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Abstract

Background: Navigation guidance in cardiac interventions is provided by X-ray angiography. 

Cumulative radiation exposure is a serious concern for pediatric cardiac interventions.

Purpose: A generative learning-based approach is proposed to predict X-ray angiography frames 

to reduce the radiation exposure for pediatric cardiac interventions while preserving the image 

quality.

Methods: Frame predictions are based on a model-free motion estimation approach using a 

long short-term memory architecture and a content predictor using a convolutional neural network 

structure. The presented model thus estimates contrast-enhanced vascular structures such as the 

coronary arteries and their motion in X-ray sequences in an end-to-end system. This work was 

validated with 56 simulated and 52 patients’ X-ray angiography sequences.

Results: Using the predicted images can reduce the number of pulses by up to three new frames 

without affecting the image quality. The average required acquisition can drop by 30% per second 

for a 15 fps acquisition. The average structural similarity index measurement was 97% for the 

simulated dataset and 82% for the patients’ dataset.

Conclusions: Frame prediction using a learning-based method is promising for minimizing 

radiation dose exposure. The required pulse rate is reduced while preserving the frame rate and 

the image quality. With proper integration in X-ray angiography systems, this method can pave the 

way for improved dose management.
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1 | INTRODUCTION

Congenital heart disease (CHD) affects 1% of the population and is the most common type 

of birth malformation worldwide.1 Patients with CHD are exposed to substantial amounts of 

ionizing radiation from diagnostic and treatment procedures.2 In recent years, the number of 

complex, long-duration pediatric cardiac interventions has risen significantly. Consequently, 

the risks associated with radiation exposure among patients have also increased, which 

is why solutions must be found to reduce the radiation dose to as low as reasonably 

achievable while maintaining the required image quality.3 Minimizing radiation exposure 

in pediatric cardiology is paramount in interventional cardiology. Patients are subjected to 

either deterministic outcomes, such as skin necrosis, which is most commonly related to 

tissue rebounds, or stochastic effects, such as an increased risk of radiation-induced cancer 

and brain tumors.4 Moreover, complex CHDs must be catheterized repeatedly, thereby 

increasing the risk of radiation-induced cancer not only for patients but also for medical 

staff.5 Radiation exposure is, therefore, a major concern for pediatric populations, and 

determining the optimal dose for each patient is a highly relevant research topic in pediatric 

cardiology.

1.1 | Radiation dose reduction in X-ray angiography

Currently, X-ray angiography is widely accepted for minimally invasive interventions and 

provides adequate spatial and temporal image resolution. Fluoroscopy and fluorography are 

the two main fluoroscopically guided intervention modes in X-ray imaging. In fluoroscopy 

mode, the X-ray images are generated instantaneously and continuously to observe moving 

objects by capturing the motion. The images in this mode are not recorded and used 

to navigate the medical devices to specific locations within the patient in real-time. 

Fluorography mode requires a higher radiation exposure to generate and record high-

resolution images for interpretation after the termination of the exposure.6 The required 

radiation dose for each acquisition mode is a function of the required image quality, the 

patient’s size, and the time required to perform the procedure. Fluoroscopy time comprises 

the total time spent using fluoroscopy for image acquisition and is considered as one of the 

effective parameters for the final patient dosage.7

Previously, conventional analog X-ray equipment was used to deliver X-ray energy in a 

continuous dose. Recently, some strategies are applied to mitigate the radiation dose to the 

patients such as using the lowest possible fluoroscopic dose rate during live fluoroscopy, 

use of low frame rates (if possible), and use of multiple short fluoroscopic exposures 

instead of keeping the fluoroscope on continuously and minimizing the beam-on time for the 

fluoroscopy imaging.6,8

Modern X-ray systems are equipped to deliver energy in pulses that can be adjusted to 7.5, 

10, 15, and 30 frames per second (fps). In pulsed fluoroscopic imaging, the X-ray beam 

is switched on and off for every fluoroscopic frame, and thus the pulse width, or time 

duration of each frame, is lower than the time required in continuous fluoroscopy imaging. 

This allows for reducing the fluoroscopy time by replacing the continuous exposure with a 

pulsed beam delivery. However, images are temporally averaged and moving objects look 

unsharp and flicking. A sequence of pulsed images, including moving objects, appears more 
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continuous and less flickering at high pulse rates or frequencies based on the critical flicker 

frequency. At low frame rates, gap filling by replicating each acquired frame multiple times 

is applied to avoid flicker and minimize blurriness of moving targets. The term frame rate 

describes the number of frames that are generated per second, while the term pulse rate 

refers to the output of the fluoroscope, specifically the number of bursts of radiation that are 

emitted per second.9

Reducing the pulse rate during complex invasive cardiovascular procedures results in a 

considerable reduction of the total energy and the patient dose required for X-ray imaging.10 

The average required dose rate scales as the square root of the frame rate, with an equal 

noise perception for the operator’s eyes in pulsed fluoroscopy imaging.9,11 Hence, if the 

frame rate is reduced from 15 to 7.5 fps, the required dose rate is reduced by 30%, while 

doubling the frame rate from 15 to 30 fps increases the required dose rate by about 40%.9,11 

One common approach for reducing the fluoroscopy time in X-ray fluoroscopy systems, 

involves the last image hold technique.12

1.2 | Relationship between motion estimation and the dose reduction for cardiac 
interventions

To keep the radiation dose as low as possible during the diagnostic and interventional 

procedures, motion compensation and prediction techniques are required to reduce potential 

misinterpretations caused by motion while preserving the image quality. Cardio-respiratory 

motion prediction has always been preferred in cardiac applications as it facilitates more 

accurate navigation procedures.

Deep learning architectures such as recurrent neural network (RNN) models are popular 

in cardiac imaging and in predicting the cardiorespiratory motion in diagnostic and 

interventional imaging processes.13–15 In these approaches, motion features (temporal and 

spatial) are extracted from image frames and memorized by the RNN model to predict 

upcoming images. However, predicting and generating realistic images and motion in an 

end-to-end system continues to present issues using existing models. Generative adversarial 

networks (GANs) are the tools used for learning deep representations. They can be used 

for both supervised and semisupervised learning by implicitly modeling high-dimensional 

data distribution. The main structure of GANs is based on training a pair of networks 

competing against each other. These two networks are generators and discriminators. The 

generator is like an art forger and produces realistic synthetic samples like images using a 

distribution. The discriminator acts as an art expert to distinguish the real sample from the 

synthetic generated one. These two networks are trained at the same time, allowing them 

to improve in their respective abilities until the discriminator is unable to tell the real and 

synthetic samples apart.16 Recently, GANs have been used as an advent method for video 

frame prediction. Prediction quality has been improved considerably using GANs, and the 

combination with RNNs has made it possible to predict multiple frames as well.17

1.3 | Proposed contribution

The contribution of this study is to predict dynamic X-ray angiography sequences using 

a generative model. A video frame prediction model is introduced to predict new X-ray 

Azizmohammadi et al. Page 3

Med Phys. Author manuscript; available in PMC 2022 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



angiography frames. We introduced a new loss function to predict the temporal and spatial 

information of the arteries in angiography sequences. To minimize the vesselness structure 

differences between the predicted and ground truth images, a multiscale Hessian-based 

loss term is added to the loss function presented by Mathieu et al.18 Then, a predictive 

RNN-based motion model is trained to estimate the motion and content of single and/or 

multiple future frame(s) based on previously acquired frames in an end-to-end system.

This work is organized as follows: Section 2.1 describes the data used, Section 2.2 presents 

the X-ray frame prediction, while Section 2.3 presents the model architecture. The results 

and discussion are presented in Sections 3 and 4, respectively.

2 | MATERIALS AND METHODS

2.1 | Data description

We developed and validated our method using both simulated and patient X-ray angiography 

datasets from Sainte-Justine Hospital. Simulated X-ray sequences generated from realistic 

XCAT computational phantoms with cardiorespiratory motion19 were first investigated. The 

simulated motion included the beating heart and respiratory motions. The simulated dataset 

includes 56 different patients (32 male and 24 female) and 112 sequences (two sequences 

per patient, showing either the left coronary artery or the right coronary artery). All the 

generated sequences had a length of 75 frames and were acquired at 15 fps. The patient X-

ray angiography database comprises 52 different patients with contrasted coronary arteries. 

This study was reviewed and approved by the Institutional Review Board of Sainte-Justine 

Hospital. Each patient presents a different number of sequences, with varying lengths. There 

is a total of 340 sequences, respectively, with a minimum and maximum length of 15 and 70 

frames. All the data were acquired at 15 fps.

2.2 | X-ray angiography frame predictions

In this section, the effects of frame predictions on dose reduction are assessed in terms 

of the required dose rate and the total fluoroscopy time. The quantitative results of this 

assessment illustrate that reducing the total fluoroscopy time can have a considerable impact 

on cumulative radiation exposure reduction.

2.2.1 | Assessment of the impact of pulse rate reduction on the total 
radiation dose reduction—In our approach, we assumed that for any specific frame rate 

(7, 15, 30, 60 fps) the number of pulses required can be reduced during an X-ray imaging 

process such that the predicted frames can replace the real X-ray frames. Depending on the 

X-ray manufacturers, the dose for a given exposure duration is directly related to the pulse 

rate.20,21 or it can scale as the square root of the frame rate for uniform noise perceived by 

the operator’s eyes.9,11 In this work, we considered the square root model.

According to this approach, for the same frame rate, a smaller pulse rate (i.e., dose rate) 

is required since T frames are predicted (Figure 1a). Considering K as the number of 

previously generated and visited frames and T as the number of predicted frames at each 

prediction mode, for every K + T frames, T frames are predicted. Thus, the number of pulses 
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required at every second can be reduced by FR × ( T
K + T ). Hence, the required dose rate 

(RDR) scales proportionally as

RDR ∝ FR × K
K + T , (1)

where the FR is the selected frame rate for the intervention or acquisition (7, 15, 30, 60 fps).

Given the parameter K, which is the number of previously generated and visited frames 

contributing to the prediction of the new frame per second, the X-ray exposure can pause at 

each predicting mode and resume in acquisition mode. Assuming tT as the required time for 

T frames prediction, tw as the required time window for K + T acquisitions, and FT as the 

entire required fluoroscopy time (in seconds), the FT  is the reduced fluoroscopy time:

FT = FT − FT
tw

× tT + tr, (2)

In any time window (tw),the exposure time is reduced by the amount of time that is required 

to acquire T frames (tT). The tr is the remaining time in the X-ray angiography sequence (tr 
= ttotal mod tw, tr ∈ W) (Figure 1b).

Figure 1b is an example showing the difference between conventional continuous 

fluoroscopy, pulsed fluoroscopy, and our method, in terms of fluoroscopy time. For the 

pulsed fluoroscopy with frame prediction, the FT = Σ tw − tT + tr = Σfti while tr ∈ W. In 

pulsed fluoroscopy, less energy is exposed as compared to continuous fluoroscopy. In our 

approach, the X-ray device is supposed to pause at each prediction mode and resume in 

each acquisition mode. Thus, the total amount of fluoroscopy required in an X-ray imaging 

process is reduced.

2.2.2 | Cardiorespiratory motion and content estimation in X-ray sequences
—The prediction of upcoming frames of a video sequence requires two components, 

namely, the visual content and pixel displacement through time or motion. Thus, the 

proposed network learns the internal representation of image evolution through the sequence 

based on its content and motion. The model in this work consists of two different encoders: 

one for the visual content and a second one for the motion of the image sequence. These 

two key components need to be decomposed among the images and predicted separately. 

The motion features are extracted by an RNN-based encoder with long short-term memory 

(LSTM) and convolutional neural network (CNN), while the visible content features are 

only extracted from the last visited image with a CNN-based model. Deep learning methods 

have been applied successfully for video frame prediction in the literature.22–24

2.3 | Model architecture

A generative model is built on an encoder–decoder framework. To extract the motion and 

content features of the images in sequences, a CNN model is used, in combination with 

an LSTM network. The LSTM cells are used to memorize the periodic aspect of the 

complex cardiorespiratory motion in the angiography sequences. According to our previous 
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work,13 the LSTM structure is robust enough to deal with different motion patterns in the 

cardiorespiratory motion signals during prediction. Therefore, an LSTM–CNN combination 

is used for a general motion estimator. The motion and content are predicted independently, 

using two encoders. Thus, the spatial and temporal dynamic features of the X-ray images 

are extracted and encoded separately. The model architecture also includes a concatenating 

section that combines the outputs of these encoders, as well as a multiscale residual that is 

used to avoid information loss before pooling in the network. The last part is the decoder, 

which reconstructs the predicted images. Figure 2 shows the complete structure of the 

model.

2.3.1 | Motion encoder—A convolutional LSTM (ConvLSTM) extracts the dynamic 

features in X-ray sequences. While the pixel-level features are extracted by a CNN, the 

sequential information is provided by the LSTM cells in the motion encoder. The motion 

encoder captures the local motions from one frame to the next in X-ray sequences. The 

cardiorespiratory movements of the objects (arteries, devices, catheters, wires, stents, etc.) 

are predicted directly (without using a surrogate object) and independently in the sequences.

The original presented motion encoder in Villegas et al.22 takes the element-wise image 

subtraction between (xt and xt+1) as an input. Since there are background movements in 

angiography images, the subtraction of original frames includes a lot of artifacts. In our 

approach, we filtered the input images by vesselness filter first and then subtracted the 

filtered input images to overcome the artifact caused by the background movement. Thus, 

the motion encoder tracks only the contrasted arteries’ movement to encode the temporal 

dynamics of transformed images through the sequence (dt). The output of the motion 

encoder is a function of filtered time frames subtraction (xv(t+1) − xv(t)), memory cell ct, and 

dt.

2.3.2 | Content encoder—The content encoder extracts the essential spatial features 

from the visible contents, such as contrasted moving objects (arteries) and the background 

(ribs, bones, and devices) in the images. It takes the last observed frame xt as input and 

encodes the spatial information in the image (CEt) using a CNN network. The last observed 

frame has the most recent and important information that is required for the prediction of the 

future frame(s).

2.3.3 | Final prediction using the content and motion encoders’ outputs—A 

multiscale encoder residual is used to compute the residual Rest at each scale or layer 

just before the pooling layers of both motion and content encoders. The outputs of both 

encoders are concatenated and combined with the residual outputs (dt, CEt, Rest) to perform 

pixel-level predictions in the decoder. These predictions can represent one or more frames in 

the future. The output of the model22 is as follows:

ME = dt, ct = fmotion xv(t) − xv(t − 1), dt − 1, ct − 1 (3)

CE = fcontent xt (4)
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Restℎ = fresidual CEℎ, dt − 1
ℎ

(5)

Outputt = fcombination dt, CE (6)

xt + 1 = fdecoder(Outputt, Rest , (7)

where ME and CE are the motion and content encoder outputs, respectively. Resh is the 

residual link at layer h being used to avoid information loss after pooling for each layer, and 

Outputt represents the combination layer that concatenates the outputs of both motion and 

content encoders. The new frame is generated as the output of the decoder going through a 

tanh(.) activation function.

2.3.4 | Loss function—A combination of terms (image space and generator loss terms) 

is minimized in this approach. We adjusted this loss function to predict the cardiac 

angiography sequences, given that the targets to track and predict are contrasted arteries. 

The total loss function is calculated as below considering the α and β as constant weights:

LTotal = αLIM + βLGAN, (8)

where LIM represents the image space loss as a combination of terms that match the average 

pixel intensities with LP, gradient difference to sharpen the predictions, and the new added 

subloss called vesselness25 difference LVss.

LIM = αLgdl + βLP + γLV ss . (9)

We penalized the difference between the second derivative of the Gaussian filter applied on 

the predicted and ground truth images with six different scales (vesselness σ range: 0.5–3 

with step size: 0.5). The output of the vesselness filter on the images is the vesselness 

response image. The second derivatives encode the shape information, and the eigenvector 

corresponding to the smallest eigenvalue is the direction of the blood vessel locally. Hence, 

the LVss is applied to minimize the local differences between the predicted and ground truth 

images, which refer to the shape of the arteries.

The gradient difference term Lgdl
18,22 is applied to sharpen the generated images. This 

term directly assesses the gradient discrepancy of the ground truth and the predictions. The 

gradient difference between the ground truth image Y and the prediction Y  is given by

Lgdl(Y , Y ) = Σi, j(‖Y i, j − Y i − 1, j | − |Y i, j − Y i, j − 1‖λ

+ | |Y i, j − 1 − Y i, j | − |Y i, j − Y i, j‖λ),
(10)

where λ is an integer greater or equal to 1 (here the λ = 1 ) and |.| is the absolute value 

function.18 The new vesselness difference term LVss matches the vesselness responses of 
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the predicted and ground truth images. The vesselness difference between the ground truth 

image Y and the prediction Y  is given by

LV ss(Y , Y ) = Σi, j IY − IY . (11)

To generate images correctly and avoid having the images being blurred by time, the 

generator loss in adversarial training LGAN is added to solve the blurriness problem and 

induces realism in the image sequences, in addition to sharpening the images.18

LGAN = − logD x1: t, G x1: t , (12)

while D(.) represents the discriminator in adversarial training and x1:t is the input images 

concatenation. The adversarial discriminator loss (Ld) is defined by

Ld = − logD x1: t, xt + 1: t + T − log 1 − D x1: t, G x1: t (13)

the concatenation of future ground truth images, and all of the predictions are represented as 

xt+1:t+T and G x1: t = xt + 1: t + T , respectively.18,22

3 | RESULTS AND VALIDATIONS

The parameters for the X-ray angiography sequences were optimized for both the simulated 

and patient datasets. The number of iterations was evaluated between 1000 to 1500 for 

the simulated dataset and between 2000 and 2500 for the patient datasets. We divided the 

dataset into two parts: 80% of the dataset for training and 20% for testing. The model 

was evaluated on each dataset separately. Each sequence was divided into time slots or 

time windows of minimum (K + T) frames. A single frame was repeatedly predicted at a 

time, and the prediction was included through the time slot while the previous predicted 

frame(s) contributed to new predictions. The number of previously generated and visited 

frames (K = 7, 10) contributing to predict the future frame(s) for the motion encoder was 

set based on capturing a complete heart cycle in time (0.8–1 s) and on the length of the 

shortest sequences in our dataset. All the parameters and hyperparameters were selected 

based on different experiments. The hyperparameters α, β, and γ were set to 1, 0.02, and 

0.01,respectively,based on the experiments.

The quality of the predicted images was reduced by increasing the number of predictions. 

The visual quality of the predicted images using our method (the vesselness-based 

MCnet) was assessed as compared to the original MCnet in terms of certain similarity 

measurement metrics such as peak signal-to-noise-ratio (PSNR) and structural similarity 

index measurement (SSIM) (Tables 1–2). In our experiments, we predicted up to three 

frames with over 60% SSIM for both the original and vesselness-based MCnets (Tables 

1–2).

According to the experiments, the quality of the predicted images is reduced by increasing 

the number of predictions. With the simulated data, the first three frames were well-

predicted with 24–29 PSNR and between 87% to 97% SSIM (Table 1). For the patient 
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dataset, the best results refer to K = 10 in which the first three predicted frames reach 

between 68% and 82% SSIM (Table 2). Our experiments show that the parameter K must 

be equal to or greater than the number of frames required to cover a cardiorespiratory 

cycle.Moreover, the values for the parameter K in our experiments depend on the length of 

the shortest sequences in our patient dataset such that the K + T must be equal to or less 

than the length of the shortest sequence in our dataset (13 frames). Based on the overall 

experiments with a patient and simulated datasets (Tables 1 and 2), the first three predicted 

frames have over 60% SSIM and the vesselness structure is clearly visible. Thus, at each 

second during the X-ray imaging process, the patients can be exposed to three fewer pulses 

while keeping the same frame rate (15 fps). The required frame acquisition (i.e., pulses) for 

a 15-fps sequence can drop by 23–30% (for K = 10 and, K = 7 respectively), and according 

to (1), the average required dose rate for 15 fps imaging on every second can be reduced by 

0.63–0.47, as compared to real acquisition. Figure 4a,b show the samples of prediction with 

K = 7 and 10,respectively,and Figure 5 shows the overlay of the manually segmented ground 

truth arteries (in green) and the predictions.

To evaluate the motion prediction, we applied optical flow to estimate the motion between 

consecutive predicted frames as well as the ground truth frames. Optical flow is one 

common approach to detect the motion of moving objects in an image sequence, and it 

is defined as the distribution of visible velocities of moving objects in an image. Figure 3 

shows the estimated movements between the four consecutive frames with optical flow. In 

the first row, the motion arrows are extracted from the ground truth sequence, and in the 

second and third rows the motion arrows are extracted from the predicted images using the 

vesselness MCnet and the original MCnet, respectively. The optical flow fields between each 

moving frame and the previous (source) frame are overlaid by moving frames (F = 7,8,9). 

The motion vectors in the frames predicted using the vesselness MCnet have mostly the 

same directions and same intensities in the region of interest (arteries) as the ground truth in 

all frames, while the intensities and directions of the detected motion vectors are different in 

the predicted frames using original MCnet.

From the test dataset, we randomly selected 30% of the sequences to evaluate the predicted 

content of the generated images with K = 7 (visited frames) and T = 3 (predicted frames). 

Coronary arteries were segmented in three consecutive frames of each selected sequence in 

both groups (ground truth and predictions) by a trained operator. From the resultant masks, 

we computed the Dice coefficients and Euclidean distances between the ground truth and 

the predicted images. Euclidean distance was calculated between the extracted centerlines of 

the segmented masks. Additionally, we reported results of a conventional gap-filling method 

(baseline) in the selected dataset (Table 3). The gap-filling method copied multiple times the 

last visited frame instead of being predicted. The Euclidean distance and Dice coefficients of 

the predicted images in our method and the ground truth were computed and compared with 

the Euclidean distance and Dice coefficients of the ground truth and the copied frames used 

as the gap filling.

The average computed Dice coefficients (between the ground truth and predicted images) 

over three predictions using our method was 0.78 ± 0.07, while this value for the 

conventional gap filling was 0.63 ± 0.05. Table 3 shows the comparison of our approach 
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and gap filling in terms of the computed Euclidean distances between the centerlines of the 

ground truth and the predictions. Based on these evaluations, for three consecutive frames, 

the results of the frame prediction with our approach outperform the baseline method (gap 

filling).

4 | DISCUSSION

This work presents a novel radiation dose management approach for pediatric interventional 

cardiology using a generative learning-based video frame prediction approach. This study 

can also facilitate the navigation of X-ray-guided interventions given the intrinsic motion 

compensation strategy it has in the frame predictions.

In our approach, a predictive model was introduced rather than an interpolation approach 

since interpolation methods require both future and former information. In frame prediction 

using this model, the idea is to extract the cyclic cardiorespiratory motion features from the 

previous frames and combine them with the visual content of the last visited frame.

The correlations between spatial and temporal features extracted from the previous frames 

allow self-supervision of the prediction of single or multiple frame(s) in an end-to-end 

system. This model can be transferable to adult patients by performing training on clinical 

data from adults. Additionally, the presented model can be fully adaptive to different 

patients with distinct respiratory and cardiac motion patterns. Compared to other video 

frame applications, X-ray sequences have less inherent uncertainty and variety when it 

comes to estimating upcoming frames since their grayscale images include limited objects 

for tracking, and the cardiorespiratory motion is periodic. However, the main challenge with 

X-ray sequence prediction in comparison to natural video prediction lies in the moving 

background, which makes motion prediction more complex in the former. In this work, we 

applied a new loss function and changed the input of the motion encoder using a vesselness 

filter to overcome the artifacts caused by the moving background.

Obtaining a minimum required image quality in X-ray angiography is highly challenging 

since different types of interventions may require different image qualities. Our results 

show the potential of our method for reducing the fluoroscopy time for pediatric cardiac 

interventions. In this work, we only focused on the pulse rate and fluoroscopy time reduction 

since our dataset was retrospective. Other dose indicators such as cumulative air kerma 

should be considered along with fluoroscopy time in our future work.

Significant efforts have been invested in improving the new generation of X-ray devices, 

given the importance of radiation dose reduction not only for pediatric patients with high 

potential risks of cancer but also for adult patients, cardiologists, and medical staff.26–28 

This study can thus pave the way for the next generation of X-ray imaging devices, as it 

allows to optimize the induced radiation dose for patients and staff.

Future work will consider incorporating the heart cycle information using the ECG 

signal for more accurate motion estimation. Other model-based or hybrid approaches 

can be investigated to improve the accuracy of motion prediction. Additionally, video 
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superresolution methods can be included in the content predictor to improve the image 

quality of predictions.

5 | CONCLUSION

This work presents a novel radiation dose management approach for pediatric interventional 

cardiology using a learning-based video frame prediction. Such a prediction can reduce the 

amount of accumulated radiation dose for patients and staff by exposing them to fewer 

pulses while preserving the frame rate and the image quality.
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FIGURE 1. 
(a) The sequence at 7 fps frame rate is acquired partially with exposed pulses and partially 

with predictions such that the pulse rate gets reduced while the frame rate remains constant 

(K = 4 and T = 3). (b) An example of three different fluoroscopy techniques. Less 

fluoroscopy time is required for pulsed discrete fluoroscopy by pausing the radiation beam 

after K acquired images for a prediction time tT in each time window tw compared to other 

methods (FT < FTp < FTc)
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FIGURE 2. 
The motion-content model structure. Two encoders extract the motion and content features 

separately (ME and CE). The input for the motion encoder is a subsequence of previously 

acquired and visited frames filtered by the vesselness filter. The input for the content 

encoder is the last visited frame. The outputs of these two encoders are concatenated to be 

decoded as a subsequence of predictions. The motion and content residuals are added to 

avoid information loss
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FIGURE 3. 
Optical flow estimated motion fields of the ground truth sequence (top-white arrows) and the 

generated frames with vesselness-based MCnet on the second row and original MCnet on 

the third row (yellow arrows). The optical flow fields are overlaid to the predicted frames 

F7–F9

Azizmohammadi et al. Page 15

Med Phys. Author manuscript; available in PMC 2022 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
The first row shows the ground truth sequence. The second and third rows show the results 

of vesselness-based MCnet and original MCnet, respectively. The predicted images are 

identified with a red outline and the last visited frame with a green outline
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FIGURE 5. 
An overlay of the manual segmentation masks for the ground truth in green and predicted 

sequences in red
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TABLE 1

Average similarity measurements of the predicted images over the testing data on three predicted images for 

the simulated dataset

Frame PSNR Original MCnet PSNR SSIM Original MCnet SSIM

Simulated data K = 7, T = 1,2,3

Frame 1 28.28 27.98 0.94 0.89

Frame 2 25.47 24.85 0.92 0.85

Frame 3 23.90 23.01 0.88 0.82

Simulated data K = 10, T = 1,2,3

Frame 1 29.13 28.82 0.97 0.86

Frame 2 27.65 25.10 0.93 0.83

Frame 3 24.14 23.12 0.87 0.81

Abbreviations: PSNR, peak signal-to-noise-ratio; SSIM, structural similarity index measurement.
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TABLE 2

Average similarity measurements of the predicted images over the testing data on three predicted images for 

the patient dataset

Frame PSNR Original MCnet PSNR SSIM Original MCnet SSIM

Patient data K = 7, T = 1,2,3

Frame 1 27.10 26.75 0.79 0.80

Frame 2 24.42 23.59 0.68 0.70

Frame 3 23.10 21.54 0.61 0.61

Patient data K = 10, T = 1,2,3

Frame 1 27.97 26.80 0.82 0.78

Frame 2 25.65 24.62 0.74 0.69

Frame 3 24.14 23.32 0.68 0.63

Abbreviations: MCnet, Motion Content network; PSNR, peak signal-to-noise-ratio; SSIM, structural similarity index measurement.
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