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Electrostatically‑sprayed carbon 
electrodes for high performance 
organic complementary circuits
Kazuyoshi Watanabe1*, Naoki Miura2, Hiroaki Taguchi2, Takeshi Komatsu2, 
Hideyuki Nosaka2, Toshihiro Okamoto1,3,4, Shun Watanabe1,3* & Jun Takeya1,3,5*

Organic thin-film transistors (OTFTs) are promising building blocks of flexible printable electronic 
devices. Similar to inorganic FETs, OTFTs are heterostructures consisting of metals, insulators, and 
semiconductors, in which nanoscale interfaces between different components should be precisely 
engineered. However, OTFTs use noble metals, such as gold, as electrodes, which has been a 
bottleneck in terms of cost reduction and low environmental loading. In this study, we demonstrate 
that graphite-based carbon electrodes can be deposited and patterned directly onto an organic single-
crystalline thin film via electrostatic spray coating. The present OTFTs exhibited reasonably high 
field-effect mobilities of up to 11 cm2 V−1 s−1 for p-type and 1.4 cm2 V−1 s−1 for n-type with no significant 
deterioration during electrostatic spray processes. We also demonstrate two significant milestones 
from the viewpoint of material science: a complementary circuit, an inverter consisting of p- and 
n-type OTFTs, and an operatable metal-free OTFT composed of fully carbon-based materials. These 
results constitute a key step forward in the further development of printed metal-free integrated 
circuits.

Thin-film transistors (TFTs) are one of the most important building blocks of electronic circuits1–3, where hetero-
interfaces between various components such as metals, semiconductors, and insulators play predominant roles 
in their performance4–7. TFT manufacturing processes require sequential deposition of these components, which 
is likely to hamper the reliable production of integrated devices. For TFTs with solution-processable organic 
semiconductors (OSCs), in particular, heterointerface engineering can be more deleterious because it should be 
compatible with printing technology8,9. With recent developments in chemistry10–14 and device engineering15–20 
related to printed electronics, the performance of solution-processed OTFTs has been improving. In particular, 
for single-crystalline thin films consisting of a few monolayers of OSCs, reasonably high field-effect mobilities 
> 10 cm2 V−1 s−1 with excellent environmental stability have been achieved15–17,21,22. The improved manufacturing 
process allows for the production of large crystalline membranes with areal coverages of up to 100 cm2, which 
further facilitates the ideal production of reliable integrated circuits16.

Generally, OTFTs require sequential deposition of metal electrodes either on the top or on the periphery of 
the OSC thin films. Gold electrodes are often employed as the source, drain, and gate electrodes. There are various 
reasons for this: (1) the work function of gold (~ 5.0 eV) likely matches with the valence band edge (equivalent 
to the highest occupied molecular orbital (HOMO) of most p-type OSCs), (2) high-quality gold electrodes can 
be deposited by vacuum deposition, and (3) gold electrodes possess high environmental stability even though 
they are in the shape of ultrathin films. In particular, the quality of the gold/OSC interface is known to dominate 
the carrier injection properties and interfacial contact resistance15,21. Although electrodes based on solution-
processed conductive polymers, such as PEDOT:PSS, have been studied previously23, there are limited studies on 
substitutes for gold electrodes, which is a bottleneck in terms of cost reduction and low environmental loading 
in printed, flexible electronics.
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In this study, we demonstrate that graphite-based carbon can be deposited and patterned directly onto single-
crystalline OSC thin films via electrostatic spray coating and works as an efficient contact electrode for both 
p- and n-type OTFTs. The OTFTs exhibit excellent transistor characteristics with high field-effect mobilities of 
up to 11 cm2 V−1 s−1 for p-type and 1.4 cm2 V−1 s−1 for n-type OTFTs, a near-zero turn-on voltage, negligible 
hysteresis, and an on–off current ratio of approximately 106, which are comparable to those of gold-contact 
OTFTs14,16,24. In addition, a complementary inverter consisting of p- and n-type OTFTs was successfully operated 
at a supplied voltage (Vdd) of 5–15 V, which is one of the first organic complementary circuits to be operated with 
graphite-based carbon electrodes. We also operated a metal-free OTFT comprising only carbon-based materials, 
such as OSC, carbon contact/gate electrodes, organic polymer insulators, and organic polymer substrates. The 
results will be the basis for the further development of printed, metal-free, complementary integrated circuits.

Results
Fabrication of OTFTs with carbon contact electrodes.  We employed our benchmarked small-mol-
ecule OSCs, 3,11-dinonyldinaphtho[2,3-d:2’,3’-d’]benzo[1,2-b:4,5-b’]dithiophene (C9–DNBDT–NW)25 and 
N,N’-diphenethyl-3,4,9,10-benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (PhC2–BQQDI)14 
for the p- and n-type OTFTs, respectively. Figure 1a shows the device configuration of the bottom-gate top-

Figure 1.   Configuration and transistor characteristics of p- and n-type OTFTs with carbon contact electrodes. 
(a) Device configuration of OTFTs with carbon contact electrodes, in which a single-crystalline thin film of 
either p-type C9–DNBDT–NW or n-type PhC2–BQQDI was employed as the OSC layer. (b) Schematics of 
electrostatic spray coating of a carbon suspension including graphite powder and carbon black. The carbon 
suspension was atomized by electrostatic repulsion due to the charging nozzle to which a high voltage of 
10–13 kV was applied. The carbon was patterned on a target substrate through a CYTOP-coated stencil mask. 
(c) Transfer characteristics in the saturation regime (VD = − 30 V) and (d) output characteristics of a p-type 
OTFT including C9–DNBDT–NW as the OSC layer and carbon as the contact electrodes. (e) Polarized optical 
microscopy (POM) image of the p-type OTFT under cross-Nicol condition. (f) Transfer characteristics in the 
saturation regime (VD = 20 V) and (g) output characteristics of the n-type OTFT with PhC2–BQQDI as the OSC 
layer and carbon as the contact electrodes. (h) POM image of the n-type OTFT under cross-Nicol condition. 
The channel length (L) and width (W) of both OTFTs were 100 μm and 200 μm, respectively.
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contact OTFTs fabricated using the above OSCs and carbon contact electrodes. Al (t = 30 nm) and parylene 
(t = 200 nm) were sequentially deposited on Eagle XG glass as the gate electrode and insulator, respectively. The 
capacitance per unit area (Ci) was evaluated as 13.7 nF  cm−2 based on its thickness and relative permittivity 
εr = 3.1. Single-crystalline OSC thin films, fabricated by continuous edge-casting26, were transferred onto the 
top and then patterned by laser etching. The fabrication procedure is described in the “Materials and methods” 
section.

The goal of this study was successful deposition and patterning of carbon contact electrodes onto OSC 
thin films without any deterioration in the quality of the OSC single crystal. To achieve this, we adopted an 
electrostatic spray coating of a carbon suspension, Dotite XC-9089, which is a ternary mixture; graphite as the 
main electric conductor; carbon black as the conductive additive; and a polyacrylate binder in butyl acetate. 
Butyl acetate was selected as a damage-free solvent because of its good wettability and poor solubility in both 
C9–DNBDT–NW and PhC2–BQQDI single crystals. An electrostatic spray (Fig. 1b), in which a high voltage of 
10–13 kV is applied to a spray nozzle to atomize the ejection by electrostatic repulsion, can efficiently change the 
carbon suspension into a mist, resulting in quick evaporation of the solvent. This also contributes to reducing 
damage to the OSC films. Through electrostatic spray coating, the carbon electrode was patterned on a substrate 
of up to 100-mm × 100-mm using a stencil mask coated with a solvophobic CYTOP polymer, which prevented 
the carbon suspension from spreading out under the mask. According to the patterning method, a graphite-based 
carbon contact electrode was successfully formed on both the laser-etched OSC films, as shown in the polarized 
optical microscopy (POM) images of the resulting p- and n-type OTFTs in Fig. 1c,f. The channel length (L) and 
width (W) were 100 μm and 200 μm, respectively, so that L/W was 0.5 for both of the OTFTs. The patterning 
method also successfully reduced the OTFT channel length to 50 μm.

Evaluation of OTFTs with carbon contact electrodes.  The transistor characteristics of the p- and 
n-type OTFTs are shown in Fig.  1d,e,g,h. The effective field-effect mobilities (μeff) extracted from the trans-
fer curves in the saturation regime were 10.9  cm2  V−1  s−1 (9.8 ± 0.6  cm2  V−1  s−1, N = 6) and 1.4  cm2  V−1  s−1 
(1.4 ± 0.2 cm2 V−1 s−1, N = 3) for the p- and n-type OTFTs, respectively. These values are as high as those previ-
ously reported for OTFTs consisting of commonly-used gold contact electrodes and the same OSCs14,16,24. The 
threshold and turn-on voltages (Vth and Von) were estimated as − 2.3 and + 1.5 V for the p-type OTFT, and − 0.2 
and − 2.0 V for the n-type OTFT, respectively, indicating that both OTFTs turned on at a voltage of almost zero. 
In addition, the transfer curves in the saturation regime and the output curves exhibited negligible hysteresis and 
a high on–off current ratio of more than 106, which is textbook-like behavior. Therefore, it should be emphasized 
that electrostatically deposited carbon electrodes are excellent substitutes for conventional noble metal contact 
electrodes in OTFTs. This is also supported by the photoelectron yield spectroscopy (PYS) results in Supplemen-
tary Fig. 1 online, which revealed that the carbon suspension exhibits a high work function ΦC = 5.28 eV, which is 
as high as that of gold27. Furthermore, these results imply that the electrostatic spray coating of OSC thin films is 
a damage-free process even though the carbon suspension is directly sprayed onto surface of the films, resulting 
in a functional heterostructure between the carbon electrode and the OSCs.

In this report, we intentionally designed OFETs with the relatively large L (on the range of 100 μm). It is 
predominantly because of the restrictions of stencil mask. We found that the actual channel length on the 
substrate is slightly larger (approximately 5 μm) than the designed channel length, which corresponds to the 
length on the stencil mask. This clearly indicates that the pattern edges extend by deposition of carbon particles 
shaded from the mask pattern, i.e., the shadow effect. It is feasible to improve the patterning accuracy using a 
photolithography process.

Complementary inverter with carbon contact electrode.  A complementary inverter consists of one 
p-type and one n-type OFET; hence, it is regarded as the simplest complementary circuit. Thus, the operation of 
complementary inverters based on these OTFTs, in which one p-type and one n-type OTFT were connected to 
each other, as depicted in Fig. 2a,b, was demonstrated. Figure 2c shows the voltage transfer curves obtained at 
supply voltages (Vdd) of 5, 10, and 15 V. Full rail-to-rail swing, small hysteresis, and on–off switching behavior 
were observed at all Vdd values owing to the balanced OTFTs in the complementary inverter. The switching 
voltage, corresponding to the voltage when Vout = Vin (Vout: output voltage, and Vin: input voltage), was almost 
half the value of the applied Vdd; for example, the switching voltage was 4.89 V at Vdd of 10 V. The maximum 
signal gain (Gain = ∂Vout/∂Vin) reached 20 at Vdd of 10 V when Vin was around the switching voltage (Fig. 2e). In 
addition, the shoot-through current (Ithrough) is plotted as a function of Vin in Fig. 2d. At a 10 V operation, Ithrough 
at Vin = 0 V and Vin = Vdd = 10 V was approximately 2 nA, resulting in a minimum static power consumption of 
20 nW. Furthermore, the Ithrough exhibited a maximum value of 0.52 μA at the switching voltage. As a result, the 
simplest complementary circuit, the inverter, was successfully operated using a carbon contact electrode. All 
properties are summarized in Table 1.

Metal‑free OTFTs with carbon contact and gate electrodes.  We also demonstrated metal-free 
OTFTs by replacing the aforementioned parylene/Al/glass substrate with a fully carbon-based parylene/
XC-9089/poly(methyl methacrylate) (PMMA). The sequential fabrication procedure is illustrated in Fig. 3a. The 
carbon gate electrode was patterned on a UV/O3-treated Eagle XG glass substrate by electrostatic spray coat-
ing of a carbon suspension XC-9089 as described above. The carbon electrode was spin-coated with a 20 wt% 
solution of PMMA (Mw = 120,000) in acetonitrile and then baked on a hot plate at 80  °C for 30  min. Spin-
coating was performed twice to obtain a thick, self-standing PMMA film. A support substrate composed of 
poly(dimethylsiloxane) (PDMS) was placed on top of the PMMA film, followed by annealing at 100 °C for 1 h. 
The entire substrate was turned upside down and immersed in deionized water at RT, resulting in the removal 
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of the UV/O3-treated glass substrate (Fig. 3b). After vacuum drying overnight at RT, a carbon gate electrode 
embedded in a PMMA film was obtained. The arithmetic average surface roughness (Ra) of the carbon gate 
electrode was evaluated as 30–60 nm with imaging interferometric microscopy, resulting in a relatively smooth 
surface regardless of the average graphite particle size of 3 μm. This is because the Eagle XG glass acted as a 
smooth surface template, and both the carbon black and the polymeric binder filled the gaps among the graph-
ite particles. The following processes, such as parylene coating, transfer of the C9–DNBDT–NW thin film, and 
laser etching, were performed using the same procedure as above. As shown in the POM images obtained under 
open-Nicol (Fig. 3c) and cross-Nicol conditions (Fig. 3d), the OSC thin film was transferred above the carbon 
gate without experiencing serious damage, such as channel-crossing cracks. The Ci of the gate insulator, par-
ylene, with a thickness of 214 nm, was evaluated as 12.8 nF cm−2. Finally, integrated OTFTs on a self-standing 
PMMA film were obtained by forming a carbon contact electrode by means of electrostatic spray coating and 
then removing the PDMS support substrate. It is noteworthy that all the components, namely the substrate, 
electrodes, gate insulator, and semiconductor, are carbon-based materials rather than metals.

Figure 4a shows a 30-mm × 30-mm self-standing PMMA film, which is colorless and transparent, except for 
the carbon electrode moieties. Figure 4b,c show POM images of a metal-free p-type OTFT on the PMMA film 
observed under open-Nicol and cross-Nicol conditions, respectively. L/W of the channel was 100 μm/170 μm. 
The transistor characteristics of the metal-free OTFT were also investigated. Figure 4d–f show the transfer 
curves in the saturation regime, the corresponding μeff, and the output curves, respectively. The characteristics 
were a slight improvement on those of the aforementioned Al-gate p-type OTFT; for example, Vth and Von were 
estimated to be − 1.5 and + 1.0 V, indicating that the turn-on voltage was close to zero. Furthermore, the metal-
free OTFT exhibited a high on–off current ratio of more than 108 and a relatively high μeff of 7.3 cm2 V−1 s−1 
(4.4 ± 2.1 cm2 V−1 s−1, N = 11). Although this metal-free fabrication process can be universally applicable both to 
p-type and to n-type OSCs, the quality of single crystalline thin films of n-type OSCs has room for improvement, 
which clearly causes the lack of reproducibility in manufacturing CMOS circuits. Overall, these results suggest 
that metal-free, fully carbon-based OTFTs can be realized.

Figure 2.   Complementary inverter with carbon contact electrodes. (a) Circuit diagram and (b) device 
configuration of a complementary inverter consisting of one p-type and one n-type OTFT with carbon contact 
electrodes. (c) Voltage transfer curves, (d) shoot-through current, and (e) voltage gain in the Vdd range of 
5–15 V.

Table 1.   Characteristics of the complementary inverter with carbon contact electrodes.

Vdd (V) Vsw (V) Ithrough (A) Gainmax (V/V) Ipeak × Vdd (W)

15 7.19 1.28 × 10−6 21.0 1.93 × 10−5

10 4.89 5.19 × 10−7 19.5 5.19 × 10−6

5 2.64 1.11 × 10−7 12.8 5.56 × 10−7
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Discussion
In this study, we developed an electrostatic spray coating method to pattern graphite-based carbon contact 
electrodes onto p- and n-type single-crystalline OSC thin films without serious damage. The resultant p- and 
n-type OTFTs exhibited excellent transistor characteristics represented by high effective field-effect mobilities 
of 11 cm2 V−1 s−1 for p-type OTFTs and 1.4 cm2 V−1 s−1 for n-type OTFTs, respectively. These characteristics are 
comparable to those of common OTFTs possessing gold contact electrodes, strongly indicating that cheap, widely 
distributed, and easily accessible carbon can replace precious metals such as gold, silver, and platinum as effective 
contact electrode materials for OTFTs. The present carbon suspension can be used for other printing techniques, 
such as inkjet printing, and offset printing. Currently, we employed the commercially available graphite powder 
with the average particle size of 3 μm. Further reduction in the particle size allows a finer patterning, which will 
be a key issue for the future. Moreover, we successfully operated the simplest complementary circuit, an inverter, 
consisting of the p- and n-type OTFTs with supply voltages of 5–15 V. The spray-coated area is easily enlarged 
by extending the nozzle scanning distance, and we have already succeeded in patterning the carbon electrode 
on a 50-mm × 50-mm substrate. Herein, we also fabricated and operated a fully carbon-based OTFT composed 
of a p-type OSC, carbon electrodes, hydrocarbon polymeric insulators, and a PMMA substrate. Hence, the fab-
rication of metal-free integrated circuits using carbon electrodes will be realized in the near future, and OTFT 
applications in flexible printable electronic devices will achieve further progress.

Materials and methods
Materials.  The p-type OSC, C9–DNBDT–NW, was synthesized and purified in-house. The n-type OSC 
and PhC2-BQQDI were purchased from FUJIFILM Wako Pure Chemical Corporation. The carbon suspension 
Dotite XC-9089 (Fujikura Kasei Co., Ltd.) was prepared by mixing graphite powder (average particle size: 3 μm) 
and carbon black with polyacrylate binder in butyl acetate. The solid content was approximately 20 wt%, with 
a weight ratio of graphite:carbon black:binder of 3:1:1. All the other chemicals and materials used were com-
mercially available.

Figure 3.   Fabrication of metal-free OTFTs. (a) Sequential fabrication procedure of a metal-free OTFT 
composed of C9–DNBDT–NW as the OSC, carbon as the contact and gate electrodes, parylene as the 
hydrocarbon polymeric insulator, and PMMA as the substrate. (b) Photo of a patterned carbon/PMMA film 
being removed from a glass substrate in a water bath. (c, d) POM images of a C9–DNBDT–NW thin film 
transferred onto a parylene/carbon/PMMA film and then laser-etched. Observed under (c) open-Nicol and (d) 
cross-Nicol conditions, respectively.
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Carbon patterning with electrostatic spray coating.  Electrostatic spraying was performed using a 
Micro Mist Coater PDR-06 (Nagase Techno-Engineering Co. Ltd.). Both sides of a stainless steel stencil mask 
were blade-coated with a fluorinated polymer, CYTOP (AGC Inc.), to make the surface of the mask solvopho-
bic. After being washed with 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorooctane to remove excess CYTOP, the mask 
was placed on the target substrate and connected to the ground. The masked substrate was heated to 80 °C and 
then electrostatically spray-coated 10 times with XC-9089 by supplying the carbon suspension at a flow rate 
of 0.10 mL/min into a spray nozzle to which a 10–13 kV voltage had been applied. The nozzle scan speed was 
100 mm/s. After it was vacuum dried at 70 °C for 1 h, the patterned carbon on the target substrate was obtained 
by removing the stencil mask.

Fabrication of OTFTs and complementary inverter possessing carbon contact electrode.  p- 
and n-type OTFTs with carbon contact electrodes were fabricated on Eagle XG glass (Corning Inc.) substrates 
with a thickness of 0.7 mm. On a glass substrate cleaned by O2 plasma, 30-nm-thick Al was deposited and pat-
terned by e-beam evaporation through a stainless stencil mask (t = 50 μm). The Al layer was encapsulated by a 
200-nm-thick parylene diX-SR (KISCO Ltd.), serving as a gate insulator. As described in our previous study26, 
single-crystalline thin films of p- and n-type OSCs were obtained by continuous edge-casting of a 0.02 wt% solu-
tion of C9–DNBDT–NW in 3-chlorothiophene on UV/O3-treated Eagle XG glass at 90 °C, and a 0.02 wt% solu-
tion of PhC2–BQQDI in 1-chloronaphthalene on nano-ground glass24 at 148 °C, respectively. After edge casting, 
each substrate was cut into pieces. The C9–DNBDT–NW film was placed directly face-down on the parylene/
Al/glass substrate and then transferred to the substrate by applying a few drops of ultra-pure water between the 
two substrates22. Meanwhile, the PhC2–BQQDI film was transferred onto the parylene/Al/glass substrate via a 
relay substrate made of PDMS to avoid serious damage being made to the film24. After being vacuum-dried at 
80 °C for 10 h, both of the transferred OSC films were patterned by a laser ablation process using an yttrium–
aluminum–garnet (YAG) laser and a UV picosecond laser (λ = 355 nm). The channel length (L) and width (W) 
were 100 and 200 μm, respectively, and L/W was 0.5. The carbon contact electrodes were patterned onto the OSC 
films by electrostatic spray coating through a CYTOP-coated stainless steel stencil mask, as described above.

Complementary inverters with carbon contact electrodes were fabricated using the same procedure as above, 
but L/W was 95 μm/20 μm for p-type C9–DNBDT–NW and 95 μm/500 μm for n-type PhC2–BQQDI.

Electrical measurements.  All the electrical measurements were performed using a semiconductor char-
acterization system, 4200-SCS (Keithley), under dark and ambient conditions. The effective field-effect mobility, 
μeff, in the saturation regime was determined from the transfer characteristics using

ID,sat =
µeffWCi

2L
(VG − Vth)

2

Figure 4.   Characteristics of metal-free OTFTs. (a) Photo of metal-free OTFTs on a 30-mm by 30-mm self-
standing PMMA film. (b, c) POM images of the metal-free OTFT under (b) open-Nicol and (c) cross-Nicol 
conditions, respectively. (d) Transfer curve in the saturation regime (VD = − 15 V), (e) corresponding effective 
mobilities plotted as functions of VG, and (f) output curve of the metal-free OTFT.
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where ID,sat, L, W, Ci, VG, Vth, and VD are the drain current in the saturation regime, channel length, channel 
width, capacitance per unit area, gate voltage, threshold voltage, and drain voltage, respectively. The values of Ci 
were determined from the thickness and relative permittivity of the gate insulator parylene diX-SR.

Data availability
The data that support the plots in this paper and other findings of this study are available from the corresponding 
author (Kazuyoshi Watanabe; kaz-watanabe@edu.k.u-tokyo.ac.jp) upon request.
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