies for unique tumor metabolic profiles.

1. Introduction

Liver hepatocellular carcinoma (LIHC) is the top frequent
primary cancer type of the liver around the world. Its in-
cidence rate has shown to be rising and closely related to

advanced liver disease [1–3]. *is malignancy is the main
cause of death in patients with liver cirrhosis. At the same
time, liver cirrhosis is also an important indicator for
monitoring and screening the occurrence of liver cancer
[4–6]. Despite considerable progress in surgical therapeutic
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approaches and medical measures, liver cancer is still one of
the most common tumor-related causes of death around the
world. Most LIHC patients are diagnosed at advanced stages
and have no opportunity for surgical resection [1], and most
patients after surgery are also very poor [7–9]. Patients with
similar tumor stages or pathological structures may have
significantly different prognoses due to individual differ-
ences [10, 11]. *erefore, it is critical to explore new mo-
lecular subtypes to predict the prognostic characteristics of
different LIHC.

Metabolic reprogramming in cancerous cells driven by
oncogenes enables them to survive and proliferate in the
complex microenvironment of tumors [12]. Pan-cancer
analyses of global metabolic pathways show that tumor
metabolism is heterogeneous in terms of survival, somatic
driver gene mutations, and tumor subtypes [13]. Although,
hepatocytes have never been fully determined to be feasible
to be divided into clinically relevant groups according to
their heterogeneity in metabolic pathways. Oncogenic
CTNNB1 and TP53 mutations resulting in function loss are
known to be inducing glycolysis pathways in cancer, which
contribute to the progression of tumors and developing
resistance to chemotherapy in tumors [14, 15]. *e role of
glycolytic pathways in tumor progression can be weakened
by inhibiting the pyruvate to lactic acid conversion but
transferring this metabolite to mitochondria through mi-
tochondrial pyruvate complex (MPC) composed of two
complexes: MPC1 and MPC2 [16–18]. Decreased MPC
function is associated with a poorer prognosis in several
types of cancer [18]. Pyruvate is a metabolite mediating the
tricarboxylic acid cycle, which provides citrate (a precursor
of adipogenesis) which involve in the biological synthesis of
cholesterol and free fatty acids [12, 19]. *e Mevalonate
pathway is another axis that essentially contributes to de
novo synthesis of cholesterol and can be induced by on-
cogenes contributing to tumor growth. *ese findings
support the benefit of using pathway inhibitors such as
statins for treating cancer [20]. Although, research studying
the relationship between statins and cancer survival rate or
risk has represented controversial outcomes [21–24]. *e
heterogeneity in responses to statin might be related to
different molecular characteristics of tumors [20, 22, 25].
*e relationship between the MPC1 and MPC2 expression
and tumor prognosis increases the cross-tumor difference in
pyruvate flow and the possible involvement of glycolysis/
cholesterol synthesis balance in the regulation of tumor
invasiveness [18].

*e main objective of the present study was to identify
the molecular subtypes of LIHC with prognostic properties.
For this purpose, LIHC patients were divided into subtypes
according to the expression of glycolysis/cholesterol
synthesis-related genes. Different subtypes were then
screened for differences in their survival rate and other
clinical features of patients with different molecular sub-
types, and the molecular processes underlying carcinogen-
esis were identified in each subtype. *e present findings
have depicted a LIHC classification scheme that is conve-
niently applicable in clinics and can be used as a guide for
developing targeted therapy for LIHC.

2. Methods

2.1.DataDownload andPreprocessing. *e RNA sequencing
(RNA-seq) expression data, single nucleotide variation/in-
sertions and deletions (SNV/InDel) data, copy number
variation (CNV) data, and clinical follow-up information data
(April 30, 2020) of the LIHC dataset (TCGA-LIHC, here-
inafter referred to as TCGA) were obtained from*e Cancer
Genome Atlas (TCGA) database (http://cancergenome.nih.
gov/abouttcga). *en, the expression profile data of the
Primary Solid Tumor (TP) and Solid Tissue Normal (NT)
samples were retained, and the Ensemble ID was converted
into the gene symbol. In the case ofmultiple gene symbols, the
mid-value was taken. Finally, the expression spectrum was
converted from FPKM (fragments per kilobase million)
format to TPM (transcripts per million). *ere were 421
samples in the preprocessed TCGA dataset, including 371
tumor samples and 50 normal samples.

HCCDB18dataset was downloaded in the hepatocellular
carcinoma database (HCCDB) (http://lifeome.net/database/
hccdb/home.html), including RNA-seq data, SNV/InDel
data, and clinical follow-up information data (April 30,
2020). Subsequently, the samples lacking clinical follow-up
information, survival time, status state, and expression
profile data were removed. After pretreatment, there were
380 samples in the HCCDB18 dataset, including 203 tumor
samples and 177 normal samples.

2.2. Source and Treatment of Glycolysis and Cholesterol-
Related Genes. Glycolysis and cholesterol-related genes
were from REACTOME_GLYCOLYSIS (29 genes) and
REACTOME_CHOLESTEROL_BIOSYNTHESIS (24 genes)
in c2.cp.reactome.v6.2.symbols.gmt file in the Molecular
Signatures Database (MSigDB, https://www.gsea-msigdb.org/
gsea/msigdb/) [26], with 53 genes in total. *e expression
profile data obtained from TCGA was filtered. *e TCGA
expression profile data were filtered. *e filtering standard
was to remove the genes whose expression was less than 1 and
less than 50%. After filtering, only 44 glycolysis/cholesterol-
related genes were retained, including 24 glycolysis-related
genes and 20 cholesterol synthesis-related genes (Supple-
mentary Table S1).

2.3. Consistent Clustering. *e glycolysis/cholesterol
synthesis-related genes were clustered by Consensu-
sClusterPlus package [27] (V1.48.0; parameters: reps� 100,
pItem� 0.8, pFeature� 1, distance� “pearson”), using D2
clustering algorithm and Euclidean distance. *en, 500
bootstraps were carried out. Each bootstrap process included
80% of the training set patients. *e cluster number (k) was
set as 2–10. *en, the consistency cumulative distribution
function (CDF) and the area under the CDF curve of each k
value were calculated to identify the optimal classification
based on the Elbow method and consensus matrix.

2.4. Gene Set Enrichment Analysis (GSEA) and Annotation of
Differentially Expressed Genes. *e difference analysis

2 Journal of Oncology

http://cancergenome.nih.gov/abouttcga
http://cancergenome.nih.gov/abouttcga
http://lifeome.net/database/hccdb/home.html
http://lifeome.net/database/hccdb/home.html
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/


between subtypes was carried out by limma package [28],
and the different genes were screened by |log2 (Fold
Change)|> 1 and false discovery rate (FDR)< 0.05. Differ-
entially expressed genes (DEGs) among subtypes were
enriched and analyzed by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) through
WebGestaltRpackage (v0.4.2) [29], and the gene set was
selected to be c2.cp.kegg.v7.0.symbols.gmt, which contained
the KEGG pathway. GSEA input file contained expression
profile data and sample labels labeled with molecular sub-
types. *e sample label marked the samples under either
Mixed or Quiescent groups. *e thresholds of enrichment
pathways were P< 0.05 and FDR< 0.25. GO function en-
richment analysis was performed on MPC1/2 positive and
negative genes through the R software packageWebGestaltR
(the threshold was set to P< 0.05).

2.5. Analysis of the Immune Microenvironment of Tumors.
*e ESTIMATE (Estimation of STromal and Immune cells
in MAlignant Tumor tissues using Expression data) method
[30]was applied to measure the tumor immune microen-
vironment scores of the samples and then their differential
distribution among different subtypes was compared. Based
on the expression data, ESTIMATE provided researchers
with a score for tumor purity, as well as the levels of stromal
cells and immune cell infiltration in the tumor tissue.

2.6. Univariate and Multivariate Cox Analysis. R software
package glmnet [31]was applied for establishing the Lasso
Cox regression model. According to the constructed model,
hazard ratio (HR), 95% confidence interval (CI) of HR, and
P-value of clinical features and molecular subtypes were
analyzed using univariate and multivariate Cox regression in
the survival R package. Log-rank test was conducted to test
the difference between the variables (clinical features and
molecular subtypes) and overall survival. *e variables with
P< 0.05 and 95%CI of HR> 1 were considered independent
risk factors.

2.7. Statistical Analysis. A Chi-square test was applied to
explore the clinicopathological differences among the four
subtypes and ANOVA was applied for the identification of
the expression levels in each. *e t-test was applied to study
the difference between every two groups. Pearson correla-
tion coefficient was used for correlation analysis. All sta-
tistical analyses were done using R software (v 4.0.2).
P< 0.05 was considered statistically significant.

3. Results

3.1. Identification of Molecular Subtypes. According to the
data of TCGA, the expression level of 44 glycolytic/cho-
lesterol synthesis-related genes was obtained and consistent
clustering was performed. At k� 4, glycolytic genes and
cholesterol genes could aggregate together, respectively
(Figure 1(a)). Z-scores were calculated using median

expression levels of co-expressed glycolytic/cholesterol
synthesis-related genes and were then used to subtype
grouping of 371 tumor samples in the TCGA dataset.
Samples with GLYCOLYSIS≤ 0 and CHOLESTEROL≤ 0
were defined as the Quiescent group; samples with GLY-
COLYSIS> 0 and CHOLESTEROL≤ 0 were defined as the
Glycolysis group; samples with GLYCOLYSIS≤ 0 and
CHOLESTEROL> 0 were defined as Cholesterol group and;
samples with GLYCOLYSIS≥ 0 and CHOLESTEROL≥ 0
were defined as Mixed group (Figure 1(b)).

*e glycolytic/cholesterol synthesis-related gene ex-
pression levels showed significant differences in the four
subtypes (Figure 1(c)). Furthermore, prognostic relationship
analysis between every two groups showed significant dif-
ferences among all subtypes. In all datasets, the Mixed and
Quiescent groups had the poorest and best prognoses, re-
spectively (Figures 1(d)–1(f), log-rankP< 0.01).

3.2. Relationship between Molecular Mutation among Mo-
lecular Subtypes and CNV. Molecular events, including
oncogenic mutations such as MYC amplification and TP53
mutation, could conduct metabolic reprogramming of can-
cers, including LIHC [32, 33]. For identifying the difference in
carcinogenic events among various molecular subtypes, genes
with frequent mutations in LIHC between SNV/InDel and
CNV were studied (Figure 2). TP53 and CTNNB1 mutations
showed mutually exclusive behavior. *e mutation frequency
of each gene showed no significant difference between each
subtype pair. However, significant differences were observed
between the Mixed and Quiescent groups in the TP53 de-
letion samples. *e deletion ratio was higher in the Mixed
group compared to the Quiescent group. In addition, the
CNV changes of MYC and CTNNB1 in the Mixed group also
differed from those in the Quiescent group. *e gain pro-
portion of MYC and CTNNB1 was also significantly higher in
the mixed group compared to the Quiescent group.

3.3. *e MPC Complex as a Potential Regulatory Factor for
Glycolysis/Cholesterol Synthesis Axis of the Tumor. MPC
complex regulated mitochondrial pyruvate flow inhibited
the MPC1 and MPC2 expression in cancer cells and pro-
moted glycolysis and lactate synthesis in tumor samples [34].
For studying the relationship of MPC1 and MPC2 com-
plexes with glycolysis and cholesterol synthesis phenotypes,
their mutation frequency and expression levels were com-
pared in the molecular subtypes. It was found that the
contradictory relationship of CNV in each gene, in which
CNV affected MPC1 mainly by deletion, while most of CNV
affecting MPC2 was amplification (Figure 3(a)). *ere was
no significant difference in MPC1 among molecular sub-
types, but their MPC2 expression levels were different. Also,
the expression of MPC2 complex was significantly higher in
the mixed group compared to the Quiescent and Cholesterol
groups (Figure 3(b)). In order to find the cellular pathway
relating to the MPC1/2 expression, a comprehensive cor-
relation analysis was conducted between all other tested
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Figure 1: Continued.
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genes and theirs. A total of 519 and 83 genes showed positive
and negative correlation with MPC1 and MPC2 complexes,
respectively (Spearman correlation, BH correction P< 0.05)

(Figure 3(c)). Further analyses proved that positively related
genes to MPC1 and MPC2 were associated with positive
regulation of steroid and lipid metabolisms as well as an

p < 0.0001
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Figure 1: Identification of TCGA groups of liver cancer. (a) Consistent clustering of glycolysis/cholesterol synthesis-related genes. (b)
Classification of samples based on glycolysis/cholesterol synthesis-related genes expression levels. (c) Cluster heatmap of 30 related genes.
(d) Prognostic survival curve of molecular subtypes of all samples of liver cancer. (e) Prognostic survival curve of molecular subtypes of
recurrent liver cancer samples. (f ) Prognostic survival curve of molecular subtypes of non-recurrent liver cancer samples.
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extracellular matrix organization (Supplementary
Figures S1(a)–S1(c)). Whereas negatively related genes to
MPC1/2 showed a positive regulatory effect on the peptide
hormone secretion (Supplementary Figures S1(d) and
S1(e)).

3.4. Validation of the Subtyping in the HCCDB18 Dataset.
To verify the analysis results of molecular subtypes in the
earlier TCGA dataset, the expression profiles of co-expressed
genes related to glycolysis and cholesterol were extracted
from the HCCDB18 dataset, respectively. Among them, the
TPI1P1 gene related to glycolysis does not exist in the
HCCDB18 dataset; then, glycolysis used the remaining 12
genes, and cholesterol used 17 genes.*e median expression
levels of co-expressed glycolytic and cholesterol-producing
genes were used for Z-score, and then 203 tumor samples in

the HCCDB18 dataset were grouped into subtypes. Like
TCGA, they were also divided into four groups: Quiescent
group, Glycolysis group, Cholesterol group, and Mixed
group (Figure 4(a)). Further, the prognostic relationship
between the two groups was analyzed. In all datasets, the
prognosis of the Mixed group was the worst, while the
Quiescent group had a good prognosis (Figure 4(b), log-
rankP< 0.01), which was the same as that of TCGA. *e
expression levels of glycolysis/cholesterol synthesis-related
genes in the four groups were different (Figure 4(c)).

*e frequency of commonly mutated genes was also
studied in LIHC between SNV/InDel and CNV affecting
molecular subtypes in the HCCDB18 dataset (Figure 4(d)).
*e results showed that the type and number of mutations
were lower than those in the TCGA dataset, but it was also
found that TP53 mutation and CTNNB1 mutation were
mutually exclusive, and no significant difference was seen in
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Figure 2: Mutation features and CNV difference among four molecular subtypes in TCGA dataset. (a) Mutation distribution among
molecular subtypes. (b) Comparison of CNV differences among molecular subtype of genes TP53, MYC, and CTNNB1. ∗P< 0.05.
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the mutation frequency of each gene between different
groups. According to the expression of cholesterol and
glycolytic co-expression genes, the datasets of TCGA and
HCCDB18 were metabolically typed. It was found that the
prognosis of the Mixed group was the worst in both datasets,
while the Quiescent group had a good prognosis, which
showed that for liver cancer samples, high cholesterol genes
plus high expression glycolytic genes would lead to poor
prognosis. Low expression of glycolysis/cholesterol
synthesis-associated genes would lead to a better prognosis.

3.5. Identification of DEGs. For identification of the role of
glycolysis/cholesterol axis genes in LIHC tumors, DEGs
were found in the datasets TCGA and HCCDB18, re-
spectively. We also performed a functional enrichment
analysis. For the TCGA dataset, 507 DEGs were identified
between Mixed and Quiescent groups, including 431
enriched and 76 depleted genes. *e results revealed that the
major enriched DEGs were between the Mixed and Qui-
escent groups (Supplementary Figure S2(a)). *e clustering
of up- and down-regulated genes showed that they were

obviously clustered into two categories. *e genes up-
regulated in Mixed were down-regulated in Quiescent,
and the genes up-regulated in Quiescent were down-
regulated in Mixed (Supplementary Figure S2(b)). For the
HCCDB18 dataset, 261 differential genes were identified
betweenMixed and Quiescent, including 159 enriched genes
and 102 depleted genes. Similar to the results of TCGA, the
results of the HCCDB18 dataset showed that Mixed and
Quiescent groups mainly included up-regulated DEGs
(Supplementary Figure S2(c)), and the clustering of enriched
and depleted DEGs also showed that they were obviously
clustered into two categories (Supplementary Figure S2(d)).

Further, KEGG pathway analysis was conducted on the
enriched DEGs between the Mixed and Quiescent groups in
TCGA and HCCDB18, respectively. For the up-regulated
DEGs, nine and six significant pathways were annotated in
TCGA and HCCDB18 datasets, respectively (Figures 5(a)
and 5(b), FDR <0.05). It was found that the genes up-
regulated in the Mixed group were significantly related to
tumorigenesis and metabolic pathways such as the P53
signaling pathway, microRNAs in cancer, fatty acid
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different molecular subtypes. (b) Comparison ofMPC1/2 expression among different molecular subtypes. (c) Scatter plot of genes associated
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Figure 5: KEGG analysis of DEGs. (a-b) KEGG annotation of upregulated DEGs in Mixed group in TCGA (a) and HCCDB18 (b) datasets;
(c-d) KEGG annotation of downregulated DEGs in Mixed group in TCGA (c) and HCCDB18 (d) datasets.
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metabolism, pentose phosphate pathway, carbon meta-
bolism, cell cycle, and DNA replication. For the down-
regulated DEGs between the Mixed group and the Quies-
cent group, we observed that metabolic pathways were also
significantly enriched such as the metabolism of xenobiotics
by cytochrome P450, alanine, aspartate and glutamate
metabolism, carbon metabolism, and drug metabolism
(FDR< 0.05, Figures 5(c) and 5(d)).

3.6. Pathway Analysis in Different Molecular Subtypes.
*e significantly enriched pathways in the Mixed and
Quiescent groups were analyzed using GSEA in TCGA and
HCCDB18 datasets (Figure 6). It was found that the WNT
signaling pathway, DNA replication, mismatch repair, cell
cycle, and homologous recombination related to tumor
incidence and development were significantly enriched in
the Mixed group of TCGA and HCCDB18 datasets. *is
phenomenon was consistent with the functional enrichment
results of differential genes between theMixed group and the
Quiescent group. At the same time, it showed that the high
expression of glycolysis/cholesterol synthesis-related genes
in liver cancer was associated with a poorer prognosis.

3.7. Comparison ofGlycolysis andCholesterol GeneExpression
in Normal and Tumor Samples. In order to compare the
expression of these glycolytic and cholesterol synthesis-
related genes in normal and tumor samples, their expres-
sion profiles were extracted, and the median was used to
compare them in different tumor sample subgroups and
normal samples (Figure 7). *e results showed that in the
groups of TCGA and HCCDB18 datasets, the expression
levels of cholesterol gene and glycolytic gene in normal
samples were lower than those of the other four molecular
subtypes, which also showed that the incidence and de-
velopment of liver cancer would be associated to the increase
of glycolytic and cholesterol synthetic gene expression.

3.8. Comparison of Clinical Characteristics between Different
Molecular Subtypes. In the TCGA dataset, the distribution
of different clinical features was compared in the four
molecular subtypes and whether the clinical features were
different in different groups (Supplementary Figure S3(a)–
S3(h)).*e results displayed no difference in the distribution
of age, gender, recurrence, N stage, and M stage among the
four molecular subtypes. Regarding grade classification,
there was a significant difference between the Mixed group
and the Quiescent group; G2 accounted for the smallest
proportion in the Mixed group, while G3 and G4 accounted
for the largest proportion. Also, significant differences were
observed between the Glycolysis group and the other three
molecular subtypes in the characteristics of T Stage and
Stage staging. Among them, for T Stage, T1 had the smallest
proportion in the Glycolysis group, and T2 had the largest
proportion in the Glycolysis group; For Stage I-IV, Stage I
had the smallest proportion in the Glycolysis group, and
Stage II and Stage IV had the largest proportions in the
Glycolysis group.

Similarly, in the HCCDB18 dataset, different clinical
features’ distribution in four molecular subtypes were
compared to see whether there were differences in clinical
features in different groups (Supplementary Figures S3(i)
and S3(j)). *e results displayed no significant difference in
the distribution of age and gender among the four molecular
subtypes. *e Mixed group showed a significant difference
from the Cholesterol and Quiescent groups in terms of the
characteristics of T Stage.

3.9. ComparingOurMolecular Subtypes andExisting Immune
Molecular Subtypes. Previous studies have found a re-
lationship between glycolytic/cholesterol metabolism and
immune infiltration [35, 36]. *erefore, we compared the
distribution of our molecular subtypes to the previous
immune subtypes. Six immune infiltration types were
identified in human tumors from counterpart tumor pro-
motion to tumor suppressors, including C1 (wound heal-
ing), C2 (INF-r dominant), C3 (inflammation), C4
(lymphocyte depletion), C5 (immunological silencing), and
C6 (TGF-beta dominant), among which, C1, C2, and C6
showed the poorest prognoses [37]. Most HCC patients in
the TCGA data of LIHC were categorized into C3 and C4
immune subtypes (about 80%), one patient was categorized
as C6, and no patient was posited in the C5 immune subtype.
It is noteworthy that the proportion of C1 and C2 immune
subtypes in the Mixed and Glycolysis groups was revealed to
be significantly higher compared to that in the Quiescent
and Cholesterol groups.*e immune subtype distribution in
different metabolic groups showed significant differences
(Supplementary Figure S4).

3.10. Comparison of Immune Scores between Different Mo-
lecular Subtypes. In order to identify the relationship be-
tween the immune and matrix scores of the four molecular
subtypes, the immune and matrix scores of each sample were
first calculated using the R software package estimate, and
then they were compared. *e results displayed significant
differences in the four metabolic groups in the TCGA and
HCCDB18 datasets StromalScore, ImmuneScore, and
ESTIMATEScore (Figure 8, P< 0.01). StromalScore and
ImmuneScore were significantly higher in the Glycolysis
group compared to the other three groups, and ImmuneScore
in the Cholesterol group was significantly lower than in the
other three groups. In addition, we performed CIBERSORTto
assess the distribution of 22 immune cells in four molecular
subtypes. Nine immune cells were differentially distributed in
four subtypes, including resting and activatedmemory CD4 T
cells, resting natural killer (NK) cells, monocytes, M0 mac-
rophages, M2 macrophages, resting and activated mast cells,
and eosinophils (Supplementary Figure S5).

3.11. Single Factor and Multi-Factor Analysis. *e related
HR, 95% CI of HR, and P value of clinical characteristics and
molecular subtypes were analyzed using univariate Cox
regression analysis on the clinical information obtained
from the whole TCGA dataset. Our molecular subtype
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(Table 1) and the clinical information recorded by TCGA for
patients, including age, gender, T stage, stage, grade, and
recurrence status. It could be seen that the risk of T3 +T4 in
T Stage staging was higher than that of T1 +T2 staging
samples; the risk of Stage III + IV samples was higher than
that of I + II samples; the risk of Quiescent group samples
was lower than that of other subtypes, while the risk of
Mixed group was higher than that of other groups. At the
same time, the multivariate Cox analysis of these clinical
features and molecular subtypes was analyzed (Table 2). *e
results showed that the Mixed group could still be an in-
dependent prognostic factor in the multivariate analysis,
indicating the reliability of our grouping.

4. Discussion

*e research on clinical-related tumor molecular subtypes
needs to move forward to accelerate the development of
personalized treatment of liver cancer. According to the

expression profiles, this study showed that genes could be
clustered as 44 cholesterol/glycolysis-related genes, in-
cluding 13 glycolysis co-clustering genes and 17 cholesterol
co-polymerization genes. According to the expression of
these genes, the samples of the TCGA dataset were cate-
gorized into four metabolic groups (Quiescent, Glycolysis,
Cholesterol, and Mixed). Survival analysis revealed that the
Mixed group had a poorer prognosis, while the Quiescent
group had a better prognosis. Similarly, these genes were
used to classify the metabolism of the independent
HCCDB18 dataset, which was also divided into four groups,
and the same was that theMixed group has a poor prognosis,
while the Quiescent group had a better prognosis. *is
suggested that the high expression of cholesterol/glycolysis-
related genes in hepatocellular carcinoma was associated
with poor prognosis.

Studies on molecular typing of tumors based on the
glycolysis-cholesterol synthesis axis are relatively rare, and
there are no reports of liver cancer at present, but glycolysis
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Figure 6: GSEA of molecular subtypes. (a) GSEA results of Mixed and Quiescent groups in TCGA dataset. (b) GSEA results of Mixed and
Quiescent groups in HCCDB18 dataset.
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Figure 7: Comparative analysis of glycolysis/cholesterol synthesis-related gene samples. (a) *e expression level of glycolysis-related genes
among different groups in TCGA dataset. (b) Cholesterol synthesis-related genes expression levels among different groups in TCGA dataset.
(c) *e expression level of glycolysis-related genes among different groups in HCCDB18 dataset. (d) Cholesterol synthesis-related genes
expression levels among different groups in HCCDB18 dataset.
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Figure 8: Continued.
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can promote tumor progression, immune escape, and
chemical resistance [12], and some studies show that gly-
colysis related gene expression profile can be used as a new
prognostic risk predictor of human hepatocellular carci-
noma [38, 39]. At the same time, cholesterol and its asso-
ciated metabolites induce the growth of cancer cells [40],
while the AMPK anti-cancer function is partially mediated
through sterol synthesis inhibition [41]. Studies in liver
cancer have shown that some genes related to cholesterol
metabolism can provide candidate targets for its differential
diagnosis [42]. *erefore, this article provides a new per-
spective for the study of liver cancer based on the typing of
the glycolysis-cholesterol synthesis axis. Compared with the
existing immune molecular subtypes, it was found that the
Mixed group contained more immune subtypes C1 and C2
with poor prognosis, which showed that our typing was
reasonable and reliable.

*erefore, the typing proposed in this study was
a meaningful new typing, and it was found that the dif-
ferentially up-regulated genes in the Mixed group in TCGA
and HCCDB18 dataset were related to the pathway of tu-
morigenesis and development, whereas the depleted DEGs
related to the metabolism. At the same time, GSEA analysis
in TCGA and HCCDB18 datasets also revealed that the
Mixed group samples were significantly correlated with
tumor-related pathways. Cancer cells enhanced carcino-
genic metabolic pathways such as glutamine metabolism,
pentose phosphate pathway, fatty acid synthesis, and cho-
lesterol synthesis. *is carcinogenic metabolism involved

several transcription factors and molecules, including WNT
[43]. *erefore, the Wnt signaling pathway enriched in the
Mixed group in our study was consistent with the study that
Wnt could regulate carcinogenic metabolism and contribute
to cell invasion and metastasis.

Tumor metabolic heterogeneity has been attributed to
mutations in somatic driver genes as well as tumor subtypes
[13]. *e Loss ratio of the TP53 gene and the Gain ratio of
CTNNB1 were significantly higher in the Mixed group
compared to the Quiescent group. Carcinogenic TP53 and
CTNNB1 mutations with loss of function have been re-
ported to have an inducing effect on the glycolysis pathway
in cancer. Moreover, glycolysis has been shown to con-
tribute to tumor progression and chemotherapy resistance
in tumors [14, 15]. *e present findings showed to be
consistence with earlier studies reported in the literature,
indicating the reliability of our molecular subtype. In
addition, decreased MPC activity has been revealed to be
associated with a poorer prognosis in some cancer
types [18].

In the four groups of the TCGA dataset, the mutation
and copy number variations in the four groups were
compared. Accordingly, (1) no significant difference in SNV/
InDel was found among the four groups; (2) the proportion
of Loss of gene TP53 was significantly higher in the Mixed
group compared to that in the Quiescent group; and (3) the
proportion of Gain genes MYC and CTNNB1 was signifi-
cantly higher in the Mixed group compared to that in the
Quiescent group.
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Figure 8: Comparison of immune scores between molecular subtypes. A-C: comparison of immune scores between molecular subtypes in
TCGA dataset. D-F: comparison of immune scores between molecular subtypes in HCCDB18 dataset.
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According to the present findings, it was found that the
Glycolytic group had higher immune infiltration and might
respond better the immunotherapy. *is study proved that
the mutation in a variety of metabolic genes and the ex-
pression of specific enzymes led to the unique metabolic
profile that can be used to predict the clinical prognosis of
specific liver cancers. Metabolic analysis of hepatocellular
carcinoma based on the metabolic reprogramming that
occurred in the cancerous cells can be used as constructive
guidelines for determining the treatment alternatives, drug
resistance possibility, as well as predicting the expecting
responses and potential treatment outcomes.

Although many sufficient analyses were made in the
early stage of this study, by comparing the expression profile
of glycolysis/cholesterol synthesis-related genes in different
groups, we observed a significantly higher expression of
molecular subtype compared to that of normal samples,
which confirms the certain relationship of incidence and
progression of liver cancer with the glycolysis/cholesterol-
related genes. However, further experimental evidence is still
needed to confirm the conclusions of this study, such as
experimental verification of the differences in the expression

profiles of glycolysis/cholesterol-related genes, exploring
significant differences in the protein expression levels of
DEGs, and the key effects of these DEGs on tumor pro-
gression and prognosis, in different subtypes. Additionally,
the possible interaction regulation mechanism needs to be
further studied.

*e molecular subtype identified in this paper show
different prominent clinical characteristics, mutation char-
acteristics, pathway characteristics and immune character-
istics, which provide guidance for the research of targeted
drugs based on the glycolysis cholesterol synthesis axis.
Different groups of patients with liver cancer should be
evaluated in clinical trials, and this classification can be used
as an important auxiliary means of histopathology. *rough
the existing means of tissue detection, observation, and
determination, as well as the use of emerging genome de-
tection to query the mutation and amplification of key
genomes, the taxonomic subtypes developed in the present
study can be applied to new cases of liver cancer. It is ex-
pected that the present results will promote the development
of clinical trials, explore treatment methods in the identified

Table 2: Multivariate Cox regression analysis of clinical features
and molecular subtypes in TCGA dataset.

Variables
Multivariable analysis

HR
95% CI of HR

P
Lower Upper

Cholesterol
Age 1.28 0.88 1.88 0.20
Gender 0.84 0.57 1.23 0.37
T Stage 2.64 0.35 19.80 0.34
Stage 1.00 0.14 7.45 1.00
Grage 1.17 0.80 1.71 0.41
Recurrence 1.06 0.72 1.54 0.78
Cholesterol 0.56 0.36 0.88 0.01
Glycolysis
Age 1.25 0.86 1.84 0.25
Gender 0.85 0.58 1.26 0.43
T Stage 2.37 0.32 17.85 0.40
Stage 1.05 0.14 7.85 0.96
Grage 1.17 0.80 1.71 0.42
Recurrence 1.07 0.73 1.56 0.73
Glycolysis 1.36 0.87 2.11 0.18
Mixed
Age 1.21 0.82 1.78 0.33
Gender 0.81 0.55 1.19 0.28
T Stage 3.33 0.44 25.19 0.24
Stage 0.73 0.10 5.54 0.76
Grage 0.98 0.66 1.46 0.91
Recurrence 0.99 0.68 1.45 0.97
Mixed 2.77 1.74 4.42 1.7E-05
Quiescent
Age 1.22 0.83 1.79 0.31
Gender 0.84 0.57 1.23 0.37
T Stage 2.30 0.31 17.17 0.42
Stage 1.05 0.14 7.82 0.96
Grage 1.13 0.77 1.66 0.53
Recurrence 1.06 0.72 1.55 0.77
Quiescent 0.74 0.49 1.11 0.14

Table 1: Univariate Cox regression analysis of clinical features and
molecular subtypes in TCGA dataset.

Variables
Univariable analysis

HR
95% CI of HR

P
Lower Upper

Age
≤65
>65 1.27 0.89 1.79 0.18

Gender
Female
Male 0.82 0.57 1.16 0.26

T Stage
T1 +T2
T3 +T4 2.54 1.79 3.61 2.2E-07

Stage
I + II
III + IV 2.45 1.69 3.55 2.3E-06

Grade
G1 +G2
G3 +G4 1.12 0.78 1.61 0.54

Recurrence
NO
YES 1.24 0.87 1.76 0.23

Subtype
Other
Cholesterol 0.65 0.43 0.98 0.04

Subtype
Other
Glycolysis 1.54 1.04 2.29 0.03

Subtype
Other
Mixed 2.69 1.76 4.10 4.7E-06

Subtype
Other
Quiescent 0.62 0.42 0.90 0.01
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patient groups, and finally improve the survival rate of this
fatal disease.

5. Conclusion

Based on the glycolysis-cholesterol synthesis axis, liver
cancer was stratified into four metabolic groups (Quiescent,
Glycolysis, Cholesterol, andMixed) through two liver cancer
datasets, and significant differences were observed in the
prognosis of the groups. Among them, the Mixed group had
a poor prognosis, whereas the Quiescent group had a better
prognosis. *is suggested that the high expression of gly-
colysis/cholesterol synthesis-related genes in hepatocellular
carcinoma was associated with poor prognosis.
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