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1. Introduction

Wastewater-based surveillance (WBS) has been used as a public health
tool tomonitor SARS-CoV-2 infection in the population since the beginning
of the COVID-19 pandemic. So far, WBS has been widely implemented in
over 67 countries (Naughton et al., 2021). The Centers for Disease Control
and Prevention (CDC) also launched the National Wastewater Surveillance
System in late 2020 tomonitor the spread of COVID-19 in the United States
(CDC, 2020). Wastewater pools SARS-CoV-2 particles excreted by infected
individuals irrespective of clinical symptoms or presentation, which pro-
vides an opportunity to capture the viral shedding prior to symptoms and
estimate the true magnitude of viral infections in communities (Bivins
et al., 2020; Hart and Halden, 2020; Peccia et al., 2020; Randazzo et al.,
2020; Saguti et al., 2021; Wu et al., 2022b). Previous work has shown
that SARS-CoV-2 concentrations in wastewater were much higher than ex-
pected from clinically reported cases and preceded clinically reported data
by 4–10 days (Wu et al., 2020, 2022b; Peccia et al., 2020), and up to 14
days (Krivoňáková et al., 2021; Karthikeyan et al., 2022). Furthermore,
the fast turnaround time of wastewater and flexible sampling strategy en-
able WBS to provide a near real-time monitoring of viral transmission in
the sewershed. Finally, WBS is less resource intensive than the large-scale,
individual-based clinical testing and thus can be used as a cost-efficient
tool for monitor the trend of viral infection in the population and new var-
iants when combined with next-generation sequencing (Bivins et al., 2020;
Safford et al., 2022; Wu et al., 2022a). These properties make WBS a feasi-
ble public health tool tomonitor SARS-CoV-2 in an endemic,which can also
be customized for future pandemics.

WBS has enabled researchers to estimate the total viral load in a
sewershed; however, there are still limitations regarding quantifying and
predicting viral transmission in a community. Few recent studies have
tried to build classical susceptible-infected-removed (SIR)-type models to
bridge the measured viral concentration and reported case number. For ex-
ample, Proverbio et al. (2022) added a variable that keeps track of actively
shedding individuals in a stochastic susceptible-exposed-infectious-
recovered (SEIR) model and used a constant viral shedding rate to connect
the number of infected cases to viral concentration in wastewater
(Proverbio et al., 2022). Conversely, Brouwer et al. (2022) accounted for
time dependent viral shedding rates by incorporating multiple subclasses
with different shedding rates within each infected stage of themodel to bet-
ter predict viral concentrations and reported cases (Brouwer et al., 2022). A
similar approach is conducted by Nourbakhsh et al. (2022), but with more
sub-classification of the infected class (Nourbakhsh et al., 2022). These
modeling approaches allow the modelers to connect viral concentrations
in wastewater with the reported cases and predict the course of the pan-
demic.

Dynamical models in epidemiology often overlook the opportunity to
utilize biologically interpretable and experimentally measurable parame-
ters in the link between infected people and the shed viral RNA inwastewa-
ter. Themodel structure is usually complicated withmany parameters, so it
is difficult to fully parametrize the models without running into issues such
as model identifiability. Hence, our primary objective in this work is to le-
verage our understanding of the biology of SARS-CoV-2 shedding to con-
struct a simple, mechanistic, dynamic model that connects viral load in
wastewater with the total number of infected cases in the sewershed. Our
secondary objective is to introduce the effect of wastewater temperature
into the modeling framework due to its significant impact on the viral
loss (or decay) rate in the sewer (Hart and Halden, 2020).

2. Materials and methods

2.1. Samples and wastewater data

Raw, 24-h composite wastewater samples were collected from the Deer
Island wastewater treatment plant inMassachusetts from October 02, 2020
to January 25, 2021. TheMassachusetts wastewater treatment plant where
we obtained samples has two major influent streams, which are referred to
2

as the “northern” and “southern” influents. The daily flow rates during the
sampling period for the northern and southern influents are 4.54e5–2.3e6
m3/day, and 2.16e5–1.19e6m3/day, respectively. Together the two catch-
ments represent approximately 2.3 million wastewater customers in Mid-
dlesex, Norfolk, and Suffolk counties, primarily in urban and suburban
neighborhoods. There are 5100miles of local sewers transportingwastewa-
ter into 227 miles of interceptor pipes to the wastewater treatment plant
(www.mwra.com), and the typical turnaround time for the plant to treat
wastewater is 24 h. Samples were processed as they were received. Experi-
mental methods and data were reported in our previous work (Wu et al.,
2022b; Xiao et al., 2022). Briefly, the samples were pasteurized at 60 °C
for 1 h for disinfection, and thenfilteredwith 0.2 μmhydrophilic polyether-
sulfone membrane (Millipore Sigma) to remove bacterial cells and debris.
Then, 15-ml filtrate was concentrated to ~200 ul with Amicon Ultra Cen-
trifugal Filter (30-kDa cutoff, Millipore Sigma), and lysed with Qiagen
AVL buffer followed by RNA extraction with Qiagen RNeasy kit. SARS-
CoV-2 concentrations were quantified by one-step reverse transcription-
polymerase chain reaction (RT-PCR) with the Taqman Fast Virus 1-Step
Master Mix (Thermofisher) and CDC N1 and N2 primers/probes. Ct values
were transformed to copies per ml of wastewater using standard curves for
N1 and N2 targets established with synthetic SARS-CoV-2 RNA (Twist Bio-
science) as the template. To compute the total viral load in the sewershed,
wefirst averaged the viral concentration in the northern and southern influ-
ents by the sampling date, which is then multiplied by the total influent
flow rates (i.e., sum of flow rates of northern and southern influents) on
the same day.

2.2. Clinical data source

The clinical COVID-19 case data for Norfolk, Suffolk, and Middlesex
Counties served by the Massachusetts wastewater treatment plant were
downloaded from Massachusetts government website (www.mass.gov).
The plant covers about 71.9 % of the total population in the three counties,
including almost all of Suffolk County (99.8 %), 59.8 % of Middlesex
County, and 68.7 % of Norfolk County, based on the 2020 Census popula-
tion data. For simplicity, we summed the number of clinical cases from
each county to represent the total cases in the catchment of the wastewater
treatment plant, which is used to compare with the modeling results. Tem-
poral fecal viral shedding data from COVID-19 patients were kindly pro-
vided by (Wölfel et al., 2020).

2.3. Relationship between wastewater viral concentrations and infectious cases

Assuming we can obtain the fecal viral shedding distribution function
over time, we can approximate a constant rate of fecal viral shedding
over the duration of infectiousness. In this way, the viral RNA production
is proportional to the number of people in the infectious compartment I
of the SEIR model. That is:

total viral production in wastewater≈α � β� 1 � γð Þ � I, (1)

where the proportional constant is defined based on biological parameters
similar to (Saththasivam et al., 2021): α is the fecal load with unit g/day/
person, β is the viral shedding rate in stool with unit viral copies/g, and γ
is the fraction of viral loss in the sewer.

2.4. Approximation of fecal viral shedding profile

A key component of this approach is the generation of fecal viral shed-
ding profile. Let f(t) be the function that describes the temporal fecal viral
shedding profile. Upon infection, the shedding of virus in stool should be
very small, then reaches a peak before decreasing to 0. Mathematically,
this means f(0) = 0, lim

t!∞
f tð Þ ¼ 0 and f(t) has a unique maximum for

some t > 0. While beta and gamma functions are often used to represent f
(t) (Wu et al., 2022a; Ferretti et al., 2020; He et al., 2020), we introduce a

http://www.mwra.com
http://www.mass.gov
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phenomenological function f(t) that is more tractable than the standard
beta and gamma functions:

f tð Þ ¼ ω1t
ω2
2 þ t2

: (2)

In this form,ω1 is a magnitudemodifier parameter (log10 viral RNA copy
per g per day) andω2 (day) represents the timing for peak viral shedding and
influences the timing and the magnitude of the peak of the viral shedding
profile. Specifically, f(t) peaks at ω1

2ω2
when t= ω2. Thus, if the peak timing

and magnitude of the viral shedding profile are known, then f(t) can be
uniquely defined. It is necessary tomention that f(t) is the overall viral shed-
ding into the wastewater from infected individuals; however, it mostly
means fecal shedding in this work. We did not include the viral shedding
from urine or other sources (sputum or saliva) because previous studies
showed that no or low level of viruswas detected in urine samples of typical
patients despite high viral load (Wölfel et al., 2020; Jones et al., 2020), and
the total amount of virus in sputum or saliva are likely to be insignificant
compared to stool due to the huge difference in volume.

2.5. Simple wastewater epidemiological model

S
0 ¼ � λIS

E
0 ¼ λIS � kE

I
0 ¼ kE � δI
V

0 ¼ αβ 1 � γð ÞI

(3)

In this model, S denotes the susceptible population, E is the infected but
yet to be infectious population (or the exposed class), I is the infectious
class, and V is the cumulative viral load in wastewater. The R compartment
(recovered individuals) does not contribute to the transmission dynamics in
the SEIR model, hence omitted here. Susceptible people are infected by the
infectious class at a rate λI. Exposed individuals become infectious at a rate
k. Infectious individuals recover at a rate δ and shed virus at a rate α × β,
where α is the fecal load and β is the average viral shedding rate in
Eq. (1). The time spent in the E and I classes are exponentially distributed
with average duration of 1/k and 1/δ, respectively. γ is the viral degrada-
tion and loss rate in the sewer pipes, so only a fraction (1 − γ) of virus is
detected in the wastewater sample. The expression for V follows directly
from Eq. (1).

Several studies note that infectious virus is detectable in nose and throat
swabs only when the total viral load is above 105−6 copies/mL (Killingley
et al., 2022; Ke et al., 2021; Wölfel et al., 2020; Kampen et al., 2021).
Since a certain level of infectious viruses is required for disease transmis-
sion, this implies that the infectious period does not start until the viral
load (within host) reaches above 105−6 virus copies/mL. The shedding of
infectious virus that links to transmission happens early and rapidly dimin-
ishes within 10 days after symptom onset; however, significant heterogene-
ity exists (Ke et al., 2022; Heitzman-Breen and Ciupe, 2022; Boucau et al.,
2022). This agrees with previous observations that viral loads above 106

copies/mL are associated with a high probability of transmission (Ke
et al., 2021). Together, these observations suggest that in this SEIR epi-
demic model, we can separate the exposed class (E) based on the duration
before viral load reaches 105−6 copies/mL, and the infectious class (I)
based on the duration that viral load stays above 105−6 copies/mL. This re-
sults in an incubation period of about 3 days and an infectious period of 8
days based on the viral dynamics profile in the SARS-CoV-2 Human Chal-
lenge experiment in healthy young adults (Killingley et al., 2022). These es-
timates are within previous estimated ranges of 2–7 days for incubation
periods (Li et al., 2020; Lauer et al., 2020; Guan et al., 2020) and consistent
with the updated guideline from CDC where the average infectious dura-
tion is about 2 days before and 8 days after symptom onset (CDC, 2022a).
Thus, we fix the average exposed duration to 3 days, which is equivalent
to fixing k ¼ 1

3 per day (Fig. 1A). Similarly, we fix the average infectious
3

duration to 8 days, which is equivalent to fixing δ ¼ 1
8 per day. Thus, in

our model, parameters λ, α, β, and γ need to be estimated.
Byfitting themodel towastewater data covering the secondwave of the

pandemic, specifically, fromOct 2 toDec 16, 2020, we can approximate the
susceptible (to an emerging variant) to be the entire population served by
the wastewater treatment plant. For simplification, we assume that there
are no infectious individuals initially (I(0) = 0), only infected individuals
(E(0)> 0) due to the assumed lack of immunity to new circulating variants.
The initial value for the virus concentration in wastewater can be taken
from the first data point. Thus, E(0) is the only unknown initial condition.

The parameters and initial conditions that remain to be estimated are: λ,
α, β, γ, and E(0). Since the viral production rate is αβ(1− γ), and we only
have viral concentration (or total viral load) data, it is impossible to esti-
mate a unique set of values, or specific values, for α, β, and γ. For example,
the product of α=1, β=2, γ=0.5 is the same aswhen α=10, β=1, γ=
0.9. This reflects the pertinent issue of model identifiability in mathemati-
cal models in biology and epidemiology (Tuncer et al., 2022; Eisenberg
et al., 2013; Wu et al., 2019; Ciupe and Tuncer, 2022). Thus, an important
step in our approach is the direct estimations of β and γ, which would allow
us to identify α uniquely.

2.6. Incorporating the effect of temperature on the viral degradation rate

In order to account for temperature variation over time, a sine curve
was fit to the average of temperatures at the northern and southern influ-
ents (Brozak et al., 2022). The curve describing the temperature in degrees
Celsius at time t (Fig. S1) is given by

T tð Þ ¼ 3:6249 sin 0:0202t � 4:4665ð Þ þ 16:2298:

The temperature-adjusted half-life is described by

η Tð Þ ¼ η0Q10
− T tð Þ−T0ð Þ=10 °C; ð4Þ

where η0 is the half-life in hours at ambient temperature T0 and Q10 is the
temperature-dependent rate of change (McMahan et al., 2021; Hart and
Halden, 2020). Q10 is typically between 2 and 3 for biological systems,
and assumed here to be 2.5 (Bˇehrádek, 1930; Reyes et al., 2008).

The temperature-adjusted first-order decay rate ξ(T) (per hour) is then

ξ Tð Þ ¼ ln 2
η Tð Þ :

We used the simple exponential decay equation V ′ ¼ � bη Tð ÞV to esti-
mate the losses in the sewer γ. Then,

V tð Þ ¼ V0e−ξ Tð Þt ; ð5Þ

where V0 is the amount of viral RNA in the sewers at time t= 0. Thus, the
amount of virus that arrives to the wastewater treatment plant is

V tarriveð Þ ¼ V0e−ξ Tð Þtarrive ; ð6Þ

where tarrive is the time it takes the viral RNA to travel to the wastewater
treatment plant after excretion. The amount of virus lost is given by V0 −
V(tarrive). Thus, the proportion of viral RNA lost in the sewer is given by

γ Tð Þ ¼ V0−V tarriveð Þ
V0

¼ 1−
V tarriveð Þ

V0
¼ 1−e−ξ Tð Þtarrive ; ð7Þ

where the last equality follows from Eq. (6). We provide estimates of the
die-off fraction under various scenarios in Table S3 (Supplementary Mate-
rial). Note that γ(T) varies with temperature over the course of fitting and
forecasting.



0 5 10 15 20 25 30
0

2

4

6

8
Vi

ra
l s

he
dd

in
g 

(lo
g1

0,
 c

op
ie

s 
pe

r g
)

Days post infection

E

I

R

S E I R

0 5 10 15 20 25 30
0

2

4

6

8

Vi
ra

l s
he

dd
in

g 
(lo

g1
0,

 c
op

ie
s 

pe
r g

)

Days post infection

Average viral shedding rate

Fecal shedding
Model shedding

A B

3 d

8 d

Fig. 1. Illustration and fitting fecal viral shedding dynamics. (A) Illustration of the fecal viral shedding dynamics based on the infection progression. The viral shedding profile
is divided into three periods shaded: Exposed (E), Infectious (I), and Recovered (R). The red-shaded region is the period of infectiousness I, which is corresponding to the
compartment I in the SEIR model. (B) Fitting of the proposed viral shedding function to viral shedding in hospitalized patients' stool data from (Wolfel et al. 2020). While
aggregated data seem to show a viral shedding peak at around day 13–14, declining trends were found in the 9 individual cases. The average viral shedding rate in stool
during the infectious period (from day 3 to day 11) is 4.49 × 107 viral RNA per g. The horizontal dashed line is the average fecal viral shedding rate for infectious
individuals inferred from the model. The viral shedding peak is set at the 4th day post infection.
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2.7. Data fitting

Our goal is to fit the SEIR-V model to viral concentration in wastewater
data to infer the true number of cases. Then, we compare the predicted
number of cases with the daily reported case data. In our model, the vari-
able V is the cumulative viral load in wastewater. Thus, the difference of
V in every 24-hour period reflects the daily measurement data of total
virus concentration in wastewater. To reflect this observation, we aim to
minimize the sum of square error (SSEV) between these two quantities in
our fitting. Hence, our minimization objective is:

SSEV ¼ ∑td log
Z td

td−1
V 0 sð Þds

� �
− log V̂ tdð Þ� �� �2

: ð8Þ

Here, bV tdð Þ is the total virus concentration experimentallymeasured on day
td, which equals to viral RNA concentration in wastewater (CRNA) multi-
plied by the total flow (F) data. ∫td−1

tdV′(s)ds is the corresponding quantity
in our model. Oncewe obtain a reasonable fit to the data, the inferred num-
ber of true cases is given by:

Daily case number ¼ Ccumulative cases tdð Þ � Ccumulative cases td � 1ð Þ, (9)

where Ccumulative cases(t) is a variable that keeps track of the cumulative in-
fected cases, e.g., Ccumulative cases′ = λIS.

For the minimization algorithm, we use MATLAB function fmincon and
multistart. Similarly, the fecal viral shedding function is fitted by minimiz-
ing the objective function SSEf:

SSEf ¼ ∑tn f tnð Þ � bf tnð Þ
� �2

, (10)

where bf tnð Þ is the fecal shedding data at day tn. Note that, we assume re-
ported data represents a single time point, which is equivalent to assuming
the viral shedding is approximately constant over the course of one day. A
more technical approach would be to integrate f(t) similar to Eq. (8), then

average it to compare with bf tnð Þ. Instead, here we pass the integration to
the average stool shed per day (α), and the average viral shedding over
one day is given by (α × β) during the infectious period.
4

3. Result

3.1. Determining the average fecal viral shedding rate in infectious period

We observed that there is a striking similarity in the viral load profiles
for the nose, throat, and stool for infected individuals from the time of infec-
tion to recovery qualitatively (Wölfel et al., 2020, Killingley et al., 2022,
Van Kampen et al., 2021). In all three cases, high viral load/shedding is as-
sociated with the infectious duration of the infection. This observation sug-
gests that in the classical SEIR epidemic model, we can make the
simplifying assumption that the infectious individuals contribute substan-
tially to the viral pools in wastewater. As illustrated in Fig. 1A, the viral
shedding profile is divided into three periods shaded: Exposed (E), Infec-
tious (I), and Recovered (R). With this framework, we can approximate
the viral load in wastewater using the viral shedding from the infectious
population. Furthermore, we can estimate the average viral shedding rate
based on the viral shedding function f(t) and the fixed average duration
of infectiousness (see Materials and Methods).

Fig. 1B shows the best fit of the model to the fecal viral shedding rate
data in Wölfel et al. (Wölfel et al., 2020). We assumed five days from infec-
tion to symptom onset in the fecal viral shedding data, which is in range of
2–14 days estimated for the general population (CDC, 2022b; Lauer et al.,
2020). Furthermore, we fixed the viral peak at day four (ω2 = 4 day).
There is no well-established timing of the peak fecal viral shedding rate;
however, the peak time for viral load in nose and throat is around 4.7
and 6.2 days after inoculation, respectively (Killingley et al., 2022), and
maybe even earlier in stool (Wu et al., 2022a). The best fit parameter is
ω1 = 71.97 log10 viral RNA copy per g day. Using the best fit, we estimate
the average fecal viral shedding rate for an infectious individual to be:

β ¼ 1
11 � 3

Z 11

3
f tð Þdt ¼ 1

8

Z 11

3

71:97t
16þ t2

dt≈7:65 log 10viral RNA per g (11)

A conversion gives:

β ¼ 4:49� 107 viral RNA per g: (12)

This number is close to the measured median viral RNA load 107.68

(ranging from 104.1 to 1010.27) copies/ml in infected individuals in South
Korea (Han et al., 2020), and the extrapolated fecal shedding rate of
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107.30 (ranging from 105.74 − 108.28) copies/g of 711 infected individuals
in the dormitories at University of Arizona (Schmitz et al., 2021). Thus,
we fixed fecal viral shedding rate β in our SEIR-V model to this value.

3.2. SEIR-V model captures the temporal dynamics of clinical COVID-19 cases

We developed an SEIR-V model to understand SARS-CoV-2 transmis-
sion usingWBS data in the second wave of the pandemic and the computed
average fecal viral shedding rate during the period of infectiousness. Fig. 2
shows the best fit and its inference with parameter values and possible
ranges summarized in Table 1.Wefitted themodel to total viral RNA copies
in wastewater data up to the grey dashed line (December 18, 2020), then
simulated themodel out to January 25, 2021, see Fig. 2A. Thefitting region
was chosen before the peak in the viral RNA data, so that we could test the
model's prediction of the peak against the data. Additionally, the fitting re-
gion fromOctober 02, 2020 to December 18, 2020 potentially limits the in-
fluence from vaccination and the emergence of the alpha variant, which
began near the end of 2020.

Using the best fit parameters, we computed the number of new cases
and compared it to the reported cases. As shown in Fig. 2B, the model sim-
ulation recapitulates the trend of clinically reported daily new cases and
predicts an earlier and higher peak than reported case data by 16 days
and 10.2-fold, respectively. We made a correlation plot between the
model simulated cases and the reported case data (Fig. 2C). The higher pre-
dicted number of cases and the high correlation coefficient (R=0.93,R2=
0.87) imply that the model accurately captures the trend of the reported
case data, while accounting for the underreported rate. This indicates that
the method preserves both key properties of WBS data, which is that the
trend of viral concentration in wastewater leads the trend of reported
cases and can be used to estimate the true prevalence without being im-
pacted by the underreporting rate.

In the next step, we demonstrate how the effect of temporal variation in
temperature on viral loss can be incorporated in our framework. Further-
more, by incorporating the temporal effect of temperature, we can directly
estimate the variation in γ(T), the fraction of viral loss in the sewershed.
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3.3. Incorporation of wastewater temperature improves model prediction

SARS-CoV-2 RNA in wastewater is subject to degradation which is af-
fected by many factors such as temperature and travel time (Bivins et al.,
2020; McCall et al., 2022). We accounted for these two factors to determine
the fraction of viral decay γ(T) in the model. Sensitivity analyses were per-
formed to investigate how the two parameters impact model fitting. First,
we tested SARS-CoV-2 degradation rates at T0 = 20 °C wastewater at
high titers (η0 = 0.99 days or 23.76 hours) and low titers (η0 = 7.9 days
or 189.6 hours). Results showed a consistently better fit using viral degra-
dation rate at low titers (Table S1). Precise estimation of the travel time is
challenging given the varied flow rates and geographical distances to the
wastewater treatment plant. Here, we assumed the average travel time is
18 h based on the professional experience from the treatment plant where
we sampled. We also tested the sensitivity of this value by assuming 24-,
30- and 36-h travelling time and found little differences in the modeling
fitting (Table S1). Viral concentration in wastewater is typically low, so
we used the degradation rate at low titers and compared the die-off fraction
for different temperature and travel time. Results in Table S3 showed that
the viral die-off fraction differs about 5–6 fold from 10 to 30 °C.

Next, we incorporated the temporal-varying temperature data (Fig. S1)
into the model framework with a travel time 18-hour and assessed model
performance. By incorporating the effect of the temporal variations in tem-
perature, the viral degradation rate also varies with temperature and time
(see Materials and Methods). This temporal variation allows the model to
capture the trend of clinical data with a smaller SSE compared to a constant
degradation rate. Thus, it demonstrates the importance of incorporating
temperature in ourmodeling framework. Additionally, the difference is sta-
tistically significant, due to one less fitting parameter, based on the
corrected Akaike information criterion (Fig. 3A, B and S2) (Burnham and
Anderson, 2004). We observe that the model simulation predicts an earlier
peak than reported case data by 6 days, which is 10 days shorter compared
to the prediction of the model without the temporal temperature effect
(Fig. 3B and S2A). Additionally, the model predicts the true number of
cases to be about 8.3 times higher than the reported number of cases as
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Table 1
Parameters in the model.

Definition Unit Value References

S Susceptible population People S(0) = 2.3 × 106 - fixed (Wu et al., 2022b)
E Exposed population People E(0)−fitting
I Infectious population People I(0) = 0 - fixed
λ Transmission rate Per day per person Fitting
1/k Exposed duration Day 3 days Wölfel et al., 2020; Killingley et al., 2022; Wu et al., 2022a; Van Kampen et al., 2021;
1/δ Infectious duration Day 8 days Wölfel et al., 2020, Killingley et al., 2022, Wu et al., 2022a; Van Kampen et al., 2021
α Fecal load Gram 51–796 g - fitting Rose et al., 2015
β Viral shedding in stool Viral RNA copies per gram Fitting
γ Fraction of viral loss in sewer Per day Fitting and estimated
ω1 Magnitude modifier log10 viral RNA per g day Fitting
ω2 Peak timing for viral shedding Day 4 day - fixed Killingley et al., 2022; Wu et al., 2022a.

Note that β and ω1 are obtained from fitting to viral shedding data in stool (Wölfel et al., 2020).
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compared to a predicted factor of 10.2 without the temporal effect of tem-
perature (Fig. 3B and S2A). The predicted initial exposed population is
1182 people, which is a more reasonable estimate compared to the 11 ex-
posed individuals predicted without the temporal effect of temperature
(Fig. 3B). Those results have shown that incorporating the travel time and
the temporal variation in temperature reduces the possibility of model
unidentifiability and significantly improve the model performance
(Table 1).

4. Discussion

Wastewater pools viral signals excreted by infected individuals across
the whole spectrum of disease symptoms from asymptomatic and
subclinical-symptomatic to symptomatic (Lee et al., 2020). This inclusive-
ness of all virus-shedding individuals offers an opportunity to better esti-
mate the magnitude of viral infections in communities (Hart and Halden,
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2020; Sanjuán and Domingo-Calap, 2021; Wu et al., 2020). However, it is
challenging to convert viral concentrations in wastewater to the number
of infected cases. Our group and peers previously reported methods to esti-
mate the infection prevalence by wastewater viral load (McMahan et al.,
2021; Nourbakhsh et al., 2022; Wu et al., 2020). These efforts, however,
are limited because of inconsideration of dynamic viral shedding rates dur-
ing the disease course and viral degradation in wastewater.

In this study, we established a quantitative framework to estimate the
number of infectious COVID-19 cases and predict SARS-CoV-2 transmission
through integrating wastewater surveillance data and development of an
SEIR-V model. As an analogy to the four compartments of the SEIR model
to simulate infectious disease dynamics at the population level, the
individual-level fecal viral shedding course was divided into three periods
including exposed (incubation), infectious, and recovery (Fig. 1A). The di-
vision is based on the observation that the temporal viral profiles in the
nose, mouth, and stool are strikingly similar qualitatively with high viral
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load associated with infectiousness (Killingley et al., 2022; Wölfel et al.,
2020). With this concept, we estimated the population-level average viral
shedding rate during the infectious phase using clinically reported SARS-
CoV-2 concentrations in hospitalized patients' stool samples (Fig. 1B).
This estimated viral shedding rate is an average of infected individuals in
the population and does not consider the heterogenous viral shedding dy-
namics among infected individuals (Wölfel et al., 2020; Killingley et al.,
2022; Stanca and Tuncer et al., 2022). Thus, our model can be improved
by including viral shedding data during the early phase of the infection
and large-scale individual-level shedding dynamics data.

It is noteworthy to mention that the “I” in the SEIR model is the “infec-
tious” class, not the “infected” class. This contrasts with the conventional ap-
proaches that use mean or median viral shedding rate in a group of tested
samples regardless of the phase of the infection (Saththasivam et al., 2021;
Petala et al., 2022; Schmitz et al., 2021). By focusing on the infectious popula-
tion, which is also the main contributor of viral shedding in wastewater, we
greatly simplify the typical complex structure of the SEIR-typemodels that im-
plement WBS (Fig. S3) and reduce the likelihood of model unidentifiability.

By fitting an SEIR-V model to wastewater data within our framework,
we show that the method retains key advantages of using wastewater. Spe-
cifically, the inferred case data from the best fit parameters leads the re-
ported case data by 6–16 days and implies a large ratio (8.3–10.2) of true
prevalence to clinically reported cases, which are consistent with previous
results (Wu et al., 2020; Wu et al., 2022a; Eikenberry et al., 2020; Angulo
et al., 2021). We also incorporate the important effects of temperature
with temporal variations and travel time on the viral degradation rate in
a simplemanner that is applicable to a larger time scale.We note that exten-
sion to incorporate time-dependent variations of the fecal viral shedding
rate within this framework is straightforward but will require careful con-
sideration for the convergence of the numerical method. Together, our
work shows the potential and flexibility of the framework to incorporate
WBS in epidemic models.

The foundation of our framework is independent of the epidemicmodel
formulation, yet its application depends greatly on the epidemic models for
specific situations. For example, if we want to apply the framework to cap-
ture a periodwith significant changes to social behavior, perhaps due to the
effect of a social intervention, then an appropriate change to the structure of
the SEIR model to reflect these structures is necessary (Johnston and Pell,
2020; Fenichel et al., 2011; Pell et al., 2018). However, if multiple variants
are of interest, then the SEIR model itself needs to be extended to a multi-
variant version and incorporate known biological properties of different
variants (Dyson et al., 2021; Gonzalez-Parra et al., 2021). Similarly, inter-
ventions (such as vaccination) and the impact of social gatherings must
first be included in the epidemic model prior to its integration within our
framework (Saad-Roy et al., 2021; Giordano et al., 2021; Buckner et al.,
2021; Makhoul et al., 2020).

Our modeling framework represents a simplified picture that describes
the connection between viral transmission in the human population and
viral concentration in wastewater. For this demonstrative purpose, we
make various simplifying assumptions that would need to be adjusted for
application of the framework to specific situations. Firstly, the SEIR
model assumes a completely susceptible, homogenous, and well-mixed
population. In practice, specific contacting/population structure of the re-
gion being studiedmust be taken into account to provide accurate estimates
of relevant epidemiological quantities, such as the basic or effective repro-
duction number. Secondly, we assume that the viral concentration inwaste-
water is contributed mainly by the infectious group. A direct calculation of
the respective viral contribution from each group, assuming a cut-off
threshold of 2 log using the best estimate of the viral shedding function f
(t) gives 12 % , 52% and 36% relative contribution from E, I and R classes,
respectively. Taking this into account would roughly reduce the fold-
difference between predicted and reported cases by about 50 %. A simple
approach would be to consider the contribution from the E and R classes
similar to that of the I class (e.g., by finding the average viral shedding
rate β for each class). Alternatively, a convolution of f(t) and everyone
who has ever been infected can also be done to account for the ever-
7

changing viral shedding rate. However, such a model would need to recon-
cile the differences between the temporal variations in the fecal viral shed-
ding and infectiousness. This can be done by studying the relationship
between viral dynamics in the stool and the nose or throat. Finally, while
we only consider the effects of temperature and travel time on viral decay
rate, other in-sewer factors, such as organic matter, particles, pH, solvents,
detergents, and microbes could also affect the viral die-off fractions and
should be considered when appropriate (Bertels et al., 2022; Chahal
et al., 2016; Gundy et al., 2009).

Dynamical epidemic models are useful tools to track pandemic progres-
sion and to assess the potential impact of hypothetical situations such as
stay-at-home orders or the emergence of a resistant viral strain. However,
sparsely reported case data with high uncertainty, due partially to the
high underreporting rate, can compromise the ability of epidemic models
to provide an accurate forecast of the pandemic and limit their application
to retrospective studies. Hence, WBS, which bypasses both the tremendous
difficulty in data collection faced by the standard clinical reporting practice
and the high underreporting rate, represents a potential solution to address
this challenge faced by the modeling community. WBS data also provides a
leading indicator of the pandemic progression and is not limited to SARS-
CoV-2, thus it can further enhance the prediction and applicability of epi-
demic models for public health purposes. Together, this aspect of our
framework highlights the importance of interdisciplinary collaboration to
better address public health concerns.
5. Conclusions

In this study, we have established a quantitative framework to estimate
COVID-19 prevalence and predict SARS-CoV-2 transmission by incorporating
WBS data in a simple epidemic SEIR-V model. The main conclusions are:

• We constructed a simple and effective framework to incorporate WBS
data to epidemic models. The developed SEIR-V model captures the tem-
poral dynamics of clinical COVID-19 cases and preserves key advantages
of WBS data over reported case data.

• We illustrated how the effect of travel time and temperature on viral
decay can be incorporated within our framework to improve model per-
formance and robustness, which is an important component tomodel dis-
ease transmission in real world applications.

• Themodeling framework is a valuable platform to integrateWBSwith ep-
idemic models to provide accurate and robust estimates of the pandemic
progression and examine the potential impact of interventions to inform
public health decision making.
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