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Objective: One of the most disabling aspects of living with chronic epilepsy is the 

unpredictability of seizures. Cumulative research in the past decades has advanced our 

understanding of the dynamics of seizure risk. Technological advances have recently made 

it possible to record pertinent biological signals, including electroencephalogram (EEG), 

continuously. We aimed to assess whether patient-specific seizure forecasting is possible using 

remote, minimally invasive ultra-long-term subcutaneous EEG.

Methods: We analyzed a two-center cohort of ultra-long-term subcutaneous EEG recordings, 

including six patients with drug-resistant focal epilepsy monitored for 46–230 days with median 

18 h/day of recorded data, totaling >11 000 h of EEG. Total electrographic seizures identified 

by visual review ranged from 12 to 36 per patient. Three candidate subject-specific long short-

term memory network deep learning classifiers were trained offline and pseudoprospectively on 

preictal (1 h before) and interictal (>1 day from seizures) EEG segments. Performance was 

assessed relative to a random predictor. Periodicity of the final forecasts was also investigated with 

autocorrelation.

Results: Depending on each architecture, significant forecasting performance was achieved in 

three to five of six patients, with overall mean area under the receiver operating characteristic 

curve of .65–.74. Significant forecasts showed sensitivity ranging from 64% to 80% and time 

in warning from 10.9% to 44.4%. Overall, the output of the forecasts closely followed patient-

specific circadian patterns of seizure occurrence.

Significance: This study demonstrates proof-of-principle for the possibility of subject-specific 

seizure forecasting using a minimally invasive subcutaneous EEG device capable of ultra-long-

term at-home recordings. These results are encouraging for the development of a prospective 

seizure forecasting trial with minimally invasive EEG.
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1 | INTRODUCTION

Uncertainty is at the core of the burden of treatment-resistant epilepsy. The unforeseen, 

unpredictable times at which seizures occur, together with their potential catastrophic 

consequences, from injury to death, has wide-ranging limitations in patients’ lives, 

extending far beyond the short symptomatic (ictal) period.1–3 Approximately one third of all 

people with epilepsy continue to suffer from repetitive seizures and endure this burden.4

Reliable seizure forecasting could have far-reaching benefits for patients, from allowing 

treatment modulation according to risk (including fast-acting medication/chronotherapy and 

neuromodulation) to patient behavior modification and protection, ultimately improving 

safety and quality of life.2,5

There is, unsurprisingly, high interest from patients and investment from the scientific 

community in the development of methods for seizure prediction or forecasting.1–3
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Significant advances have been made in the past decades in the field,6 including a better 

understanding of the preictal and proictal states and their systemic/behavioral/neurological 

correlates; data repositories of long-term recordings,7 including ultra-long-term remote 

recordings8; better methodological approaches and standardized performance evaluation to 

improve the generalizability of algorithms; seizure prediction contests opening data analysis 

to a wider scientific community8,9; and a deepening of the understanding of person-specific 

seizure risk modulators (sleep, stress, mood levels) and circadian and multiday cycles.10–13

Seizure forecasting has been demonstrated using intracranial ultra-long-term EEG in 

ambulatory canines9,14 and humans,8,9,15–18 including a prospective trial.15 However, 

invasive EEG systems have the potential for serious complications,15,19 and may not 

be appropriate for all patients. More recently, considerable efforts have been made 

toward forecasting with noninvasive methods, from seizure diaries20 to commercial 

fitness trackers21 and medical-grade wristwatches.22,23 However, neither seizure diaries 

nor wearable devices are consistently able to reliability detect and validate seizures, 

in particular certain seizure types, especially when compared to gold standard video-

electroencephalography (EEG).15,24,25 Furthermore, using EEG for forecasting may offer 

advantages over other systems, given its ability to directly reflect cerebral activity.

Between the infeasibility and signal degradation of scalp EEG systems over long periods and 

the invasiveness of intracranial EEG, novel subcutaneous EEG (sqEEG) systems offer an 

attractive trade-off between minimal invasiveness/low risk and robust signal quality.26 One 

sqEEG device has been approved in Europe for continuous EEG monitoring, and others are 

at varying stages of development.27,28 We have shown in previous work that signal quality of 

sqEEG is highly stationary through time, from the beginning of the recording,26 in contrast 

to implantable intracranial EEG.29 This makes these systems particularly useful for chronic 

implantation, and for automated analysis, including seizure prediction. The detection of 

seizure cycles and their potential for forecasting also shows promise for these systems.28,30

This study aimed to assess the feasibility of patient-specific seizure forecasting, using a 

minimally invasive, two-channel sqEEG device.

2 | MATERIALS AND METHODS

2.1 | Patient population

This study included patients with medication-refractory focal epilepsy who recorded ultra-

long-term sqEEG from two prospective clinical cohorts, Zealand University Hospital 

(ZUH), Denmark31 and King’s College London (KCL), UK, from an ongoing observational 

study (ClinicalTrials.gov NCT04061707). Both studies received institutional review board 

approval, and all patients provided written informed consent. We considered in the 

analysis patients with completed and fully annotated recordings as of September 2021 

(all nine patients from ZUH and two patients from KCL). At KCL, both recordings 

were interrupted temporarily due to a now resolved device malfunction. Study recruitment 

and device implantation were also impeded by COVID-19-related restrictions, resulting 

in a limited cohort at the time of this analysis. Exclusion criteria were common to 

both centers, and included other paroxysmal conditions potentially mimicking epileptic 
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seizures (e.g., psychogenic nonepileptic seizures), insufficient evidence for electrographic 

correlates of seizures, potential clinical risk of device implantation, low seizure frequency 

(<1 seizure/week in the ZUH study and <2 seizures/month in the KCL study), and planned 

magnetic resonance imaging during the study period. (See Weisdorf et al.31 and https://

clinicaltrials.gov/ct2/show/NCT04061707for full list of eligibility criteria.)

2.2 | Study procedures

All subjects were recorded with the 24/7 EEG SubQ system. Briefly, the system 

consists of an implantable three-contact lead wire (yielding two-channel bipolar EEG) 

with a small ceramic housing, which is placed unilaterally under local anesthesia, over 

the region of preidentified or presumed ictal EEG changes. Patients then use a small 

external data logger, which connects via magnetic induction over the scalp to the implant 

housing, powering the implant and transmitting data. Recordings started 1–3 weeks after 

implantation. Patients were asked to record (i.e., connect the data logger) as much as 

possible during their everyday life, except during washing. Patients were also asked to 

report their seizures on paper (ZUH) or using an electronic diary (KCL, using the Seer 

app [https://seermedical.com/seer-app/]). Clinical care was not altered by participation in the 

study; hence, medication and other treatment changes were allowed, including fast-acting 

medication during seizure clusters. At KCL, monthly visits were also undertaken to review 

patients’ experiences with the device, their recording adherence, and seizure diaries.

2.3 | Data preprocessing and labeling

All analyses were performed on retrospective data in a pseudoprospective manner. The 

two-channel sqEEG signal is recorded at a sampling rate of 207 Hz and bandpass filtered 

at .5–48 Hz with a finite-impulse-response equiripple design and 40-dB attenuation filter, 

prior to review. Electrographic seizures were identified by an epileptologist with experience 

in sqEEG recordings (Dr. Sigge Weisdorf at ZUH, P.F.V. at KCL) and were verified by a 

board-certified clinical neurophysiologist (T.W.K. at ZUH, J.S.W. at KCL). In both cohorts, 

patient-specific electrographic seizure patterns (seizure signatures), taken from previous 

recordings, were taken into consideration during the decision. At ZUH, the EEG was 

visually inspected based on 10-min time-frequency epochs, and potential seizures were 

reviewed in the time domain.31 At KCL, the EEG was reviewed in dedicated software 

(UNEEG Episight viewer v1.11) with an inbuilt 10-min spectrogram (see Figure S1) and a 

high-sensitivity seizure detector (unpublished). The data review process at this center was as 

follows: (1) review of events marked by the seizure detector, (2) review of periods around 

the patient diary reports (within 2 h), and (3) a random sample of 6-h epochs comprising 

10% of the whole recording. Finally, the full dataset was reviewed if seizures not previously 

marked by the seizure detector were encountered on the random 10% review (Subject S02).

Based on confirmed seizures, data epochs were labeled as preictal or interictal as follows. 

One-hour preictal data segments were defined with a set-back of 5 min before the onset 

of a lead seizure (i.e., seizure preceded by >4 h without a seizure), so as to avoid the 

confounding of early seizure detection and theoretically allow reasonable time for potential 

patient action/behavior modification. Interictal data segments were defined as seizure-free 

periods at least 1 day apart from any lead seizure. Next, the data were segmented into 1-min 
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epochs and preprocessed, starting with per-segment mean subtraction, low pass filtering 

at 25 Hz, and downsampling by a factor of 2. The fast Fourier transform (FFT) for each 

channel was calculated and provided to the classifier as additional input channels. Random 

white noise-added copies of preictal data segments were generated to compensate for the 

heavily unbalanced data ratio in training. Finally, the entire dataset was amplitude (z-score) 

normalized.

2.4 | Training and testing data

The data cutoff point for splitting into training and testing was chosen at one third of the 

total recording time, with the initial third of the recording selected for training, to mimic 

a prospective trial. The prerequisites for including a recording in the analysis were: (1) the 

training data included a minimum of three 1-h preictal epochs, (2) the testing data included 

a minimum of four 1-h preictal epochs, (3) the training data included a total of interictal 

segments at least three times the total of preictal segments, and (4) the testing data included 

at least as many interictal segments as preictal segments. The training/testing cutoff point 

was shifted if needed to meet the above requirements.

Overall, the input data consisted of the processed two-channel time series and the FFT of 

each channel, as well as (for Architectures 2 and 3) the time of day by the 24-h clock, to 

allow the algorithm to learn circadian periodicities in the subject’s seizures.32

2.5 | Forecasting algorithms and postprocessing

The three candidate long short-term memory (LSTM) architectures used in this study were 

optimized after preliminary single subject analysis.32 LSTM networks have shown great 

promise in various applications in medicine, including in epileptic seizure forecasting.23,28 

For a full description of the three different architectures, see Pal Attia et al. (current issue). 

The output of each architecture was further postprocessed as follows: the raw output was 

averaged at every nonoverlapping 5-min window, and the maximum of 12 consecutive 5-min 

averages was taken to obtain an approximately hourly forecast (Figure S2).

2.6 | Statistical analysis

We based the performance assessment of the forecasting algorithms on Snyder et al.,33 

which compares the probability of successful prediction of n of N seizures with that of a 

Poisson-distributed random predictor with a matched time in warning. We further validated 

the testing approach by randomizing seizure times for each subject and recalculating 

the area under the curve (AUC) for the LSTM output, 100 times per subject. Random 

seizure times were generated such that the total number of seizures and the distribution 

of intervals between consecutive seizures remained constant.34 Improvement over chance 

was reported as the mean improvement in sensitivity while holding a constant time in 

warning.15,18 Periodicity analysis of the forecasts was conducted using the autocorrelation 

function. Comparison of forecasting horizons between different architectures was done via 

Wilcoxon rank-sum tests. Python (3.7.8) and MATLAB (MathWorks, R2021b) were used in 

the analysis.
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3 | RESULTS

3.1 | EEG recordings

Of the 11 patients considered, six met inclusion criteria and were included in the final 

analysis. Five patients from the ZUH cohort did not satisfy the data training/testing criteria: 

four patients had insufficient seizures during monitoring, and one patient had multiple daily 

seizures with periods of status epilepticus, whereby it was difficult to distinguish between 

ictal and interictal periods. Of the six patients analyzed (Table 1), recording duration ranged 

between 46 and 230 days (median = 80 days). The median data capture rate was 76.5%, 

corresponding to 18 h/day of recorded EEG. Overall, this dataset included >11 000 h of 

EEG. After visual review, 12–36 electrographic seizures were recorded per subject.

3.2 | Forecasting performance

Table 2 shows the patient-specific forecasting performance results for the three candidate 

architectures. Significant results were observed in five of six patients for the BiLSTM 

architecture, four patients with the 3/200 LSTM architecture, and three patients with the 

5/25 LSTM architecture. Two patients (E02, E09) had significant forecasts across all three 

types of architectures. For Architectures 1–3, respectively, mean (SD) AUC across all 

patients was .65 (.17), .69 (.08), and .74 (.08). Table 2 also reports sensitivity, time in 

warning, average daily false alarm rate, and percentage improvement over chance results 

after selecting a threshold at the top-left-most point of the receiver operating characteristic 

(ROC) curve. Figure 1 shows an example of a successful forecast using Architecture 3, 

binarized by the selected threshold from the ROC curve.

3.3 | Duration of predicted preictal period

Taking the threshold points as detailed above, we also investigated the duration of preictal 

periods (as a proxy for preseizure alert timing) by calculating the time between the start of 

high-risk periods and the onset of each successfully forecasted seizure (Figure 2). Median 

duration ranged from 16 min (Subject E09, 3/200 architecture) to 2 h and 52 min (Subject 

E02, 5/25 architecture). A comparison of architectures across patients showed that the 

3/200 architecture provided shorter predicted preictal times than the 5/25 and BiLSTM 

architectures (Figure 2; Wilcoxon rank-sum tests, p =.043 and .012, respectively). In all 

architectures, however, many predicted preictal periods, long or short, were not followed by 

a seizure (examples in Figure 1).

3.4 | Periodicity analysis of LSTM forecasts

We aimed to investigate whether LSTM network architectures learned or adapted to patient-

specific seizure occurrence patterns. We used an autocorrelation function to assess circadian 

(all patients, taking average hourly output) and infradian periodicity (one patient, S01, who 

was recorded for >3 months). Autocorrelation was significant at a 24-h lag for all patients in 

Architectures 2 and 3 (Figure 3), and for four patients in Architecture 1 (see also Figures S3 

and S4). Infradian autocorrelation was statistically significant in the two architectures with 

longer seizure warning periods (5/25 and 3/200), with long-term periodicity of up to 20 days 

(Figure 4).
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4 | DISCUSSION

In this study, we have demonstrated proof-of-principle and feasibility of seizure forecasting 

using a mobile, minimally invasive EEG device. To the best of our knowledge, this is the 

first study to pseudoprospectively forecast seizures with ambulatory EEG, after retrospective 

forecasting based on seizure cycles and previous seizure times was reported in a single case 

using a different subscalp device.28

Pooling data across two small cohorts, with recordings lasting from 2 to 9 months, after 

testing three deep learning LSTM-based architectures, significant forecasting was observed 

in at least half of the patients using each architecture. Despite limited (preictal) training data 

and a very unbalanced dataset (typical for seizure detection/forecasting), significant results 

were achieved. These findings indicate the richness and utility of ambulatory ultra-long-term 

EEG data for seizure forecasting,15,16 which enables the capture of electrographic patterns 

spanning a wide variety of daily circumstances and brain states. The algorithms used in 

this study were computationally efficient enough to run on commercial mobile devices (e.g., 

smartphones), with the computationally demanding training phase performed in a scalable 

cloud environment.

Forecasting performance varied between patients and different architectures. In significant 

forecasts, percentage time in warning was lower in the 3/200 architecture compared to 

the 5/25 and BiLSTM architectures, whereas sensitivity was similar across architectures. 

Seizure warning times were also shorter in the 3/200 architecture, which may be preferable 

in some situations, and suggests it may be possible to ensemble algorithms to provide 

seizure warnings with long and short time horizons.3 Conversely, the 5/25 and BiLSTM 

architectures showed significant infradian autocorrelation in the single subject tested, 

suggesting that they may be able to capture longer timescales of varying seizure risk that 

are increasingly acknowledged.11–13,30 Future studies with larger datasets should investigate 

whether certain patient populations are more amenable and/or might prefer shorter timescale 

prediction compared to longer timescale forecasting. Ultimately, the optimal cutoff values 

could theoretically be adjusted according to personal preference.18 In all architectures, many 

predicted high-risk periods, long or short, were not associated with subsequent seizures. 

These falsely predicted periods, occasionally lasting several hours, contribute to the time in 

(false) warning that could lead to alert fatigue from patients and caregivers and unnecessary 

mitigation (including fast-acting medications, neuromodulation). Continuing efforts toward 

performance improvement are important to minimize these factors.

Circadian periodicity was seen in the output of all architectures and for most patients. This 

periodicity accompanied patient-specific circadian patterns of seizure occurrence, suggesting 

that the algorithms can learn circadian patterns directly from the EEG and may not need 

explicit input, with circadian variation inferred from brain state changes in the sqEEG.26

Previous studies have reported successful forecasting with noninvasive wearable devices 

and seizure diaries.20,23 sqEEG offers the advantage of simultaneously detecting and 

documenting seizures directly and objectively, in contrast to wearables and diaries, which 
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require external EEG or other validation of seizures. Ongoing work is focused on improving 

automated sqEEG seizure detection methods, currently used for data reduction only.30

A limitation in this study was the lack of distinction between clinically impactful seizures 

and purely electrographic seizures, as well as of differentiation between seizure types. The 

limited coverage of the EEG device and the lack of semiology make this challenging without 

an additional monitoring system (e.g., concurrent video, a wearable device). It is possible 

that some missed seizures may exist in these records undetected by the screening algorithm 

and outside of the 10% random review subset (KCL, Subject S01), and/or missed seizures 

upon review of 10-min spectrograms (both cohorts). We believe several measures that were 

taken minimize this possibility, including thorough review of detected candidate ictal events 

in the time domain, and extending manual review if the automated detector was observed to 

have <100% sensitivity (KCL, Subject S02). In addition, the number of seizures per patient 

was rather low, but future work with more data should expand this analysis. Despite pooling 

patients from two cohorts in two countries, these patients might not be truly representative of 

the population of drug-resistant epilepsy, and larger studies are needed to assess the broader 

application of this technology.

A further limitation is the incomplete data capture across the study. Patients need to keep 

a logging device connected to record, and the logging device needs to be removed during 

certain daily activities (e.g., bathing) and to be recharged daily. Therefore, some seizures 

did not have sufficient preictal data for training or testing (examples in Figure 1). Data 

capture rate was 78.4% across patients, corresponding to >18 h/day of recording on average, 

which represents a similar data dropout rate to the NeuroVista study.16 Both studies were 

strictly observational, and we anticipate that when patients receive clinical feedback on their 

recordings (including real-time forecasting), adherence may improve. Nonetheless, future 

work to investigate and improve device usability may be needed.35

Other limitations of this device have been previously described, including the limited spatial 

coverage and the possibility of missed contralateral or distant seizures. A priori knowledge 

of the localization of the epileptogenic zone (including the ictal onset zone) is essential for 

the optimal placement of the device and accuracy of the seizure record.

In conclusion, we have demonstrated that seizure forecasting is possible with ultra-long-term 

sqEEG. These results support the development of future prospective forecasting trials with 

these systems, and sqEEG’s clinical potential includes other uses, such as seizure, spike, and 

sleep monitoring.28,30,31,36,37

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Patient-specific seizure forecasting with a minimally invasive two-channel 

subcutaneous EEG device is possible

• Significant seizure forecasting was observed in at least 50% of patients

• Patient-specific circadian patterns of seizure occurrence provide significant 

added value to seizure forecasting
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FIGURE 1. 
Example of a successful seizure forecast (Subject S01, Architecture 3, bidirectional long 

short-term memory). Only the testing dataset is depicted (corresponding to two thirds of the 

full recording). Lead seizures are represented as large asterisks, and clustered seizures as 

small asterisks. Light red areas depict times of predicted high seizure risk, whereas light 

green show periods of low seizure risk. White areas show periods when the patient was not 

recording. Note that two seizures did not have sufficient preictal data (red asterisks) and 

were removed from the final performance analysis. Also note the high circadian periodicity 

of the forecast, matching the patient’s preferential seizure times of day. It is also noteworthy 

that several predicted preictal periods were not followed by a seizure, contributing to 

increased time in warning
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FIGURE 2. 
Duration of predicted preictal periods. Box plots represent time from the start of high-risk 

period to the onset of each successfully forecasted seizure, for different subjects and 

architectures (left panel) and comparing the three different architectures across patients 

(right panel). Each architecture is represented by one color, in both plots. *Significant at p < 

.05; n.s., nonsignificant result (Wilcoxon rank-sum tests)
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FIGURE 3. 
Circadian distribution of seizures and of forecasts (for Architecture 3, bidirectional long 

short-term memory). Left side shows the results of the autocorrelation function of average 

hourly forecasts for each subject (red lines delineate 95% confidence interval bounds). Right 

side polar plots show the time-of-day distribution of seizures (as a percentage histogram) 

overlaid with the mean (solid lines) and standard deviation (dashed lines) of the forecast 

output at each time of day. Note the clear 24-h periodicity of the forecast for all subjects, 
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and the overall good correspondence between seizures’ time of day and seizure risk as 

determined by the forecast
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FIGURE 4. 
Long-term autocorrelation of seizure forecasts for subject S01, who recorded for 230 days. 

Each panel shows the results of the autocorrelation function of mean daily outputs of each 

forecasting architecture (Architectures 1–3, respectively). Red lines indicate 95% confidence 

interval bounds
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