Skip to main content
. 2022 Oct 1;2022:8094351. doi: 10.1155/2022/8094351

Table 6.

The summary of BP estimation methods based on deep learning.

Authors Dataset Signals AI algorithm Result (mmHg)
SBP DBP
Tazarv et al. [72] MIMIC II
20 subjects
PPG CNN-LSTM MAE: 3.70
STD: 3.07
MAE: 2.02
STD: 1.76
Chuang et al. [78] MIMIC
45 subjects
PPG, ECG CNN-LSTM+self-attention MAE: 2.94
STD: 4.65
MAE: 2.02
STD: 3.81
Treebupachatsakul et al. [83] UCI
812 samples
PPG, ECG CAN RMSE: 7.1455 RMSE: 6.0862
Mou et al. [73] MIMIC
3 subjects
PPG CNN-LSTM MAE: 4.42 for ABP
Paviglianiti et al. [81] MIMIC
40 subjects
PPG, ECG ResNet, LSTM, WaveNet, ResNet+LSTM MAE: 4.118 MAE: 2.228
Slapničar et al. [21] MIMIC III
510 subjects
PPG, derivatives Spectrotemporal ResNet MAE: 9.43 MAE: 6.88
Brophy et al. [85] UCI_BP
Queensland
6 subjects
PPG GAN MAE: 2.95
STD: 19.33 for MAP
Aguirre et al. [18] MIMIC
1131 subjects
PPG RNN encoder-decoder + attention MAE: 6.57
STD: 0.20
MAE: 14.39
STD: 0.42
Wang et al. [82] UCI_BP
348 records
Image transformed from PPG Pretrained AlexNet, Inception-V3, VGG-19 MAE: 6.17 MAE: 3.66
Esmaelpoor et al. [74] MIMICII
200 subjects
PPG CNN-LSTM MAE: 3.97
STD: 5.55
MAE: 2.10
STD: 2.84
Baker et al. [75] MIMIC III
200000 segments
PPG, ECG CNN-LSTM MAE: 4.41
STD: 6.11
MAE: 2.91
STD: 4.23
Qiu et al. [77] MIMIC
1216 subjects
PPG, ECG ResNet + SE MAE: 3.70 MAE: 2.81
Leitner et al. [31] MIMIC
100 subjects
PPG CNN-GRU MAE: 3.52 MAE: 2.20
Schrumpf et al. [80] MIMIC
3750 + 625 subjects
PPG AlexNet, ResNet, LSTM, model of Slapničar et al. MAE: 16.4 MAE: 8.5
Yen et al. [87] UCI
1551 subjects
PPG CNN-LSTM MAE: 2.942
STD: 5.076
MAE: 1.747
STD: 3.042
Tanveer et al. [76] MIMIC I
39 subjects
PPG, ECG ANN-LSTM MAE: 1.10 MAE: 0.58
Panwar et al. [86] MIMIC II
1557 subjects
PPG CNN-LSTM MAE: 2.30
STD: 0.196
MAE: 3.97
STD: 0.064
Sadrawi et al. [84] Self-collected
18 subjects
PPG GA + Lenet5/U-net MAE: 2.54 MAE: 1.48