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Abstract
Although groups of small habitat patches often support more species than large patches of equal total area, their biodiversity 
value remains controversial. An important line of evidence in this debate compares species accumulation curves, where 
patches are ordered from small–large and large–small (aka ‘SLOSS analysis’). However, this method counts species equally 
and is unable to distinguish patch size dependence in species’ occupancies. Moreover, because of the species–area relation-
ship, richness differences typically only contribute to accumulation in small–large order, maximizing the probability of 
adding species in this direction. Using a null model to control for this, I tested 202 published datasets from archipelagos, 
habitat islands and fragments for patch size dependence in species accumulation and compared conclusions regarding rela-
tive species accumulation with SLOSS analysis. Relative to null model expectations, species accumulation was on average 
2.7% higher in large–small than small–large order. The effect was strongest in archipelagos (5%), intermediate for fragments 
(1.5%) and smallest for habitat islands (1.1%). There was no difference in effect size among taxonomic groups, but each 
shared this same trend. Results suggest most meta-communities include species that either prefer, or depend upon, larger 
habitat patches. Relative to SLOSS analysis, null models found lower frequency of greater small-patch importance for spe-
cies representation (e.g., for fragments: 69 vs 16% respectively) and increased frequency for large patches (fragments: 3 vs 
25%). I suggest SLOSS analysis provides unreliable inference on species accumulation and the outcome largely depends on 
island species–area relationships, not the relative diversity value of small vs large patches.
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Introduction

It is a common empirical finding that several small habitat 
patches contain more species than a single large patch of 
equal total area (Fahrig 2017, 2020; Quinn and Harrison 
1988), yet why such a pattern so frequently arises remains 
largely unexplained (Deane et  al. 2020; Fahrig 2017, 
2020; Fahrig et al. 2021). That higher richness would be 
observed in groups of small patches for a given total area is 

counterintuitive, given the body of theoretical and empiri-
cal evidence of negative impacts of patch area for diversity 
(e.g., Chase et al. 2020; Fletcher et al. 2018; Haddad et al. 
2015). In the context of fragmentation, one explanation is 
that small patches accumulate only more common general-
ist or matrix species (Andrén 1994; Matthews et al. 2014; 
McCollin 1993), limiting any conservation value (Blake 
and Karr 1984). One line of evidence that consistently 
supports greater species richness among groups of small 
patches is the comparison of species accumulation curves, 
where patches are ordered from the smallest to the larg-
est and the reverse (often called ‘SLOSS analysis’; Fahrig 
2017, 2020). However, this method does not account for any 
patch size dependence in species’ occupancies and cannot 
address the question of whether patches of all sizes provide 
equivalent habitat value for all species. Moreover, the com-
parison is inherently flawed because richness differences 
among patches can only contribute to species accumula-
tion in small–large order and because scale dependence in 
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quantifying species richness is ignored. However, a suitable 
null model can account for these issues, allowing a test of 
the role of patch size for species representation in the land-
scape using these same data.

The method of combining accumulation curves in reverse 
size order was introduced by Quinn and Harrison (1988) 
and, despite criticism (see Electronic Supplemental Mate-
rial, Online resource 1), remains popular for qualitative 
comparisons (e.g., Richardson et al. 2015), to test assembly 
hypotheses (Liu et al. 2018; MacDonald et al. 2018a) and 
to infer the effect of habitat subdivision on species rich-
ness (Fahrig 2017, 2020). Although the Quinn & Harrison 
method (hereafter QH curves) treats all species equally, 
one can separately analyze rare or specialist species and/
or common and generalist species and compare their pat-
terns of accumulation with area. Both Rösch et al. (2015) 
and Fahrig (2020), used this approach to show small–large 
curves typically accumulated species more rapidly than 
large–small curves even among specialist species. Nota-
bly, this contrasts with Matthews et al. (2014), who found 
island species–area curves for specialist bird species were 
steeper than that of generalist species, suggesting greater 
area dependence. The finding also runs counter to empirical 
evidence that some specialist species are disadvantaged in 
smaller patches because of the limited core habitat avail-
able (Didham et al. 1998; Pfeifer et al. 2017). While a focus 
on local, rather than landscape, scale understanding of spe-
cies richness likely contributes to these conflicting results 
(Fahrig et al. 2021), there is also good reason to question any 
inference from QH curves.

Indeed, since their introduction QH curves have been 
controversial (Online resource 1), not least because of con-
troversy over the original statistical test (Fletcher et al. 2018; 
Mac Nally and Lake 1999). There are, however, also more 
fundamental problems in directly comparing species density 
(i.e., the number of species for a given area) when combin-
ing irregularly sized patches in reverse size order. The curves 
amount to a race over the same total area to encounter all 
species in the dataset. In general, as samples (here patches) 
are combined, new species can be encountered either 
because of turnover in species identity or due to differences 
in species richness (reviewed in Legendre 2014). Because of 
the species–area relationship, small–large accumulation of 
patches will typically mean the larger patch contains more 
species; but any new species accumulated due to differ-
ences in richness between the patches can only contribute 
to species accumulation in small–large order. As a result, 
the probability of encountering new species is maximized 
for every patch when combining them in small–large order 
(Online resource 2). The combination of small patches, each 
with maximized probability of encountering new species 
accounts for the rapid initial accumulation of species typical 
of the small–large curve (Quinn and Harrison 1988). Greater 

large–small accumulation is only possible when the largest 
patch contains a suitably high proportion of total species 
richness in the data, which is most likely to occur when the 
island species–area relationship is steep (e.g., high slope 
values for the power-law species–area model), or the largest 
patch contains a high proportion of total habitat area.

A second problem with QH curves arises from the purely 
geometric effects of habitat subdivision (May et al. 2019). It 
is well known that the scale at which an ecological phenom-
enon is investigated influences the pattern that is observed 
(Wiens 1989). If most species in an assemblage are aggre-
gated in space, a group of small patches will typically con-
tain more species than an equivalent area contained in a 
single patch, which can be shown analytically (Deane et al. 
2022; Kobayashi 1985). It can also be illustrated (Fig. 1) 
using stem-mapped forest data such as the 50-ha Barro 
Colorado Island forest dynamics plot (Condit et al. 2012). 
Essentially, QH curves overlook the need to account for the 
effects of scale when seeking to understand species richness 
in disjoint habitats (Chase et al. 2019; Chase et al. 2018; 
Giladi et al. 2014). To identify any underlying ecological 
mechanism for the accumulation of species, including patch 
size dependence, it is necessary to control for any sampling 
effects on the species–area relationship (Chase et al. 2019; 
Hill et al. 1994), which can be achieved with a null model.

The simplest explanation assumes the species–area rela-
tionship arises as a passive sampling phenomenon (Con-
nor and McCoy 1979), where the probability of observing a 
species in a patch jointly depends on the size of the sample 
(e.g., the number of individuals) and the relative abundance 
of the species in the landscape. While strictly relating to 
random placement of individuals (Arrhenius 1921; Coleman 
1981), if we assume occupancy and abundance are posi-
tively correlated, this can be implemented as a null model 
for presence–absence data using an algorithm that retains the 
total number of occupancies and total richness of individual 
sites (i.e., constant row and column sums). If all points in 
the observed small–large and large–small curves fall within 
a randomization envelope generated using the null model, 
we are unable to reject a hypothesis of passive sampling. 
Because the algorithm removes any patch size dependence 
on species’ occupancies, the sampling envelope simulates 
situations where species accumulation was not affected by 
patch size. If either curve falls outside the randomization 
envelope, it suggests some patch size dependence in occu-
pancy affects species accumulation (Methods).

The aims of this paper are threefold. First, to test for evi-
dence of deviation from passive sampling when combining 
sites in reverse size order, implying some influence of patch 
size on species accumulation not revealed from QH curves. 
Second, to test for any systematic deviations from passive 
sampling for species accumulation related to broad meta-
community type (archipelagos, fragments, habitat islands) or 
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taxonomic group (plants, invertebrates, birds, non-avian ver-
tebrates). Finally, to test the sensitivity of conclusions from 
null models and SLOSS analysis to other meta-community 
covariates, focusing on nestedness and the slope of the island 
species–area relationship.

Materials and methods

Sources of data

I compiled datasets from published studies including 
raw data for discrete habitat types differing in patch area, 

building on the database from an earlier study compiled 
using literature searches and citation tracking as described 
in Deane and He (2018). I included ‘true’ islands (hereafter 
archipelagos and including those of inland, continental and 
oceanic waters), habitat islands (e.g., lakes, wetlands, sky 
islands) and remnant fragments of forest, woodland or grass-
land. In total, I acquired 202 presence-absence datasets (see 
data sources in Online resource 3 and associated metadata 
and results in Online resource 4). I made no assumption on 
sampling effort per patch, other than to assume each patch 
provided a comparable representation of species richness 
within the patch for that study system. However, the out-
come of SLOSS analysis is sensitive to survey effort (Deane 
et al. 2020; Fahrig 2020) and the methods of sampling varied 
widely between studies. Datasets (hereafter meta-communi-
ties) were therefore given an ordinal classification according 
to the level of confidence the data constituted a full census of 
species present in each patch, with results tested for sensitiv-
ity to these data confidence categories. The criteria were: 
(1, highest confidence) atlas data or field confirmed atlas 
data; (2) multiple survey methods or collation of multiple 
field visits; (3) single field survey sampling effort adjusted 
systematically for patch area or explicitly validated for level 
of completeness; (4) single survey with limited effort adjust-
ment or validation; or multiple surveys without adjustment 
of spatial effort to patch size (see Online resource 4).

Graphical interpretation

SLOSS analysis was used to infer the effects of subdivision, 
plotting QH type curves for each dataset and assigning each 
to one of three exclusive categories as proposed by Fahrig 
(2017), where the impacts of subdivision were assumed to 
be: positive, negative or to have no effect based on a curve-
overlap criterion (see Online resource 1). As overlap must be 
compared over a shared range in accumulated area (Online 
resource 1), this precluded 38 meta-communities where the 
largest patch was more than 50% of the total combined area, 
leaving a sample size of 164 (82%) for graphical SLOSS 
analysis.

Null model simulations

For the null model approach, I generated 1000 randomized 
matrices for each of the datasets and for each of these simu-
lated meta-communities, I re-calculated the size-ordered 
species accumulation curves, producing a 95% simulation 
interval in species accumulation for each combination of 
patches. I used a fixed–fixed (FF) null model algorithm, 
which preserves row and column marginal totals to rep-
resent a passive sampling expectation within the con-
straints of the available presence-absence data. While the 
FF approach does not strictly result in random matrices, a 

Fig. 1   Effect of different sampling geometry on expected species 
richness within a continuous forest tree community. a Distribution of 
richness values for 200 randomly positioned sampling units of total 
1-ha area divided into 1, 2 or 4 quadrats. b Variation in accumulated 
species richness for 20 irregularly sized quadrats combined in large-
to-small (LTS) and small-to-large (STL) order. Black lines show 
mean number of species accumulated over 200 randomly positioned 
iterations, gray lines show 95% sampling intervals. Sample size distri-
bution in (b) based on log-normal distribution (see Online resource 2) 
and a total sampled area of 2.5 ha. Data: Barro Colorado Island forest 
plot, 2005 census (Condit et al. 2012)
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proportional–proportional algorithm was deemed unreason-
able, as it allows row and column totals to vary (Ulrich and 
Gotelli 2012), thus relaxing the critical area-driven con-
straint on local scale species richness and the likelihood of 
observing a species within a patch (i.e., the frequency of 
occupancy across sites), required for the passive sampling 
expectation. Moreover, FF algorithms have the benefit of 
being least sensitive to total species richness and are thus 
the most appropriate null models when testing patterns of 
species co-occurrence in comparing matrices that differ in 
dimensions as was the case here (Ulrich et al. 2018). I used 
the sequential ‘curveball’ algorithm (Strona et al. 2014), 
with thinning set to 100. Simulated communities were cre-
ated using R Package vegan (Oksanen et al. 2020) and all R 
code is provided as Online resource 5.

Statistical tests

Quantifying effect size

Observed vs expected species accumulation under the null 
model were analyzed in two ways. I first calculated an effect 
size for each small-to-large and large-to-small ordering of 
sites in each meta-community using a mean residual devia-
tion (RD) statistic according to:

where m is the total number of patches in the meta-commu-
nity, i is a valid point of comparison on the accumulation 
curve (i.e., precluding the first and last patches, which are 
fixed in the null model algorithm, i.e., i = 2, 3, …, m-1), 
Obsi is the observed number of species accumulated in the 
i sites and Expi is the mean of the simulated communities 
for the same number of sites, approximating the expectation 
for passive sampling. The expectation for passive sampling 
gives the number of species that would be accumulated 
based on the observed occupancy across all sites. The RD 
statistic then gives a measure of deviation from this expec-
tation over the entire range of accumulation for each curve 
individually, where negative values indicate fewer species 
accumulated than expected according to the null model. As 
a measure of overall effect size for patch size dependence 
in species accumulation I used the arithmetic difference in 
mean RD between small–large and large–small order (i.e., 
ΔRD = RDSL − RDLS ). More negative values indicate 
greater impact on species accumulation in small–large order 
(i.e., a positive disproportionate effect relative to passive 
sampling for large patches), positive values the opposite. The 
ΔRD statistic quantifies the effect size when ignoring patch 
size dependence in occupancy. If a total of X ha of habitat 
was protected, one would expect a proportional difference 

(1)RD =
1

(m − 2)

m−1
∑

i=2

(

Obsi − Expi
)

∕Expi

of ΔRD in the species conserved if the X ha comprised only 
the smallest patches than if it comprised the largest patches, 
where the expectation for the number of species conserved is 
the passive sampling expectation for X ha of habitat. I tested 
whether the difference in RD differed from zero in either 
direction across all meta-communities and within habitat 
types and taxonomic groups using a paired t test assuming 
unequal variance. The ΔRD statistic was compared between 
levels of meta-community type and taxonomic group using 
Kruskal–Wallis tests.

Testing the frequency of null and alternative hypotheses 
to passive sampling

In addition to an overall effect size as described in the previ-
ous section, the frequency of meeting or exceeding passive 
sampling in both directions was also analyzed to provide a 
point of comparison with SLOSS analysis categories. The 
95% simulation envelope for both species accumulation 
curves was used to test the null hypothesis of passive sam-
pling in both directions (i.e., small–large and large–small). 
For each dataset, comparison of observed and expected spe-
cies accumulation in both small–large and large–small order 
had four possible outcomes: 1. observed = expected (O = E), 
where all observations were within the range of simulations; 
2. observed accumulation was greater than expected (O > E), 
where one or more points were above the range of simu-
lations; 3. observed accumulation was less than expected 
(O < E) where one or more points fell below the range of 
simulations; or, 4. one or more points fell both above and 
below the range of simulations (O <  > E). For each meta-
community, this yielded 16 possible mutually exclusive logi-
cal conditions combining the two size-ordered simulations 
(see Online resource 6 for details). If all observed points 
fell within the simulation envelope in both small–large and 
large–small order, there was no evidence to reject the null 
hypothesis that species accumulation was consistent with 
passive sampling. This provides no evidence of patch size 
dependence in community assembly (patch size independ-
ence, H0).

However, if observed species accumulation fell either 
above or below the simulation range, this was interpreted 
as a rejection of the null hypothesis of passive sampling at 
the 5% level. Depending on the nature of the deviation from 
passive sampling, three alternative hypotheses were defined, 
two of which suggested a disproportionate (relative to pas-
sive sampling) effect of patch size (larger or smaller) on the 
composition of species accumulated. Different combinations 
of the 16 possible logical states were used to construct the 
three alternative hypotheses as follows (Online resource 6): 
If at least one point in the observed accumulation curve fell 
above the upper 95% limit in large–small order, but all points 
in small–large order fell either within or below the lower 
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95% limit in small–large order, or if large–small fell within 
the passive sampling expectation, but small–large fell below, 
this was taken as evidence in favor of greater species accu-
mulation in large patches. This result is consistent with the 
hypothesis that some species preferentially (or only) occupy 
larger patches (hereafter large patch dependence; alternative 
hypothesis 1: HAL). The opposite logical states (small–large 
only above; large–small within or below; small–large within 
and large–small below) was taken as evidence in favor of 
greater species accumulation in small patches—consist-
ent with the hypothesis that some species preferentially 
(or only) occupy small patches (small-patch dependence; 
alternative hypothesis 2: HAS). Other logical states (e.g., 
at least one data point falls above and below, points only 
fell below in both directions, etc.) were grouped as a third 
alternative hypothesis that was inconclusive about patch size 
dependence. Such combinations occurred in fewer than 9% 
of meta-communities (Table S6.1, Online resource 6), which 
were precluded from further analysis. Comparisons relat-
ing to the frequency of large or small patch contributions 
to species accumulation between null models (n = 184) and 
SLOSS analysis (n = 164) were therefore based on propor-
tional responses to different metacommunities but remained 
qualitatively identical when restricted to the 148 metacom-
munities common to both methods.

Post hoc tests of patch size dependence 
among metacommunities and taxonomic groups

Grouping the metacommunities according to their sup-
port for the 3 competing hypotheses for patch size depend-
ence (H0 = passive sampling or patch size independence, 
HAL = large patch dependence and HAS = small patch 
dependence), I tested for differences in the frequency of 
patch types (archipelagos, habitat islands and fragments), 
and broad taxonomic groups (invertebrates, plants, non-
avian vertebrates and birds) using Fisher’s Exact Test of 
proportions. Pairwise post hoc tests were done for signifi-
cantly different results (P <  ~ 0.05) to identify conditions 
that were more frequent among levels of each factor. Type I 
error probabilities in each test were adjusted using sequential 
Bonferroni correction (aka Holm’s method).

Sensitivity to covariates

Finally, I tested the sensitivity of findings for both SLOSS 
analysis and null models to matrix dimensions (number of 
sites and species), the exponent of the power law island spe-
cies–area relationship and nestedness on a gradient of patch 
area. For all metacommunities, I calculated the island spe-
cies–area relationship exponent in arithmetic space using 
non-linear least squares regression. I compared the distri-
bution of the exponents among SLOSS analysis and null 

model patch size dependence classes using Kruskal–Wallis 
tests to meet distributional assumptions. I was interested 
in nested subsets because of its relationship to the SLOSS 
debate, where one would intuitively expect significant 
nestedness should favor a large patch dependence in spe-
cies accumulation (Patterson and Atmar 1986). To quantify 
nestedness on a gradient of patch area I used the NODF 
metric (Almeida-Neto et al. 2008) calculating a standardized 
effect size (SES) with the simulated null model communi-
ties described in “Null model simulations”. The distribution 
of values among the SLOSS analysis and null model patch 
size dependence classes for each of the covariates was tested 
using Kruskal–Wallis tests. Post hoc tests for differences 
between factor levels were identified using Dunn’s pairwise 
rank test with sequential Bonferroni adjustment. All simu-
lations and statistical analyses were done using R 4.0.1 (R 
Core Team 2020).

Results

Evidence for passive sampling vs. alternative 
hypotheses

Across all metacommunities, the mean difference from pas-
sive sampling in species accumulation was more negative 
in small–large than large–small comparisons (Fig. 2; ΔRD 
[95% confidence interval] = − 0.027 [− 0.038, − 0.016]; 
t = − 4.86, df = 201, P < 0.001). Patch-size independence 
could not be rejected for 40% of metacommunities, while 
33% were consistent with large patch dependence (HAL) and 
18% with small-patch dependence (HAS). The remainder (18 
metacommunities, 8.9%) had no clear response (Table S6.1, 
Online resource 6). In comparison, SLOSS analysis found no 
patch size dependence (i.e., overlapping curves) in 25.8% of 
metacommunities, large patch dependence (i.e., a negative 
inferred effect of subdivision) in 7.4% of metacommunities 
and small-patch dependence (i.e., a positive inferred effect of 
subdivision) in 66.9% metacommunities (Table S7.1, Online 
resource 7).

Inconsistent inference on patch size dependence between 
SLOSS analysis and null models is illustrated for three data-
sets (Fig. 3). Here, SLOSS analysis suggests small-patch 
dependence in two datasets (Fig. 3a, c) and no effect of patch 
size in a third (Fig. 3b). Null models support this conclu-
sion for the first dataset, as large–small accumulation falls 
only below, while small–large order exceeds 95% simula-
tion intervals (Fig. 3d, g respectively). However, small–large 
order falls below the lower simulation interval for the second 
dataset (Fig. 3h) suggesting large patches were important for 
some species, not evident from SLOSS analysis. The oppo-
site conclusion arises for the third dataset, where large–small 
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order exceeds the simulation interval while small–large falls 
only below it (Fig. 3f, i).

Patch‑size dependence in metacommunities 
and taxa from null models and SLOSS analysis

Mean deviations from passive sampling differed among 
metacommunity types (χ2 = 9.7, df = 2, P = 0.008; Fig. 2b; 
Online resource 7) with archipelagos (ΔRDArch = − 0.050 
[− 0.069, − 0.031]) having a more negative median residual 
deviation (i.e., greater large patch dependence) than either 
fragments (ΔRDFrag = − 0.015 [− 3.0e-2, − 1.5e-05]; Dunn’s 
pairwise rank test: z = 2.76, Padj = 0.012) or habitat islands 

(ΔRDHab = − 0.011 [− 0.031, 0.012]; rank test: z = 3.03, 
Padj = 0.007). There was no evidence of any difference in 
residual deviation between fragments and habitat islands 
(Padj = 0.64), nor among taxonomic groups (KW χ2 = 2.4, 
df = 3, P = 0.49).

Frequency of support for the null and alternative patch 
size dependence hypotheses also differed between meta-
community types (P = 0.007), varying consistently with 
ΔRD, where fragmented landscapes had a higher propor-
tion of metacommunities following passive sampling than 
archipelagos (60 vs 40% respectively) and a lower pro-
portion of metacommunities with large patch dependence 
(HAL frag = 25%, HAS frag = 16% of metacommunities), with 
archipelagos again more frequently consistent with large 
patch dependence (i.e., HAL; Padj = 0.012). Differences in 
frequency of support among taxonomic groups were also 
evident (P < 0.001), with non-avian vertebrates more likely 
to follow passive sampling than small-patch dependence, 
relative to invertebrates or birds (both Padj < 0.01).

Sensitivity of SLOSS analysis and null model 
outcomes to covariates

The exponent of the power law species–area relation-
ship was associated with the outcome of SLOSS analysis 
(Fig. 4; Kruskal–Wallis χ2 = 0.42, df = 2, P < 0.001) but not 
null model simulations (P = 0.28). Lower exponent values 
(mean ± SD = 0.15 ± 0.13), were associated with a positive 
effect of subdivision (small-patch dependence) according 
to SLOSS analysis, larger values (0.42 ± 0.25) were more 
likely to infer large patch dependence. The value of the 
exponent in overlapping curves was intermediate to this 
(0.32 ± 0.18). The outcome of SLOSS analysis did not 
depend on the residual deviation from passive sampling 
(χ2 = 0.92, df = 2, P = 0.63) but, as would be expected, the 
most supported hypothesis from null model simulations was 
strongly dependent (χ2 = 98.4, df = 2, P < 0.001).

Statistically significant (P < 0.05 for standardized effect 
size, SES) nestedness on a gradient of patch area occurred in 
6.9% of metacommunities, while the opposite pattern (i.e., 
composition being less nested than expected aka anti-nested-
ness) occurred in 15.4% of metacommunities. Nestedness on 
a gradient of patch area was influential on simulation results 
(P = 0.016), where more negative SES (i.e., anti-nestedness) 
was associated with small-patch dependence (HAS) rela-
tive to metacommunities with either passive sampling (H0, 
Padj = 0.014) or large patch dependence (HAL, Padj = 0.045). 
Nestedness on a gradient of patch area did not vary among 
metacommunities following different SLOSS analysis out-
comes (P = 0.26).

For null model simulations, mean residual deviation (RD 
statistic) was not affected by the number of patches (Pear-
son’s r = − 0.05, P = 0.20) but was negatively correlated 

Fig. 2   Patch-size dependence in species accumulation a difference 
between observed data and a passive sampling model assuming spe-
cies have no patch size dependence (ΔRD) for all metacommunities 
(n = 202) and b individual small–large and large–small curve differ-
ences from passive sampling (RD) by meta-community type. In both 
(a) and (b), negative values mean fewer species were accumulated 
across the dataset than expected under passive sampling. In (a) histo-
gram bars show the number of meta-communities falling within each 
bin, dashed vertical line shows the mean difference across all datasets 
(− 0.027) and the gray bar shows the extent of the 95% confidence 
intervals in this value. In (b), boxes show the interquartile range with 
the median value shown in bold. Hinges show 1.5 times interquartile 
range
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with the (log) number of species (r = − 0.21, P = 0.005). In 
frequency tests, passive sampling was more likely among 
metacommunities with fewer patches and fewer total species 
(both P < 0.001). There was only marginal evidence the out-
come of SLOSS analysis was associated with the number of 
patches (P = 0.075), but there was a similarly strong depend-
ence on the total number of species (P < 0.001). There was 
also marginal evidence that patch size class depended on the 
confidence level in the data (P = 0.086), but no difference 
associated with the outcomes in the minimum or maximum 
confidence levels (i.e., best and worst quality data; P = 0.92), 
nor in the distribution of the RD statistic (median: KW 
χ2 = 5.5, df = 3, P = 0.14; variance: Bartlett’s test: B = 4.6, 

df = 3, P = 0.21). The outcome of SLOSS analysis was sen-
sitive to the level of confidence in the data (P = 0.009), and 
in this case, the lowest confidence datasets were more likely 
than the highest confidence to return a positive subdivision 
effect (i.e., small-patch dependence; Padj = 0.013).

Discussion

Conflicting evidence on the biodiversity value of small 
patches has produced ongoing debate, particularly in the 
context of managing fragmented habitat (e.g., Fahrig et al. 
2019; Fletcher et al. 2018). This study offers two insights. 

Fig. 3   Comparison of inference from SLOSS analysis (top row) and 
null model simulations (center row, bottom row) for three datasets 
(columns). Top row (panels a–c) shows SLOSS analysis. Middle 
(d–f) and bottom (g–i) rows are null model results for large–small 

and small–large order, respectively. Left column, shows birds on an 
Australian archipelago (Gibson et al. 2017). Centre column, birds in 
a Finnish archipelago (Haila et  al. 1983). Right column, lizards in 
Western Australian reserves (Kitchener et al. 1980)
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First, it shows that the evidence of relative patch size impor-
tance in species accumulation from SLOSS analysis is unre-
liable and largely a function of the island species–area rela-
tionship. More importantly, it shows that when SLOSS-type 
species accumulation curves are compared against a suitable 
null model benchmark, small patches are typically not of 
equal habitat value for all species in the landscape (Blake 
and Karr 1984; Matthews et al. 2014). This can be true even 
where they support greater richness for a given total area.

Implications for fragmented habitat

The relative importance of small and large patches for spe-
cies representation is of most conservation importance in 
fragmented landscapes. Based on the overall negative mean 
residual deviation statistic in this study, preferential protec-
tion of larger fragments would be expected to provide habitat 
suitable for a greater proportion of species in the landscape. 
This might warrant a decision to protect large patches over 
small ones in spite of greater richness in the latter (Fahrig 
et al. 2021). However, it is not that straightforward in prac-
tice, as small-patch dependence was inferred here in almost 
one in six fragmented meta-communities and the loss of 
small patches from fragmented landscapes could have seri-
ous consequences for extant native diversity (Deane and He 
2018; Wintle et al. 2019). This supports a view where habitat 
patches of all sizes are valued (Deane and He 2018; Rösch 
et al. 2015; Wintle et al. 2019) but, in general, the more 
area habitat patches represent both individually (Chase et al. 
2020; Haddad et al. 2015; Matthews et al. 2014) and collec-
tively (Andrén 1994; Fahrig 2013; Watling et al. 2020), the 
better the likely outcome for representation of all species.

The effect size for fragmented meta-communities was 
small, but there could be several reasons, it represents a 
lower limit. It is possible that the landscapes analyzed have 

not yet reached equilibrium, in which case the small negative 
effect size could partly reflect an unpaid extinction debt in 
small patches (Tilman et al. 1994). Other ecological consid-
erations also might reduce the observed effect size, for exam-
ple, perhaps species dependent upon larger patches were 
rapidly lost following fragmentation (Gibson et al. 2013) or 
the contrast between habitat and the surrounding matrix was 
not pronounced, reducing the impacts of fragmentation on 
the taxa concerned (Laurance et al. 2011). Data also offer a 
likely source of underestimation of effect size.

Uncertainties

Undoubtedly the major uncertainty in this analysis are the 
data. The problem is common to both methods and must be 
taken into account when considering these results. Not only 
do presence–absence data offer limited power to infer diver-
sity effects in varying size habitats (Chase et al. 2019; Haila 
and Hanski 1984), more important is the difficulty in ensur-
ing species lists for each patch represents a complete census. 
A negative relationship between sampling effort and patch 
size for these types of data appears almost ubiquitous (Deane 
et al. 2020), increasing the probability of finding small patch 
dependence in SLOSS comparisons (Deane et al. 2020; 
Fahrig 2020; Results). Even though null model analysis did 
not show any clear relationship with data confidence levels, 
only 5% of the data from fragments were of the highest con-
fidence, compared with 45% of archipelago datasets. Exclud-
ing data of the lowest confidence increased the observed 
effect size for fragments by almost 50% (ΔRDFrag = − 0.022 
vs − 0.015 using all data). It seems probable that the effect 
sizes and patterns of patch size dependence identified from 
null models would more likely understate the importance of 
larger patches for species representation.

Fig. 4   Relationships between 
the outcomes of a null model 
simulations and b SLOSS 
analysis with the island species–
area relationship characterized 
using the power-law exponent 
(i.e., z value). a distribution 
of exponent values between 
meta-communities classified 
according to patch size depend-
ence relative to the passive 
sampling null model, b same 
values for patch size depend-
ence categories inferred from 
SLOSS analysis
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Large‑patch dependence greater for archipelago 
biota than fragments or habitat islands

Archipelagos were more likely to show large patch depend-
ence than either fragments of formerly continuous habitat 
or naturally occurring habitat islands, consistent with patch-
scale evidence (Chase et al. 2020; Gooriah et al. 2021). Post 
hoc analysis of null model results showed an interesting 
numerical trend consistent with island biogeography (Mac-
Arthur and Wilson 1967), where increasingly isolated archi-
pelagos had increasing large patch dependence (ΔRD for 
reservoir or freshwater lake islands = − 0.035, continental 
archipelagos = − 0.050, oceanic archipelagos = − 0.078). 
For null models, the frequency of large patch dependence 
in oceanic island metacommunities was 64%, while SLOSS 
analysis suggested the opposite, with none showing large 
patch dependence and 66% having small-patch dependence 
(see Table S7.1, Online resource 7, for other frequency 
comparisons).

Habitat islands presented the least evidence of any large 
patch dependence and were the only metacommunity type 
to have a positive (albeit not statistically different from zero) 
median RD, suggesting relatively limited patch size depend-
ence. These results suggest that of all metacommunity types 
examined, small habitat islands (particularly ponds and 
wetlands) are most likely to make important contributions 
to landscape species representation, which has often been 
reported (Deane et al. 2017; Flinn et al. 2008; Oertli et al. 
2002; Peintinger et al. 2003; Richardson et al. 2015). Most 
fragmented landscapes also contain such naturally discrete 
habitats, subject to similar land use impacts and habitat loss, 
which warrant conservation effort.

In contrast with patch type, effect size did not differ 
between taxonomic groups. This might be in part due to the 
coarse nature of the classifications used but is not an unu-
sual result (Chase et al. 2020; Gooriah et al. 2021). There 
was, however, weak evidence invertebrates and birds had a 
higher frequency of small-patch dependence than non-avian 
vertebrates. For invertebrates, this is consistent with prior 
work (Deane and He 2018; Rösch et al. 2015; Tscharntke 
et al. 2002) but evidence for birds is equivocal, particularly 
for habitat specialists (Blake and Karr 1984; Carrara et al. 
2015; Matthews et al. 2014). In contrast, failure to reject pas-
sive sampling for a higher proportion of non-avian vertebrate 
metacommunities is consistent with expectation and likely 
reflects their greater area dependence and rapid decline to 
local extinction in isolated small patches (Bolger et al. 1997; 
Gibson et al. 2013).

SLOSS analysis is not a reliable approach

Even if problems with scale dependence in quantifying spe-
cies richness are overlooked, it is clear from this analysis 

that QH curves can contribute nothing to our understanding 
of subdivision effects. SLOSS analysis outcomes are unre-
lated to whether species form nested subsets on a gradient 
of patch area (Mac Nally and Lake 1999; Results), which 
is counter-intuitive and the opposite of expectation (Tjørve 
2010; Worthen 1996). Moreover, the outcome depends on 
the island species–area relationship (ISAR), which describes 
how species richness changes with increasing patch area in 
independent draws from the regional species pool (Scheiner 
et  al. 2011) not how species accumulate as patches are 
combined (Matthews et al. 2016). A relationship between 
SLOSS analysis and the ISAR was recently noted for mul-
tiple taxa in island archipelagos (Liu et al. 2022); this study 
explains why it is a general result. This relationship with the 
ISAR also explains how SLOSS analysis constrained only to 
specialist or endangered species might still show small patch 
preference (e.g., Fahrig 2020; Richardson et al. 2015; Riva 
and Fahrig 2022; Tscharntke et al. 2002); any taxon with an 
island species–area curve power law exponent less than ~ 0.3 
is likely to result in QH curves where the small–large curve 
lies always above the large–small curve.

The difference in conclusions between SLOSS analysis 
and null models highlights the need to control for sampling 
effects when analyzing richness scaling patterns in discrete 
habitat patches of irregular size (Chase et al. 2019; Chase 
et al. 2018). Both geometric effects (Deane et al. 2022; 
Fig. 1; Kobayashi 1985; May et al. 2019) and increased beta 
diversity among smaller patches (Deane et al. 2020; Fahrig 
2020; Liu et al. 2018; MacDonald et al. 2018b) promote 
greater richness in subdivided habitat. This should be the 
expectation and methods should explicitly account for this. 
Ultimately, this study highlights the need for high quality 
abundance data, within-patch replication of standard sized 
samples and appropriate statistical methods to correctly 
interpret the scaling of species richness with area and to 
understand its mechanistic origins (Chase et al. 2019, 2018; 
Hill et al. 1994).
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