Table 6.
Authors | Dataset | Signals | AI algorithm | Result (mmHg) | |
---|---|---|---|---|---|
SBP | DBP | ||||
Tazarv et al. [72] | MIMIC II 20 subjects |
PPG | CNN-LSTM | MAE: 3.70 STD: 3.07 |
MAE: 2.02 STD: 1.76 |
Chuang et al. [78] | MIMIC 45 subjects |
PPG, ECG | CNN-LSTM+self-attention | MAE: 2.94 STD: 4.65 |
MAE: 2.02 STD: 3.81 |
Treebupachatsakul et al. [83] | UCI 812 samples |
PPG, ECG | CAN | RMSE: 7.1455 | RMSE: 6.0862 |
Mou et al. [73] | MIMIC 3 subjects |
PPG | CNN-LSTM | MAE: 4.42 for ABP | |
Paviglianiti et al. [81] | MIMIC 40 subjects |
PPG, ECG | ResNet, LSTM, WaveNet, ResNet+LSTM | MAE: 4.118 | MAE: 2.228 |
Slapničar et al. [21] | MIMIC III 510 subjects |
PPG, derivatives | Spectrotemporal ResNet | MAE: 9.43 | MAE: 6.88 |
Brophy et al. [85] | UCI_BP Queensland 6 subjects |
PPG | GAN | MAE: 2.95 STD: 19.33 for MAP |
|
Aguirre et al. [18] | MIMIC 1131 subjects |
PPG | RNN encoder-decoder + attention | MAE: 6.57 STD: 0.20 |
MAE: 14.39 STD: 0.42 |
Wang et al. [82] | UCI_BP 348 records |
Image transformed from PPG | Pretrained AlexNet, Inception-V3, VGG-19 | MAE: 6.17 | MAE: 3.66 |
Esmaelpoor et al. [74] | MIMICII 200 subjects |
PPG | CNN-LSTM | MAE: 3.97 STD: 5.55 |
MAE: 2.10 STD: 2.84 |
Baker et al. [75] | MIMIC III 200000 segments |
PPG, ECG | CNN-LSTM | MAE: 4.41 STD: 6.11 |
MAE: 2.91 STD: 4.23 |
Qiu et al. [77] | MIMIC 1216 subjects |
PPG, ECG | ResNet + SE | MAE: 3.70 | MAE: 2.81 |
Leitner et al. [31] | MIMIC 100 subjects |
PPG | CNN-GRU | MAE: 3.52 | MAE: 2.20 |
Schrumpf et al. [80] | MIMIC 3750 + 625 subjects |
PPG | AlexNet, ResNet, LSTM, model of Slapničar et al. | MAE: 16.4 | MAE: 8.5 |
Yen et al. [87] | UCI 1551 subjects |
PPG | CNN-LSTM | MAE: 2.942 STD: 5.076 |
MAE: 1.747 STD: 3.042 |
Tanveer et al. [76] | MIMIC I 39 subjects |
PPG, ECG | ANN-LSTM | MAE: 1.10 | MAE: 0.58 |
Panwar et al. [86] | MIMIC II 1557 subjects |
PPG | CNN-LSTM | MAE: 2.30 STD: 0.196 |
MAE: 3.97 STD: 0.064 |
Sadrawi et al. [84] | Self-collected 18 subjects |
PPG | GA + Lenet5/U-net | MAE: 2.54 | MAE: 1.48 |