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Introduction

According to new data released by the World Health 
Organization’s International Agency for Research on 
Cancer (IARC), breast cancer has replaced lung cancer as 

the world’s most common cancer (1). Despite the progress 
made in cancer-related treatment technology during 
past years, breast cancer has high rates of morbidity and 
mortality worldwide (2). The latest data released by China’s 
National Cancer Center show that the incidence of breast 

Original Article

Identification of biomarkers related to tumorigenesis and 
prognosis in breast cancer

Xuelaiti Paizula1, Daniyaerjiang Mutailipu2, Wenting Xu1, Hu Wang1, Lina Yi1

1Department of Breast Surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Xinjiang, China; 
2Department of Urology, Shanghai Pudong Hospital, Shanghai, China

Contributions: (I) Conception and design: X Paizula; (II) Administrative support: D Mutailipu; (III) Provision of study materials or patients: W Xu; (IV) 

Collection and assembly of data: H Wang; (V) Data analysis and interpretation: L Yi; (VI) Manuscript writing: All authors; (VII) Final approval of 

manuscript: All authors. 

Correspondence to: Lina Yi. Department of Breast Surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer 

Hospital), Xinjiang, China. Email: 15999131351@163.com.

Background: The aim of the present study was to identify the central genes and prognostic index of breast 
cancer, and to determine the relationship between prognostic index and immune infiltration levels to provide 
useful information for the diagnosis and treatment of breast cancer.
Methods: The Cancer Genome Atlas breast cancer dataset and 2 microarray datasets were applied to screen 
overlapping differentially expressed genes (DEGs) between breast cancer tissue and normal breast tissue 
samples. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted through 
the Database for Annotation, Visualization, and Integrated Discovery. Protein-protein interaction (PPI) 
networks were used to screen hub genes of the overlapping DEGs. Gene Expression Profiling Interactive 
Analysis (GEPIA), The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), 
and The Human Protein Atlas (HPA) databases were used to validate their expression. The correlation of 
hub genes with immune infiltration was analyzed using TISIDB software. Kaplan-Meier Plotter was used to 
analyze the prognosis of hub genes.
Results: Ten hub genes [cyclin A2 (CCNA2), cyclin dependent kinase 1 (CDK1), centromere protein F 
(CENPF), kinesin family member 2C (KIF2C), kinesin family member 4A (KIF4A), maternal embryonic 
leucine zipper kinase (MELK), PDZ binding kinase (PBK), protein regulator of cytokinesis 1 (PRC1), DNA 
topoisomerase II alpha (TOP2A), and TPX2 microtubule nucleation factor (TPX2)] were selected and their 
overexpression in breast cancer tissue was verified. All were associated with a poor prognosis for breast 
cancer. CDK1, CENPF, KIF2C, KIF4A, MELK, PBK, PRC1, and TPX2 were correlated with CD4 T cells in 
breast cancer, while TOP2A was correlated with CD8 T cells. 
Conclusions: The findings indicated that the 10 hub genes could be potential biomarkers for progression 
in breast cancer.

Keywords: Breast cancer; biomarkers; prognosis; immune infiltration

Submitted Jul 11, 2022. Accepted for publication Sep 08, 2022.

doi: 10.21037/gs-22-449

View this article at: https://dx.doi.org/10.21037/gs-22-449

1488

https://crossmark.crossref.org/dialog/?doi=10.21037/gs-22-449


Gland Surgery, Vol 11, No 9 September 2022 1473

© Gland Surgery. All rights reserved.   Gland Surg 2022;11(9):1472-1488 | https://dx.doi.org/10.21037/gs-22-449

cancer in China has exceeded 300,000, with an increase 
of 3–4% annually. Breast cancer has become one of the 
major diseases threatening the health of women in China, 
with more than 10% of women dying of breast cancer. 
Therefore, the discovery of specific detection markers and 
therapeutic targets is key to improving the survival rate of 
breast cancer patients.

In the present study, we analyzed differentially expressed 
genes (DEGs) in breast cancer and paracancerous to 
determine the potential mechanism that might induce the 
development of breast cancer. A search of The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) found that cyclin A2 (CCNA2), cyclin dependent 
kinase 1 (CDK1), centromere protein F (CENPF), kinesin 
family member 2C (KIF2C), kinesin family member 
4A (KIF4A), maternal embryonic leucine zipper kinase 
(MELK), PDZ binding kinase (PBK), protein regulator 
of cytokinesis 1 (PRC1), DNA topoisomerase II alpha 
(TOP2A), and TPX2 microtubule nucleation factor (TPX2) 
are potential biomarkers of breast cancer related to the 
prognosis of breast cancer patients. These genes were found 
to be involved in many biological processes, including 
the peroxisome proliferator-activated receptors (PPAR) 
signaling pathway, tyrosine metabolism pathway, and other 
signaling pathways (3,4). Additionally, their expression 
levels were found to positively correlate with prognosis, 
infiltration of immune and molecular subtypes, and tumor 
infiltrating lymphocytes (TILs), which play a major role in 
the tumor microenvironment and can directly or indirectly 
regulate tumor immunity to achieve antitumor effect (5,6). 
Therefore, our findings indicate that there are immune-
related biomarkers that could be used in breast cancer 
treatment. 

Methods

Dataset selection and DEG identification

We downloaded the following two gene expression datasets 

of breast cancer from the GEO database (www.ncbi.nlm.
nih.gov/gds/?term=): GSE109169, and GSE115144. 
The detailed datasets are shown in Table 1. The standard 
for DEGs is that the P value is <0.05, and the criteria of 
the groups were |log2FC (fold change)| ≥1. The gene 
expression quantification data of breast cancer were 
downloaded from TCGA (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga). 
All data were normalized and processed with Sangerbox 
(http://sangerbox.com/Tool), which is a widely used online 
platform for TCGA data analysis (7). The parameters set for 
differential expression analysis were P<0.05 with |log2FC| 
>1. Subsequently, we combined the DEGs acquired from 
GEO and TCGA databases to obtain the convergence 
gene signatures. Volcano maps of DEGs were constructed 
using the ggplot2 package of R software. Following, the 
cross DEGs of the 3 datasets were extracted with Venny 2.1 
(http://bioinfogp.cnb.csic.es/tools/venny/index.html). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Function enrichment analysis of DEGs

To expound the biological significance of the screened DEGs 
in breast cancer, the Gene Ontology (GO) enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were analyzed using the Database for Annotation, 
Visualization, and Integrated Discovery 6.8 (https://david.
ncifcrf.gov) (8,9). P<0.05 was considered statistically 
significant. GO enrichment and KEGG pathway results 
were visualized as a bubble chart using R software.

Protein-protein interaction (PPI) analysis of DEGs

The STRING database version 11.5 (http://string-db.org) 
was used to construct and analyze the PPI of DEGs (10). 
An interaction with a combined score >0.4 was considered 
statistically significant. The results of the analysis were 
visualized using the Cytoscape version 3.7.2 (11), and 
Cytohubba from Cytoscape. The top 10 scores of the 
maximal clique centrality (MCC) algorithm were used as 
the standard to screen out hub genes with high connectivity 
in the gene expression network. Simultaneously, Molecular 
Complex Detection (MCODE) reduces the most significant 
model in the PPI network. The conditions were as follows: 
Degree of cutoff =2, node score cutoff =0.2, k-core =2, and 
maximum depth =100.

Table 1 Basic information of the 2 datasets from the Gene 
Expression Omnibus

Data source Platform Year
Sample size 

(tumor/normal)
Type

GSE109169 GPL5175 2018 25/25 mRNA

GSE115144 GPL17586 2018 21/21 mRNA

http://www.ncbi.nlm.nih.gov/gds/?term=
http://www.ncbi.nlm.nih.gov/gds/?term=
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://sangerbox.com/Tool
http://bioinfogp.cnb.csic.es/tools/venny/index.html
https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://string-db.org
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The University of ALabama at Birmingham CANcer data 
analysis portal (UALCAN)

UALCAN (http://ualcan.path.uab.edu) is a widely use 
online web resource for analyzing publicly available gene 
expression in tumor and normal tissues (12,13). In the 
present study, the database was used to perform a thorough 
analysis of hub gene expression from breast cancer. P<0.05 
was considered statistically significant.

Gene Expression Profile Interactive Analysis (GEPIA)

GEPIA (http://gepia2.cancer-pku.cn/#index) is an analysis 
tool that includes 9736 tumors and 8587 normal tissue 
samples RNA sequence expression data from TCGA and 
the GTEx projects (14). In the present study, the gene 
expression analysis based on data from TCGA and GTEx 
databases was analyzed using GEPIA software. Analysis 
of variance (ANOVA) was used to analyze the expression 
between tumor and normal tissue samples. P<0.05 was 
considered statistically significant.

The Human Protein Atlas (HPA)

The HPA (www.proteinatlas.org/) is an online software 
that allows for genome-wide exploration of the impact of 
individual proteins on clinical outcomes in major human 
cancers (15). In the present study, we used the HPA to 
compare the protein expression of hub genes between 
normal and breast cancer tissues.

Mutation analysis using the cBioPortal database

The cBioPortal database (www.cbioportal.org/) is a 
comprehensive web resource that analyzes and visualizes 
multidimensional cancer genomics data (16,17). The 
database was used to explore hub gene genomic alterations 
in breast cancer.

Immune infiltration using the Tumor-Immune System 
Interaction Database (TISIDB)

The TISIDB (http://cis.hku.hk/TISIDB/index.php) is an 
integrated repository portal for tumor-immune system 
interactions (18). Interactions between hub gene expression 
and immune, molecular subtypes, or TILs of breast cancer 
were investigated using the TISIDB. Correlations between 
hub genes and TILs were analyzed by Spearman’s test. 

P<0.05 was considered statistically significant.

Hub genes survival analysis 

To further reveal the relationship between hub gene 
expression and breast cancer prognosis, Kaplan-Meier 
Plotter (http://kmplot.com/analysis/index.php?p=service) 
was used for the survival analysis (19). P<0.05 was 
considered statistically significant. 

Statistical analysis

The expression volcano and GO enrichment and KEGG 
pathways were analyzed and visualized by volcano and 
bubble chart packages in R software. T-test or ANOVA was 
used to estimate the significance of differences in expression 
levels between normal and tumor tissues. P<0.05 was 
considered statistically significant in both tests. 

Results

Identification of DEGs

As shown in Figure 1A-1C showed, based on the screening 
conditions, 366 overexpressed genes and 469 downexpressed 
genes were obtained from the GSE109169 database, 152 
overexpressed genes and 185 downexpressed genes were 
obtained from the GSE115144 database, 1,413 overexpressed 
genes and 2,814 downexpressed genes were obtained from 
TCGA database. Venny 2.1 was used to select the common 
DEGs from 3 databases (GSE109169, GSE115144 and 
TCGA), and visualized by Venn diagrams (Figure 1D). 
Finally, 89 upregulated and 115 downregulated breast 
cancer-related DEGs with high reliability were obtained.

GO enrichment and KEGG signaling pathway analysis of 
DEGs

GO enrichment analysis showed that the GO annotations 
of DEGs included cell composition (CC), biological process 
(BP), and molecular function (MF). P values (P<0.05) were 
used to arrange the terms. After screening, we identified 
DEGs enriched in BP, CC, and MF; the top 10 are shown 
in Figure 2A-2C (for example: mitotic spindle organization, 
cell division, positive regulation of cell proliferation, 
extracellular space, extracellular matrix, extracellular region, 
heparin binding, extracellular matrix structural constituent, 
and microtubule binding). KEGG analysis showed that the 

http://ualcan.path.uab.edu
http://gepia2.cancer-pku.cn/#index
http://www.proteinatlas.org/
http://www.cbioportal.org/
http://cis.hku.hk/TISIDB/index.php
http://kmplot.com/analysis/index.php?p=service
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Figure 1 Convergence of gene expression signatures across different studies of breast cancer. (A-C) Volcano plots showed the number of 
DEGs identified from GSE109169, GSE115144, and TCGA of breast cancer. (D) Intersecting DEGs from GSE109169, GSE115144, and 
TCGA are showed by Venn diagram. TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes.

DEGs were mainly concentrated in the PPAR signaling 
pathway, tyrosine metabolism, cell cycle, and other signaling 
pathways (Figure 2D). 

PPI network of DEGs in breast cancer

The STRING database was used to analyze the obtained 
DEGs and remove the isolated non-interacting genes. The 
relevant PPI was visualized and included 203 nodes and 

367 edges (Figure 3A). Cytoscape was used to analyze the 
interacting genes for network visualization (Figure 3B-3E). 
Cytoscape and the plug-in apps Cytohubba and MCODE 
were used to analyze the network. According to the MCC 
algorithm, 10 genes (CDK1, TOP2A, KIF4A, CENPF, 
PRC1, CCNA2, TPX2, PBK, KIF2C, and MELK) with the 
most stable and highest scores in the network selected as 
hub genes (Figure 3B). Moreover, the top 3 modules were 
chosen by the MCODE app (Figure 3C-3E). 
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Figure 2 GO enrichment and KEGG pathway analysis of DEGs in breast cancer. (A-C) Bubble plots showing the GO annotation data (cell 
composition, biological process, and molecular function) for DEGs in breast cancer. (D) Bubble plots showing KEGG pathway enrichment 
data for DEGs in breast cancer. BP, biological process; CC, cell composition; MF, molecular function; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GO, Gene Ontology; DEGs, differentially expressed genes.
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Figure 3 Protein-protein interaction of DEGs in breast cancer. (A) Protein-protein interaction network. (B) Ten highest maximal clique 
centrality score genes in DEGs. (C-E) The top 3 modules of DEGs by MCODE. DEGs, differentially expressed genes; MCODE, 
Molecular Complex Detection.

Validation of mRNA and protein expression of the  
10 breast cancer hub genes 

Based on the DEG analysis, we found that the 10 hub 
genes were upregulated in breast cancer. To further 
validate the results, the GEPIA and UALCAN databases 
were used to verify the findings. As shown in Figures 4,5, 
the mRNA expression of the 10 central genes (CCNA2, 
CDK1, CENPF, KIF2C, KIF4A, MELK, PBK, PRC1, 
TOP2A, and TPX2) were significantly higher in breast 
cancer tissue than in normal tissue (P<0.001; Figures 4,5).  
These findings were consistent with the obtained 
microarray data. 

To further examine the protein expression of the 10 hub 
gene in human tumor tissues, the HPA database was used 
to perform the experiment. The results revealed that the 
protein expression of the 10 hub genes (CCNA2, CDK1, 
CENPF, KIF2C, KIF4A, MELK, PBK, PRC1, TOP2A, and 
TPX2) was higher in breast cancer tissue compared with 
normal breast tissue (Figure 6).

Genetic alteration of 10 hub genes in patients with breast 
cancer

The cBioPortal website was used to analyze the 10 hub 
gene genomic alterations in breast cancer. The 10 hub gene 
alterations varied in type, leading to changes in gene expression 
(Figure 7A). The findings indicated that 2.2% (CDK1), 5% 
(PBK), 2% (TPX2), 0.9% (CCNA2), 2.5% (PRC1), 10% 
(CENPF), 1.8% (KIF4A), 5% (TOP2A), 1.1% (KIF2C), and 
1.2% (MELK) of breast cancer samples had genetic alteration 
(Figure 7B). These findings indicated that the genomic 
alteration of the 10 hub genes occurs in tumor tissue, and 
could play a major role in tumor genesis and development.

Immune infiltration analysis of the expression of the  
10 hub genes 

The role of the expression of the 10 hub genes on molecular 
and immune subtypes in breast cancer was analyzed 
using TISIDB. C1 (wound healing), C2 (interferon-γ 
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Figure 4 mRNA expression of 10 hub genes by GEPIA. (A) CCNA2, (B) CDK1, (C) CENPF, (D) KIF2C, (E) KIF4A, (F) MELK, (G) PBK, (H) 
PRC1, (I) TOP2A, and (J) TPX2. Red lines indicate tumor tissue and green lines indicate normal tissue. **, P<0.01.
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dominant), C3 (inflammatory), C4 (lymphocyte depleted), 
C5 (immunologically quiet), and C6 (transforming growth 
factor-β dominant) subtypes constitute the immune subtypes. 

As shown in Figure 8, the expression of the 10 hub genes was 
correlated with different immune subtypes of breast cancer, 
with high expression in the C1 and C2 types, low expression 
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Figure 5 mRNA expression of 10 hub genes by UALCAN in breast cancer. (A) CCNA2, (B) CDK1, (C) CENPF, (D) KIF2C, (E) KIF4A, (F) 
MELK, (G) PBK, (H) PRC1, (I) TOP2A, and (J) TPX2. Red lines indicate tumor tissue and blue lines indicate normal tissue. ****, P<0.0001.
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Figure 6 Expression profiles of the 10 hub genes in human cancer and normal tissues. Representative immunohistochemical images of (A) 
CCNA2 (https://www.proteinatlas.org/ENSG00000145386-CCNA2/tissue/breast) and (https://www.proteinatlas.org/ENSG00000145386-
CCNA2/pathology/breast+cancer#img), (B) CDK1 (https://www.proteinatlas.org/ENSG00000170312-CDK1/tissue/breast) and 
(https://www.proteinatlas.org/ENSG00000170312-CDK1/pathology/breast+cancer#img), (C) CENPF (https://www.proteinatlas.org/
ENSG00000117724-CENPF/tissue/breast) and (https://www.proteinatlas.org/ENSG00000117724-CENPF/pathology/breast+cancer#img), 
(D) KIF2C (https://www.proteinatlas.org/ENSG00000142945-KIF2C/tissue/breast) and (https://www.proteinatlas.org/ENSG00000142945-
KIF2C/pathology/breast+cancer#img), (E) KIF4A (https://www.proteinatlas.org/ENSG00000090889-KIF4A/tissue/breast) and 
(https://www.proteinatlas.org/ENSG00000090889-KIF4A/pathology/breast+cancer#img), (F) MELK (https://www.proteinatlas.org/
ENSG00000165304-MELK/tissue/breast) and (https://www.proteinatlas.org/ENSG00000165304-MELK/pathology/breast+cancer#img), 
(G) PBK (https://www.proteinatlas.org/ENSG00000168078-PBK/tissue/breast) and (https://www.proteinatlas.org/ENSG00000168078-
PBK/pathology/breast+cancer#img), (H) PRC1 (https://www.proteinatlas.org/ENSG00000198901-PRC1/tissue/breast) and (https://www.
proteinatlas.org/ENSG00000198901-PRC1/pathology/breast+cancer#img), (I) TOP2A (https://www.proteinatlas.org/ENSG00000131747-
TOP2A/tissue/breast) and (https://www.proteinatlas.org/ENSG00000131747-TOP2A/pathology/breast+cancer#img), and (J) TPX2 (https://
www.proteinatlas.org/ENSG00000088325-TPX2/tissue/breast) and (https://www.proteinatlas.org/ENSG00000088325-TPX2/pathology/
breast+cancer#img) protein expression in normal breast and cancer tissues. (A-J) are from the HPA (images are available from v21.1 
proteinatlas.org). Counterstained with hematoxylin, 100 μm.

in the C3 types, and no expression in the C5 type. 
The expression of the 10 hub genes was significantly 

associated with different molecular subtypes of cancer in 
breast cancer (Figure 9), and showed low expression in 

luminal A type. Based on these findings, we found that the 
expression of the 10 hub genes differed in the immune and 
molecular subtypes of breast cancer.
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Figure 8 Relationship between hub gene expression and breast cancer immune subtypes. (A) CCNA2, (B) CDK1, (C) CENPF, (D) KIF2C, (E) 
KIF4A, (F) MELK, (G) PBK, (H) PRC1, (I) TOP2A, (J) TPX2.
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Figure 9 Relationship between hub gene expression and breast cancer molecular subtypes. (A) CCNA2, (B) CDK1, (C) CENPF, (D) KIF2C, (E) 
KIF4A, (F) MELK, (G) PBK, (H) PRC1, (I) TOP2A, (J) TPX2.
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were significantly associated with 28 types of TILs in 
heterogeneous human cancers (Figure 10). CCNA2 was 
significantly positively associated with 28 TIL species, such 
as activated CD4 T cells (Act_CD4 T cells, rho =0.626, 
P<2.2e−16) and activated CD8 T cells (Act_CD8 T cells, 
rho =0.209, P<2.88e−12). Similar results were found for 
CDK1, CENPF, KIF2C, KIF4A, MELK, PBK, PRC1, and 
TPX2 (Figure 10). The correlation between TOP2A and 
activated CD8 T cells was not significant (Figure 10I). 

Prognostic analysis of hub genes

Kaplan-Meier Plotter was used to determine the 
relationship between hub gene expression and the prognosis 

of breast cancer. The findings indicated that that high 
expression of hub genes was associated with lower overall 
survival (P<0.001; Figure 11).

Discussion

Breast cancer is one of the leading causes of mortality 
among women. Although traditional surgery, radiotherapy, 
chemotherapy, and targeted immunotherapy prolong the 
lives of many patients, more than 680,000 women still die of 
breast cancer every year (1,20). Therefore, more therapeutic 
targets and prognostic biomarkers are needed.

In our study, 89 upregulated and 115 downregulated 
breast cancer-related DEGs were found in breast cancer 
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Figure 10 Correlation between hub gene expression and tumor infiltrating lymphocytes (activated CD8 T cell and activated CD4 T cell). (A) 
CCNA2, (B) CDK1, (C) CENPF, (D) KIF2C, (E) KIF4A, (F) MELK, (G) PBK, (H) PRC1, (I) TOP2A, (J) TPX2.

and normal breast tissues. Further, 10 vital regulated 
genes (CCNA2, CENPF, KIF2C, KIF4A, MELK, PBK, 
PRC1, TOP2A, TPX2, and CDK1) were screened from the 
PPI network complex by the Cytohubba plug-in app in 
Cytoscape. Based on GEPIA, UALCAN, and HPA analyses, 
we found that the expression level of hub genes was higher 
in breast cancer samples than normal samples, showing the 

same trend in expression as predicted by bioinformatics, 
and verifying the accuracy of our method. The prognosis of 
the hub genes was found to be associated with significantly 
worse survival according to the Kaplan-Meier Plotter 
analysis. In addition, based on the genomic alteration 
analysis, 10 hub genes were found to occur in tumor tissue. 
These findings indicated that the hub genes could be 
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Figure 11 Kaplan-Meier survival curves of hub genes in breast cancer. (A-J) Overall survival of CCNA2, CDK1, CENPF, KIF2C, KIF4A, 
MELK, PBK, PRC1, TOP2A, TPX2 in breast cancer by Kaplan-Meier Plotter analysis.
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potential prognostic biomarkers and/or therapeutic targets 
for breast cancer. 

Functional annotation indicated that these genes were 
closely related to breast cancer tumorigenesis. The KEGG 
pathway in hub genes consisted of the PPAR signaling 
pathway, tyrosine metabolism, cell cycle, and other 
signaling pathways. CCNA2 and CDK1 play an important 
role in the cell cycle. CCNA2 regulates the G1-S and 
G2-M transitions of the cell cycle, is a known prognostic 
biomarker for survival in breast cancer patients, and is 

associated with tamoxifen resistance (21,22). Knockdown of 
CCNA2 can significantly inhibit cell growth by impairing 
cell cycle progression and inducing apoptosis (23). CDK1 
is known as a key point in driving all cell cycle phases 
in mammals, performing key steps in the process of cell 
division (24-26). Xia et al. reported that CDK1 silencing 
significantly impaired tumor growth and promoted 
tumor cell apoptosis in triple-negative breast cancer (27). 
Additionally, compared with low CDK1 expression in breast 
cancer patients, high CDK1 expression was found to be 
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associated with poor overall survival, which is consistent 
with our findings (28). Studies of other tumors, such as 
colorectal cancer, lung cancer, and renal cell carcinoma, 
reported similar results (29-31). CENPF is a component 
of the nuclear matrix during the G2 phase of interphase, 
which affects cell division and proliferation (32). Sun et al. 
reported on the metastatic promoter function of CENPF in 
BC progression and bone metastasis (33). CENPF has also 
been reported to be associated with tumor development in 
cancers, such as papillary thyroid cancer, prostate cancer, 
and cervical cancer (34-36). KIF2C and KIF4A belong to 
the kinesin superfamily, which has varied functions in tumor 
pathobiology (28,37). Previous studies have reported that 
KIF2C is involved the tumorigenesis of lung cancer, glioma 
cancer, and breast cancer (38-40). Studies have shown that 
KIF4A serves as a potential contributor of several malignant 
tumors, such as breast cancer, lung cancer, hepatocellular 
carcinoma, cervical cancer, and oral cancer, while in gastric 
cancer, KIF4A was observed to inhibit tumor cell growth 
(41-45). MELK expression has been reported to be higher 
in various cancer cells and tissues than in their normal, 
non-neoplastic counterparts (46). MELK expression was 
associated with cell proliferation, immune response, and 
NAC breast cancer response (47). PRC1 is recognized as an 
oncoprotein in various cancer types, and PRC1 deficiency 
leads to cell cycle G2/M arrest and apoptosis, breast cancer 
was one of the cancer types (39-42). Bu et al. reported that 
the abnormal expression of PRC1 can induce aberrant 
cytokine expression, contributing to tumorigenesis and 
tumor progression (48). Li et al. found that the PRC1 
phospho-mimic PRC1T481D mutant could partially rescue 
the cell proliferation defect induced by CDK16 deletion in 
TNBC cells (49). Previous bioinformatics analyses have 
revealed that PRC1 is associated with the immune invasion 
of hepatocellular carcinoma (50). PBK, a serine/threonine 
kinase, is tightly controlled in normal tissues, but elevated 
in many tumors, and plays a role in tumorigenesis and 
metastasis. PBK knockdown significantly impairs MDA-
MB-231 cell proliferation (51). A bioinformatics analysis 
showed that PBK is correlated with overall survival in breast 
cancer patients (52). TOP2A is frequently altered in HER2-
amplified tumors (53), such as in breast cancer and gastric 
cancer. TOP2A expression was found to be associated with 
the prognostic of breast cancer (54). TPX2 is a microtubule-
associated protein, is a strong predictor of aggressive 
behavior, has a reduced response to therapy, and has poor 
survival in breast cancer (55). These studies demonstrate 

theses 10 hub genes correlation with breast cancer and are 
consistent with our results, which predicted that they have 
the potential to become breast cancer biomarkers. 

Because tumor-infiltrating immune cells have a clear 
relationship with tumor diagnosis and prognosis (56), 
we explored the correlation between the 3 most useful 
prognostic indicators and immune infiltration by TISIDB. 
CDK1, CENPF, KIF2C, KIF4A, MELK, PBK, PRC1, and 
TPX2 were found to be positively correlated with CD4 T 
cells. The correlation between TOP2A and activated CD8 T 
cells was not significant. In summary, CDK1, CENPF, KIF2C, 
KIF4A, MELK, PBK, PRC1, and TPX2 are considered to 
have a relationship with the immunoregulation of the tumor 
environment.

The present study has some limitations. First, the study 
was based on bioinformatics analysis and lacked experiments 
(in vivo and in vitro validation). Second, one of the hub 
genes, TPX2, is upregulated in almost every cancer type, 
and its value as a prognostic or diagnostic biomarker for 
breast cancer decreased significantly. Third, the mechanism 
of the 10 hub genes was not clear. More biological evidence 
is needed. Therefore, further molecular experiments are 
needed to determine the function of these central genes and 
their role in the progression of breast cancer.

Conclusions

The findings on the present study indicated that the 10 
potential biomarkers of breast cancer could be involved in 
breast cancer prognosis. The 10 hub genes were identified 
as possible indicators for future breast cancer diagnosis and 
treatment. The identification of the correlation between the 
prognostic indicators and tumor-infiltrating immune cell 
levels in breast cancer showed that 9 prognostic indicators 
play a role in cancer immunoregulation, which could 
be useful in cancer immunotherapy. Further research is 
needed to confirm these findings. The findings of our study 
provide a strong basis for future breast cancer gene targeted 
therapies, and these 10 hub genes could potentially be new 
breast cancer target genes.
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