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Abstract

Huntington’s disease (HD) is a genetic neurodegenerative disease caused by an expanded CAG 

repeat in the Huntingtin (HTT) gene that codes for an expanded polyglutamine (polyQ) repeat 

in exon-1 of the human mutant huntingtin (mHTT) protein. The presence of this polyQ repeat 

results in neuronal degeneration for which there is no cure nor treatment that modifies disease 

progression. In previous studies we have shown that small molecules that bind selectively to σ2R/

TMEM97 can have significant neuroprotective effects in models of Alzheimer’s disease, traumatic 

brain injury and several other neurodegenerative diseases. In the present work we extend these 

investigations and show that certain σ2R/TMEM97-selective ligands decrease mHTT induced 

neuronal toxicity. We first synthesized a set of compounds designed to bind to σ2R/TMEM97 

and determined their binding profiles (Ki values) for σ2R/TMEM97 and other proteins in the 

central nervous system. Modulators with high affinity and selectivity for σ2R/TMEM97 were 

then tested in our HD cell model. Primary cortical neurons were cultured in vitro for seven days 

and then co-transfected with either a normal HTT construct (Htt N-586–22Q/GFP) or the mHTT 

construct Htt-N586–82Q/GFP. Transfected neurons were treated with either σ2R/TMEM97 or σ1R 

modulators for 48 h. After treatment, neurons were fixed and stained with Hoechst, and condensed 
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nuclei were quantified to assess cell death in the transfected neurons. Significantly, σ2R/TMEM97 

modulators reduce the neuronal toxicity induced by mHTT, and their neuroprotective effects are 

not blocked by NE-100, a selective σ1R antagonist known to block neuroprotection by σ1R 

ligands. These results indicate for the first time that σ2R/TMEM97 modulators can protect neurons 

from mHTT-induced neuronal toxicity, suggesting that targeting σ2R/TMEM97 may lead to a 

novel therapeutic approach to treat patients with HD.
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INTRODUCTION

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disease for which 

there is neither a cure nor an approved treatment that slows or reverses its progression. 

HD patients typically develop symptoms at mid-adulthood, and the associated disabilities 

worsen over time ending in death within 10–20 years following the onset of symptoms.1 

This devastating disease is caused by an abnormal expansion of CAG repeats in exon-1 

of the human Huntingtin gene (HTT) coding for a mutant huntingtin protein (mHTT) 

with an elongated polyglutamine (polyQ) sequence.2 This mHTT preferentially affects the 

striatum and deep cortical pyramidal neurons of HD patients, and the disease is manifested 

as progressive movement disorders including chorea, cognitive decline, and emotional 

alterations.3 Although some symptomatic treatments are available, there is no disease 

modifying treatment for HD, so there is an urgent need for neuroprotective drugs or other 

therapies.4, 5

Small molecules have a rich history in drug discovery because of their ability to selectively 

target and inhibit or activate proteins involved in pathogenic pathways. In this context, 

compounds that bind to sigma receptors (σRs) are gaining prominence.6, 7 The sigma 1 

receptor (σ1R), which shows no homology with any other mammalian protein, is located 

in the endoplasmic reticulum (ER) where it is enriched in the mitochondria-associated 

membrane subregion and is involved in calcium modulation.8, 9 Small molecules that bind 

to the σ1R have been shown to exhibit promising attributes in neurodegenerative and 

neurological disorders,10–13 and several σ1R ligands have neuroprotective effects in animal 

models of HD,14–16 including pridopidine that is in human clinical trials.17–20
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The sigma 2 receptor (σ2R), which is biochemically distinct from σ1R, was initially 

associated with cancer diagnosis and therapy,21–24 but it has more recently been implicated 

in neurological disorders.25, 26 Compounds that bind to σ2R have been shown to affect 

intracellular Ca2+ levels and signaling.27, 28 The molecular identity of σ2R was an enigma 

from its discovery until several years ago, when it was cloned and identified as the 

ER-resident transmembrane protein 97 (TMEM97),29 herein referred to as σ2R/TMEM97. 

Although the biological function of σ2R/TMEM97 is not well characterized, it is known to 

play a role in cholesterol trafficking and homeostasis,30, 31 and 20(S)-hydroxycholesterol 

has recently been identified as an endogenous ligand.32 σ2R/TMEM97 appears to be a 

partner of the lysosomal cholesterol transporter NPC1,33 a mutation in which results in 

Niemann-Pick disease type C, and several other proteins including progesterone membrane 

component 1 (PGRMC1)31, 34–36 and the low-density lipoprotein receptor (LDLR).31, 36 

Small molecules that modulate σ2R/TMEM97-mediated pathways show beneficial effects in 

different disease contexts, including cancer,37, 38 neuropathic pain,39 traumatic brain injury 

(TBI),40 alcohol use disorder,35, 41 and Alzheimer’s disease (AD).34, 36, 42, 43 Moreover, a 

putative σ2R/TMEM97 antagonist is in Phase II clinical trials for treating AD.44

The findings that modulating σ2R/TMEM97 exhibits neuroprotection in several models 

of neurodegenerative disease prompted us to query whether compounds that bind to σ2R/

TMEM97 might provide beneficial effects in an HD model. Toward testing this hypothesis, 

we evaluated a small panel of compounds with differing affinities and selectivities for σ2R/

TMEM97 and σ1R in a primary neuron model of HD. These compounds include racemic 

AMA-1127, DKR-1051, DKR-1677, UKH-1114, JJS-1678, BJM-1679, EES-1686, 
BEA-1687, MPC-1154, and HLJ-1560 (Figure 1), some of which have been previously 

tested in other disease models.34, 39, 40 In this study, we used an HD cell model to assess the 

effects of these compounds upon mHTT-induced neuronal toxicity. Briefly, primary neurons 

were co-transfected with plasmid expression of a 586 N-terminal Htt polypeptide with either 

normal Q (Htt-N586–22Q) or expanded Q (Htt-N586–82Q) repeats and green fluorescent 

protein (GFP). Compounds that are selective for σ2R/TMEM97 showed strong protective 

effects on mHTT-induced neuronal cell death as did several different compounds having σ1R 

selectivity. To exclude the possible involvement of σ1R modulation as a possible mechanism 

of action for the σ2R/TMEM97 ligands, the σ1R-selective antagonist, NE-100, was used. 

Notably, the protective effect of σ2R/TMEM97-selective compounds is not blocked by 

NE-100, clearly demonstrating that neuroprotection by these small molecules is mediated 

by their interaction with σ2R/TMEM97, not σ1R. These studies are the first to demonstrate 

that compounds that bind selectively to σ2R/TMEM97 are neuroprotective in an HD model, 

and they support further mechanistic studies of the function of σ2R/TMEM97 in mHTT 

protection as a possible new approach to treat HD patients.

MATERIALS AND METHODS

Chemical Synthesis and Characterization.

Acetonitrile was dried by filtration through two columns of activated molecular sieves, and 

toluene was dried by filtration through one column of activated, neutral alumina followed 

by one column of Q5 reactant. Methylene chloride and diisopropylethylamine (Hünigs base) 
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were distilled from calcium hydride immediately prior to use. Dioxane was distilled from 

sodium metal and benzophenone prior to use. All solvents were determined to have less 

than 50 ppm H2O by Karl Fischer coulometric moisture analysis. All reagents were reagent 

grade and used without purification unless otherwise noted. All reactions involving air or 

moisture sensitive reagents or intermediates were performed under an inert atmosphere of 

nitrogen or argon in glassware that was flame or oven dried. Solutions were degassed using 

three freeze-thaw cycles under vacuum. Reaction temperatures refer to the temperature of 

the cooling/heating bath. Volatile solvents were removed under reduced pressure using a 

Büchi rotary evaporator at 25–30 °C. Thin layer chromatography was performed using run 

on pre-coated plates of silica gel with a 0.25 mm thickness containing 60F-254 indicator 

(Merck). Chromatography was performed using forced flow (flash chromatography) and 

the indicated solvent system on 230–400 mesh silica gel (E. Merck reagent silica gel 60). 

Radial Preparative Liquid Chromatography (radial plc) was performed on a Chromatotron® 

using glass plates coated with Merck, TLC grade 7749 silica gel with gypsum binder 

and fluorescent indicator. All compounds submitted for in vivo testing were >95% purity 

as determined by LC via AUC at 214- and 254 nm. Proton nuclear magnetic resonance 

(1H NMR) and carbon nuclear magnetic resonance (13C NMR) spectra were obtained 

at the indicated field as solutions in CDCl3 unless otherwise indicated. Chemical shifts 

are referenced to the deuterated solvent and are reported in parts per million (ppm, 

δ) downfield from tetramethylsilane (TMS, δ = 0.00 ppm). Coupling constants (J) are 

reported in Hz and the splitting abbreviations used are: s, singlet; d, doublet; t, triplet; q, 

quartet; m, multiplet; comp, overlapping multiplets of magnetically nonequivalent protons; 

br, broad; app, apparent. Racemic intermediates 1,45 2,46 5,47 9,39 and 10,48 as well as 

(±)-MPC-115449 were prepared as previously described. New compounds were prepared 

according to the reactions summarized in Schemes 1–5.

(±)-4-Fluorobenzyl-8-(4-methylpiperazin-1-yl)-1,3,4,5-tetrahydro-2H-1,5-
methanobenzo[c]azepine-2-carboxylate (AMA-1127).—4-Fluorobenzyl 

chloroformate was prepared by slowly adding a solution 

of phosgene (111 μL of 15 wt % in toluene, 0.155 mmol) to a stirred solution of 4-

fluorobenzyl alcohol (21 mg, 0.163 mmol) and diisopropylethylamine (30 mg, 41 μL, 0.233 

mmol) in toluene (1 mL) at 0 °C. A solution of amine 1 (19 mg, 0.075 mmol) in toluene 

(0.5 mL) was then added with stirring, the cooling bath was removed, and the solution was 

stirred for 1 h. The mixture was diluted with aqueous NaOH (1 M, 10 mL), and the aqueous 

mixture was extracted with EtOAc (3×10 mL). The combined organic extracts were washed 

with brine (1×10 mL), dried (Na2SO4), and concentrated under reduced pressure. The 

residue was purified via flash column chromatography (SiO2), eluting with MeOH/CH2Cl2 

(2% v/v), to afford 12 mg (39%) of AMA-1127 as a pale yellow oil. 1H NMR (500 MHz) 

(rotamers) δ 7.46–7.28 (comp, 2 H), 7.11 (d, J = 8.1 Hz, 1 H), 7.10–7.00 (comp, 2 H), 6.97 

(brs, 0.5 H), 6.81 (dd, J = 8.1, 2.0 Hz, 1 H), 6.77 (brs, 0.5 H), 5.45 (dd, J = 2.9 Hz, 0.5 H), 

5.31 (dd, J = 2.9 Hz, 0.5 H), 5.23–5.02 (comp, 2 H), 3.85–3.70 (m, 1 H), 3.25–3.10 (comp, 

5 H), 2.60 (t, J = 4.9 Hz, 4 H), 2.52–2.38 (m, 1 H), 2.37 (s, 3 H), 2.25–2.12 (m, 1 H), 2.03–

1.89 (m, 1 H), 1.87–1.80 (m, 1 H), 1.62–1.50 (m, 1 H). 13C NMR (125 MHz) (rotamers) 

δ 155.1, 154.8, 151.2, 142.3, 141.9, 137.7, 133.2, 132.9, 130.1, 130.1, 130.0, 129.9, 123.3, 
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123.2, 116.3, 115.9, 115.6, 115.4, 112.6, 112.2, 66.4, 58.2, 57.9, 55.3, 49.8, 46.2, 43.9, 39.1, 

38.8, 30.6; HRMS (ESI) m/z calcd for C24H28N3O2F (M+H)+, 410.2238; found 410.2242.

(±)-tert-Butyl 4-(8-(4-(trifluoromethyl)phenyl)-2,3,4,5-tetrahydro-1H-1,5-
methanobenzo[c]azepine-2-carbonyl)piperidine-1-carboxylate (3).—EDCI•HCl 

(52 mg, 0.27 mmol) and hydroxybenzotriazole (42 mg, 0.27 mmol) were added to a solution 

of 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (69 mg, 0.30 mmol) in CH2Cl2 (3.0 

mL). A solution of the amine 2 (75 mg, 0.24 mmol) and Hünig’s base (74 mg, 100 μL, 

0.54 mmol) in CH2Cl2 (0.95 mL) was then added, and the solution was stirred for 12 

h. The mixture was concentrated under reduced pressure, and the crude mixture product 

was purified via radial preparative layer chromatography, eluting with hexanes → hexanes/

EtOAc (9/1 → 1/3 → 1/1) to provide 102 mg (80%) of the carbamate 3 as a colorless oil. 
1H NMR (400 MHz) δ 7.51 (d, J = 8.0 Hz, 1 H), 7.49–7.42 (comp, 3 H), 7.42–7.37 (m, 1 

H), 7.37–7.31 (m, 1 H), 7.22–7.16 (m, 1 H), 6.01 (d, J = 4.0 Hz, 0.6 H), 5.20–5.17 (m, 0.4 

H), 4.32 (dd, J = 14.0, 7.0 Hz, 0.4 H), 4.28–4.02 (comp, 2 H), 3.60 (dd, J = 14.0, 7.0 Hz, 

0.6 H), 3.43–3.36 (m, 1 H), 2.94–2.80 (m, 1 H), 2.72 (td, J = 12.0, 5.3 Hz, 2 H), 2.56–2.46 

(m, 1 H), 2.38–2.19 (m, 1 H), 2.07–1.97 (m, 1 H), 1.86–1.77 (comp, 2 H), 1.75–1.63 (comp, 

2 H), 1.63–1.52 (comp, 2 H), 1.51–1.40 (comp, 9 H); 13C NMR (100 MHz) δ 172.4, 154.7, 

149.7, 146.5, 144.4, 142.0, 139.2, 129.3 (q, JC–F = 25.5 Hz), 127.5, 127.4, 127.2, 125.7 (q, 

JC–F = 3.0 Hz), 123.4, 123.3, 123.1, 122.8, 122.3, 79.5, 54.6, 44.0, 43.2, 39.8, 38.9, 31.1, 

29.7, 28.6, 28.4. HRMS (ESI) m/z calcd for C29H33F3N2NaO3 (M+Na)+, 537.2335; found 

537.2339.

(±)-Piperidin-4-yl(8-(4-(trifluoromethyl)phenyl)-1,3,4,5-tetrahydro-2H-1,5-
methanobenzo[c]azepin-2-yl)methanone (4).—A solution of 4 N 

HCl in 1,4-dioxane (3.5 mL) was added to a solution 

of carbamate 3 (88 mg, 0.17 mmol) in 3.0 mL 1,4-dioxane at room temperature 

and stirring was continued for 24 h. The solution was concentrated under reduced 

pressure at room temperature, and the residue was dissolved in CH2Cl2 (5 mL). The mixture 

was made basic by the addition of aqueous NaOH (1 M, 3.0 mL), the organic layer was 

separated, and the aqueous mixture was extracted with CH2Cl2 (3 × 5 mL). The combined 

organic extracts were dried (Na2SO4), filtered, and concentrated under reduced pressure. 

The residue was dissolved in Et2O, filtered, and concentrated under reduced pressure 

to give 65 mg (92%) of amine 4 that was of sufficient purity to be used in subsequent 

reactions. 1H NMR (400 MHz, CD3OD) δ 7.78–7.72 (comp, 2 H), 7.71–7.66 (comp, 2 H), 

7.61–7.59 (m, 1 H), 7.59–7.57 (m, 0.5 H), 7.55–7.53 (m, 0.5 H), 7.40–7.36 (m, 1 H), 5.87 

(d, J = 4.0 Hz, 0.6 H), 5.42 (d, J = 4.0 Hz, 0.4 H), 4.19 (dd, J = 12.0, 6.0 Hz, 0.4 H), 3.78–

3.59 (comp, 1.6 H), 3.38–3.33 (m, 1 H), 3.29 (pent, J = 2.0 Hz, 0.6 H), 3.16–3.04 (comp, 

1.4 H), 3.04–2.94 (m, 1 H), 2.79–2.49 (comp, 2.6 H), 2.35–2.28 (m, 0.4 H), 2.26–2.12 

(m, 1 H), 2.09–1.95 (m, 1 H), 1.92 (d, J = 12.0 Hz, 0.4 H), 1.85–1.79 (m, 1 H), 1.81 (d, J = 

12.0 Hz, 0.6 H), 1.75–1.62 (comp, 3 H), 1.62–1.46 (m, 1 H); 13C NMR (100 MHz) δ 171.1, 

170.9, 146.6, 146.4, 144.3, 141.7, 140.7, 139.4, 139.3, 128.3, 127.8, 127.4, 127.3, 125.7 

(q, JC–F = 3.0 Hz), 123.4, 123.2, 122.8, 122.4, 59.1, 44.4, 43.8, 40.2, 39.7, 39.6, 36.7, 35.1, 

31.1, 30.4. HRMS (ESI) m/z calcd for C24H26F3N2O (M+H)+, 415.1992; found 415.2004.
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(±)-(1-Propylpiperidin-4-yl)(8-(4-(trifluoromethyl)phenyl)-1,3,4,5-
tetrahydro-2H-1,5-methanobenzo[c]azepin-2-yl)methanone (JJS-1678).—
1-Bromopropane (22 mg, 0.18 mmol) was added to a mixture of 4 (25 mg, 

0.060 mmol) and K2CO3 (34 mg, 0.24 mmol) in CH3CN (800 μL). The mixture was heated 

at 45 °C for 20 h, cooled to room temperature, and concentrated under reduced pressure. 

The crude residue was purified via flash column chromatography (SiO2), eluting with 

EtOAc → MeOH/EtOAc (1/19) to give 11 mg (41%) of JJS-1678 as an off white foam. 
1H NMR (400 MHz) δ 7.71–7.62 (comp, 4 H), 7.57–7.54 (m, 0.6 H), 7.51 (dd, J = 8.0, 

2.0 Hz, 1 H), 7.43–7.40 (m, 0.4 H), 7.35 (t, J = 4.0 Hz, 1 H), 6.02 (J = 4.0 Hz, 0.6 H), 5.18 (J 
= 4.0 Hz, 0.4 H), 4.32 (dd, J = 12.0, 4.0 Hz, 0.4 H), 3.59 (dd, J = 12.0, 4.0 Hz, 0.6 H), 3.42–

3.35 (m, 1 H), 3.13–2.95 (comp, 2 H), 2.71 (td, J = 26.0, 4.0 Hz, 1 H), 2.48–2.11 (comp, 5 

H), 2.08–1.77 (comp, 6 H), 1.73–1.64 (m, 1 H), 1.62–1.48 (comp, 2 H), 0.95–0.89 (m, 1 H), 

0.89 (t, J = 12.0 Hz, 3 H); 13C NMR (100 MHz) δ 172.2, 171.9, 146.6, 146.4, 144.4, 141.9, 

140.9, 139.3, 139.2, 128.2, 127.7, 127.4, 127.3, 125.7 (q, JC–F = 3.0 Hz), 123.4, 123.2, 

122.7, 122.3, 59.5, 59.4, 44.4, 43.8, 40.1, 39.8, 39.7, 36.4, 31.1, 30.4, 29.67, 18.4, 18.3, 

11.6, 11.5. HRMS (ESI) m/z calcd for C27H32F3N2O (M+H)+, 457.2461; found 457.2465.

(±)-(1-(2-Hydroxyethyl)piperidin-4-yl)(8-(4-(trifluoromethyl)phenyl)-1,3,4,5-
tetrahydro-2H-1,5-methanobenzo[c]azepin-2-yl)methanone (EES-1686).—2-

Bromoethanol (15 mg, 0.12 mmol) was added to a mixture of 4 (25 mg, 0.060 mmol) 

and K2CO3 (34 mg, 0.24 mmol) in CH3CN (800 μL), and then the mixture was heated at 50 

°C for 20 h. The mixture was cooled to room temperature and concentrated under reduced 

pressure, and the crude residue was purified via flash column chromatography (SiO2), 

eluting with hexanes → hexanes/EtOAc (1/1) → EtOAc → CH2Cl2 → MeOH/CH2Cl2 

(1:9) to give 22 mg (81%) of a EES-1686 as a light yellow oil. 1H NMR (400 MHz) δ 
7.71–7.62 (comp, 4 H), 7.55 (br s, 0.6 H), 7.52 (dd, J = 8.0, 2.0 Hz, 1 H), 7.42 (br s, 0.4 H), 

7.35 (t, J = 8.0 Hz, 1 H), 6.02 (d, J = 4.0 Hz, 0.6 H), 5.18 (d, J = 4.0 Hz, 0.4 H), 4.31 (dd, J 
= 12.0, 8.0 Hz, 0.4 H), 3.71–3.61 (comp, 2 H), 3.58 (dd, J = 12.0, 8.0 Hz, 0.6 H), 3.43–3.36 

(m, 1 H), 3.16–2.98 (comp, 2 H), 2.87–2.78 (m, 1 H), 2.73 (td, J = 26.0, 4.0 Hz, 1 H), 2.66 

(t, J = 4.0 Hz, 0.7 H), 2.61 (t, J = 4.0 Hz, 1.3 H), 2.53–2.19 (comp, 4 H), 2.08–1.80 (comp, 

5 H), 1.78–1.64 (comp, 2 H), 0.92–0.78 (m, 1 H); 13C NMR (100 MHz) δ 171.8, 171.5, 

146.6, 146.3, 144.3, 141.7, 140.7, 139.4, 139.3, 128.3, 127.8, 127.4, 127.3, 125.7 (q, JC–F = 

3.0 Hz), 123.5, 123.3, 122.7, 122.3, 60.7, 59.1, 56.4, 51.6, 44.4, 43.8, 40.3, 39.7, 39.6, 36.5, 

31.1, 29.7. HRMS (ESI) m/z calcd for C26H30F3N2O2 (M+H)+, 459.2263; found 459.2254.

(±)-Benzyl-8-(3-(trifluoromethoxy)phenyl)-1,3,4,5-tetrahydro-2H-1,5-
methanobenzo[c]azepine-2-carboxylate (6).—A solution of carbamate 5 (148 

mg, 0.45 mmol), 3-trifluroromethoxyphenylboronic acid (186 mg, 0.90 mmol), Cs2CO3 

(294 mg, 0.90 mmol), Pd[(t-butyl)3P]2 (12.0 mg, 0.02 mmol) in degassed 1,4-dioxane 

(2.0 mL) was stirred for 24 h at 100 °C. The reaction was cooled to room temperature, 

and EtOAc (3 mL) was added. The mixture was filtered through a pad of Celite® 

and the filter cake rinsed with EtOAc (10 mL), and the combined filtrate and washings 

were concentrated under reduced pressure to provide the crude product, which was purified 

via flash column chromatography (SiO2) eluting with hexanes → EtOAc/hexanes (1:4) 

to give 137 mg (67%) of 6 as a colorless oil. 1H NMR (400 MHz) δ 7.60–7.23 (comp, 11 
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H), 7.23–7.16 (m, 1 H), 5.55 (br d, J = 48.0 Hz, 1 H), 5.34–5.06 (comp, 2 H), 3.96–3.77 (m, 

1 H), 3.37–3.31 (m, 0.9 H), 3.30–3.24 (m, 0.1 H), 2.60–2.38 (m, 1 H), 2.35–2.15 (m, 1 H), 

2.13–1.97 (m, 1 H), 1.94 (d, J = 12.0 Hz, 0.9 H), 1.88 (d, J = 12.0 Hz, 0.1 H), 1.74–1.52 (m, 

1 H); 13C NMR (100 MHz) δ 154.9, 149.6, 146.2, 143.2, 141.9, 139.0, 136.9, 130.0, 128.5, 

128.0, 127.9, 127.4, 125.4, 123.1, 122.5, 121.5, 119.6, 119.4, 67.0, 57.4, 43.6, 39.5, 38.6, 

30.21. HRMS (ESI) m/z calcd for C26H22F3NNaO3 (M+Na)+, 476.1444; found 476.1449.

(±)-8-(3-(Trifluoromethoxy)phenyl)-2,3,4,5-tetrahydro-1H-1,5-
methanobenzo[c]azepine (7).—A solution of 6 carbamate (137 mg, 

0.30 mmol) in ethanol (5 mL) was purged with argon (× 2), whereupon 10% Pd/C (100 mg) 

was added, and the flask was purged and re-filled with H2 gas (× 3). The mixture was stirred 

for 2 h under an atmosphere of H2 gas (balloon). The catalyst was removed by filtration 

through a pad of Celite®, and the filter cake was rinsed with EtOH (3 mL). The combined 

filtrate and washings were concentrated under reduced pressure, and the crude product 

was purified via flash column chromatography (SiO2), eluting with hexanes → EtOAc 

→ MeOH/EtOAc (1:19) to give 75 mg (78%) of 7 as a light yellow oil. 1H NMR (400 

MHz, CD3OD) δ 7.63–7.61 (m, 1 H), 7.56–7.55 (m, 1 H), 7.53–7.49 (comp, 3 H), 7.31 (d, 

J = 8.0 Hz, 1 H), 7.25–7.21 (m, 1 H), 4.22 (d, J = 4.0 Hz, 1 H), 3.26–3.22 (m, 1 H), 2.66 (dd, 

J = 12.0, 4.0 Hz, 1 H), 2.29 (td, d, J = 12.0, 4.0 Hz, 1 H), 2.23–2.16 (m, 1 H), 2.04–1.95 (m, 

1 H), 1.98 (d, J = 8.0 Hz, 1 H), 1.63–1.53 (m, 1 H); 13C NMR (100 MHz) δ 149.6, 146.2, 

143.4, 142.9, 138.8, 130.0, 127.0, 125.4, 122.8, 122.0, 119.6, 119.3, 58.67, 44.8, 39.8, 

38.9, 30.6; HRMS (ESI) m/z calcd for C18H17F3NO (M+H)+, 320.1257; found 320.1266.

(±)-tert-Butyl 4-(8-(3-(trifluoromethoxy)phenyl)-2,3,4,5-tetrahydro-1H-1,5-
methanobenzo[c]azepine-2-carbonyl)piperidine-1-carboxylate (8).—EDCI•HCl 

(23 mg, 0.15 mmol) and hydroxybenzotriazole (23 mg, 0.15 mmol) were added to a solution 

of 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (37 mg, 0.16 mmol) in CH2Cl2 (3.0 

mL) at room temperature. A solution of the secondary amine 7 (43 mg, 0.13 mmol) and 

Hünig’s base (38 mg, 52 μL, 0.30 mmol) in CH2Cl2 (800 μL) was added, and stirring was 

continued for 12 h. The mixture was concentrated under reduced pressure, and the crude 

product was purified via radial plc, eluting with hexanes → hexanes/EtOAc (9/1 → 1/3 

→ 1/1) to provide 54 mg (76%) of carbamate 8 as a colorless oil. 1H NMR (400 MHz) δ 
7.56–7.30 (comp, 6 H), 7.19 (d, J = 6.4 Hz, 1 H), 6.02 (br s, 0.5 H), 4.26–4.02 (comp, 2 

H), 3.62 (br s, 0.5 H), 3.39 (s, 1 H), 2.95–2.17 (comp, 5 H), 2.07–1.96 (m, 1 H), 1.92–1.52 

(comp, 7 H), 1.46 (s, 9 H);13C NMR (100 MHz) δ 172.4, 154.7, 149.7 (q, JC–F = 1.5 Hz), 

146.5, 143.1, 139.1, 130.1, 127.5, 127.4, 125.4, 123.6, 123.1, 122.6, 121.5, 119.6, 119.5, 

119.4, 79.5, 54.7, 44.0, 43.3, 39.8, 38.9, 31.1, 29.7, 28.7, 28.4. HRMS (ESI) m/z calcd for 

C29H33F3N2NaO4 (M+Na)+, 553.2285; found 553.2288.

(±)-Piperidin-4-yl(8-(3-(trifluoromethoxy)phenyl)-1,3,4,5-tetrahydro-2H-1,5-
methanobenzo[c]azepin-2-yl)methanone (BJM-1679).—Prepared from carbamate 

8 (54 mg, 0.10 mmol) according to the procedure described above 

for the preparation of 4 to give 30 mg (70%) of BJM-1679 as a white 

foam. 1H NMR (400 MHz) δ 7.53–7.36 (comp, 5 H), 7.31 (t, J = 8.0 Hz, 1 H), 7.21–7.14 

(m, 1 H), 5.99 (d, J = 4.0 Hz, 0.6 H), 5.18 (d, J = 4.0 Hz, 0.4 H), 4.30 (dd, J = 12.0, 8.0 Hz, 
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0.4 H), 3.59 (dd, J = 12.0, 8.0 Hz, 0.6 H), 3.40–3.32 (m, 1 H), 3.27–3.07 (comp, 2 H), 2.92–

2.46 (comp, 3 H), 2.38 (br s, 1.4 H), 2.35–2.16 (comp, 1.6 H), 2.05–1.94 (m, 1 H), 1.89 (d, 

J = 8.0 Hz, 0.4 H), 1.86–1.76 (m, 1 H), 1.81 (d, J = 8.0 Hz, 0.6 H), 1.77–1.53 (comp, 3 H), 

0.91–0.77 (m, 1 H); 13C NMR (100 MHz) δ 172.7, 172.4, 149.7, 146.6, 146.4, 143.2, 143.1, 

142.1, 141.0, 139.1, 139.0, 130.1, 130.0, 128.0, 127.4, 125.5, 125.3, 123.3, 123.0, 122.7, 

122.2, 121.5, 119.7, 119.6, 119.5, 119.4, 58.7, 44.4, 43.8, 39.85, 39.82, 39.7, 38.6, 36.4, 

31.2, 30.5. HRMS (ESI) m/z calcd for C24H26F3N2O2 (M+H)+, 431.1941; found 431.1949.

(±)-2-Cyclohexyl-9-(4-(trifluoromethyl)phenyl)-1,2,3,4,5,6-hexahydro-1,6-
methanobenzo[c]azocine (BEA-1687).—Cyclohexanone (22 mg, 23 

μL, 0.22 mmol) was added to a solution of 9 (23 mg, 0.072 mmol) in 1,2-dichloroethane 

at room temperature, and the solution was stirred for 30 min. Sodium triacetoxyborohydride 

(47 mg, 0.22 mmol) and acetic acid (100 μL) were added sequentially, 

and the mixture was stirred 12 h at room temperature. Aqueous saturated NaHCO3 solution 

(2 mL) was then added, and the mixture was stirred for 10 min. The layers were separated, 

and the aqueous layer was extracted with CH2Cl2 (3 × 15 mL). The combined organic layers 

were washed with brine (3 mL), dried (MgSO4), filtered and concentrated under reduced 

pressure. The crude residue was purified via radial preparative layer chromatography, eluting 

with hexanes hexanes/EtOAc (100/0 → 95/5) to provide 20 mg (70%) of BEA-1687 as a 

light yellow oil. 1H NMR (400 MHz, CD3OD) δ 7.80 (d, J = 12.0 Hz, 2 H), 7.71 (d, J = 12.0 

Hz, 2 H), 7.56–7.54 (comp, 1.5 H), 7.53 (d, J = 4.0 Hz, 0.5 H), 7.27 (d, J = 8.0 Hz, 1 H), 

4.43–4.39 (m, 1 H), 3.39–3.34 (m, 1 H), 3.13 (t, J = 12.0 Hz, 1 H), 2.65 (m, 1 H), 2.60–2.52 

(m, 1 H), 2.20–2.10 (comp, 3 H), 2.00 (br d, J = 12.0 Hz, 1 H), 1.93–1.85 (comp, 2 H), 1.82 

(pent, J = 4.0 Hz, 2 H), 1.71.–1.64 (m, 1 H), 1.64–1.52 (m, 1 H), 1.47–1.12 (comp, 5 H), 

1.07–0.94 (m, 1 H).13C NMR (100 MHz) δ 146.6, 143.3, 139.5, 129.7, 129.4, 129.1, 127.9, 

125.7 (q, JC–F = 3.0 Hz), 125.4, 123.8, 123.2, 66.3, 62.3, 50.5, 42.7, 34.9, 33.8, 29.7, 25.4, 

25.3, 25.2. HRMS (ESI) m/z calcd for C25H29F3N (M+H)+, 400.2247; found 400.2253.

(±)-Benzyl-7-(4-ethylpiperazin-1-yl)-1,3,4,5-tetrahydro-2H-1,5-methanobenzo-
[c]azepine-2-carboxylate (HLJ-1560).—A mixture of K2CO3 (15 mg, 0.106 

mmol), 10 (20 mg, 0.053 mmol), and ethyl bromide (7 mg, 4.7 μL, 0.064 

mmol) in acetone (1 mL) was stirred at room temperature for 24 h. The mixture 

was filtered, and the filtrate was concentrated under reduced pressure. The residue 

was purified via flash column chromatography (SiO2), eluting with MeOH/CH2Cl2 

(2% v/v) to afford to afford 8 mg (37%) of HLJ-1560 as a clear oil. 1H NMR (400 MHz) 

(rotamers) δ 7.48–7.26 (comp, 5 H), 7.21 (d, J = 7.8 Hz, 0.5 H), 7.10 (d, J = 7.5 Hz, 0.5 H), 

6.84 (d, J = 2.2 Hz, 1 H), 6.78–6.71 (m, 1 H), 5.44 (brs, 0.5 H), 5.33 (brs, 0.5 H, 5.23–5.05 

(comp, 2 H), 3.87–3.73 (m, 1 H), 3.27–3.17 (comp, 5 H), 2.62 (t, J = 4.9 Hz, 4 H), 2.49 (q, 

J = 7.1 Hz, 2 H), 2.51–2.38 (m, 1 H), 2.24–2.12 (m, 1 H), 2.02–1.80 (comp, 2 H), 1.64–1.49 

(m, 1 H), 1.13 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz) (rotamers) δ 155.0, 154.9, 152.1, 

147.8, 137.3, 137.1, 132.4, 132.2, 128.6, 128.0, 127.9, 124.5, 124.3, 114.6, 111.0, 67.0, 

57.3, 57.1, 53.0, 52.5, 49.6, 44.1, 40.4, 38.7, 30.5, 12.1; IR (neat) 2937, 1695, 1418, 1237, 

1096 cm−1; HRMS (ESI) m/z calcd for C25H31N3O2 (M+H)+, 406.2489; found 406.2503.
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Preparation of solutions of σ2R/TMEM97 modulators.

Stock solutions of σ2R/TMEM97 modulators were prepared by dissolving the compound in 

DMSO to a concentration of 10 mM. For the in vitro assays, the stock solution was diluted 

with culture medium (1:1000) to a working concentration of 10 μM of σ2R/TMEM97 

modulator. Serial dilutions were then performed using culture medium to prepare other 

concentrations of the modulator. The final DMSO concentration is less than 0.1%. The 

vehicle group was performed using 0.1% DMSO in culture medium.

Receptor binding assays.

Receptor binding assays for compounds determined by LC-MS to be >95% pure were 

performed by the Psychoactive Drug Screening Program (PDSP) at Chapel Hill, North 

Carolina.50 Briefly, binding affinities, Ki, for σ2R/TMEM97 (rat PC12 cells) were 

determined through competition binding assays using the radioligand [3H]-ditolylguanidine 

in the presence of (+)-pentazocine to block σ1R binding sites, whereas binding affinities, 

Ki, for σ1R (guinea pig brain) were determined through competition binding assays with 

[3H]-(+)-pentazocine. Binding affinities, Ki, for σ2R/TMEM97 (human clone transiently 

expressed in HEK293 cells) were determined through competition binding assays using the 

radioligand [3H]-ditolylguanidine in the presence of (+)-pentazocine to block σ1R binding 

sites, and binding affinities, Ki, for σ1R (human clone transiently expressed in HEK293 

cells) were determined through competition binding assays with [3H]-(+)-pentazocine. Ki 

values are calculated from best-fit IC50 determinations performed in triplicate. The Ki values 

for other proteins in the central nervous system (CNS) of neuroprotective σ2R/TMEM97 

modulators were also determined by the PDSP, and these binding profiles may be found 

in the Supporting Information. Detailed experimental protocols are available on the NIMH 

PDSP website at https://pdspdb.unc.edu/pdspWeb.

Primary cortical neuron preparation.

Primary neurons were isolated from E17 embryos of CD1 mice in accord with published 

procedures.51, 52 Animals used in this study were cared for following the National Institutes 

of Health guidelines for the use of experimental animals. All experimental protocols 

involving animals were approved by Johns Hopkins Institutional Animal Care and Use 

Committee. Briefly, E17 embryonic mouse brain were removed, and the neocortex was 

dissected under stereomicroscope by removing midbrain and hippocampus and striatum. 

Cortex tissue was digested using trypsin for 15 min and then digested with DNase for 

2 minutes. Cortical tissue was dissociated by pipetting, and single cell suspension was 

achieved filtering digested tissue through cell strainer. Cortical neurons were plated at 

106 cells/mm2 in 24-well plates coated with poly -D-Lysine and laminin. Neurons were 

maintained at 37°C / 5% CO2 in Neurobasal medium containing 2% B27, 2 mM Glutamax 

and 1 % Pen/strep. All cell culture supplies were obtained from Corning, and all media were 

from ThermoFisher Scientific.

Co-transfection of primary neurons.

Neurons were co-transfected using Lipofectamine 2000 (ThermoFisher Scientific) at day in 
vitro (DIV) 6 according to our previously published protocol.51, 52 Cells were co-transfected 
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with GFP and a plasmid expressing 586 N-terminal amino acids of human huntingtin 

with either 22 or 82 polyglutamines in exon 1. Neurons were treated with or without test 

compounds at transfection. At 48 h, neurons were fixed using 4% PFA. Nuclei were stained 

with Hoechst.

Nuclear condensation assay.

Cell toxicity experiments in primary cortical neurons were conducted according to the 

established protocol.51, 52 After fixing with PFA, nuclei were stained using Hoechst (0.2 

μg/mL in PBS for 5 min). Automated picture acquisition was performed using a Zeiss 

Axiovert 200 inverted microscope with a 20x objective, and mosaic images were obtained. 

Automatic quantification of the nuclear intensity of transfected cells was performed using 

Volocity. Cells were considered dead when their nuclear intensity was higher than the 

average intensity by two standard deviations. Each condition was performed in quadruplicate 

within each experiment, and each experiment was repeated in at least six independent 

neuronal preparations unless specifically indicated. Data were represented as mean ± SEM.

Statistical analysis.

Statistical analysis was conducted using GraphPad Prism software version 8 (GraphPad, San 

Diego, CA, USA). Two-way ANOVA was used to analyze data. Results were considered 

significant if the p value was <0.05. Error bars indicate SEM in all figures.

RESULTS

Receptor binding profiles

The binding affinities (Ki) of all synthetic compounds for σ2R/TMEM97 and σ1R were 

determined at the Psychoactive Drug Screening Program. Prior to the identification of 

σ2R as TMEM97, Ki values were measured using σ2R sourced from rat PC12 cells and 

σ1R sourced from guinea pig brain, but subsequently σ2R/TMEM97 and σ1R binding 

isotherms were determined using human protein obtained by transfection in HEK293T cells. 

Examination of the Ki values for AMA-1127, DKR-1051, DKR-1677 and UKH-1114, 

which were obtained using rat σ2R/TMEM97 and guinea pig σ1R proteins, show that each 

of these compounds has high affinity and good selectivity for σ2R/TMEM97 versus σ1R 

(Figure 1A). Similarly, the Ki values for JJS-1678, BJM-1679, EES-1686 and BEA-1687, 

which were obtained using human σ2R/TMEM97 and σ1R proteins, also display high 

affinity and good selectivity for σ2R/TMEM97 vs σ1R (Figure 1B). The structures of 

new σ2R/TMEM97-selective compounds comprise the pharmacophoric elements of a basic 

amino group and a hydrophobic group that is characteristic of structural classes and similar 

compounds we have previously reported.45, 46, 48 Although the two molecular scaffolds 

differ by the presence of an extra methylene group in the methanobenzazocines DKR-1051 
and UKH-1114, two distinct chemotypes are also represented. Namely, AMA-1127 and 

DKR-1677 have a basic piperazine group on the aromatic ring of the B-norbenzomorphan 

core, whereas all of the other compounds have an aryl substituent at this position on the 

parent molecular framework. We have also identified compounds that are selective for 

σ1R (guinea pig) relative to σ2R/TMEM97 (rat), and we used two of these, MPC-1154 
and HLJ-1560 (Figure 1C), as controls. MPC-1154 represents a completely different 
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class of compounds selective for σ1R,49 whereas HLJ-1560 differs from the σ2R/TMEM97-

selective ligands AMA-1127 and DKR-1677 by the orientation of the piperazine ring on the 

B-norbenzomorphan core.45, 46, 48

Compounds binding selectively to σ2R/TMEM97 protect cortical primary neurons from 
mHTT-induced toxicity.

To evaluate the extent to which selective σ2R/TMEM97 modulators exhibit neuroprotective 

effects in neurodegenerative processes associated with HD, we used a HD neuronal model 

as previously described.51 Briefly, primary cortical neurons were isolated from embryonic 

day 17 mouse brains and cultured in neurobasal medium for seven days. The neurons 

were then co-transfected with plasmids expressing HTT and GFP. Plasmids expressing the 

586 N-terminal amino acids of the human huntingtin gene with either 22 polyglutamine 

(Htt-N586–22Q) or 82 polyglutamine (Htt-N586–82Q) repeats within exon 1 were used. 

Parallel experiments were performed in which neurons were simultaneously treated with 

σ2R/TMEM97 or σ1R modulators, and neurons treated with vehicle were used as controls. 

Forty-eight hours after transfection, neurons were fixed, and the effects of the various 

sigma receptor modulators on neuronal cell death were evaluated. Representative images of 

GFP+ neurons transfected with 22Q, 82Q and 82Q with σ2R/TMEM97 modulators show 

that mHTT (82Q) transfected neurons had condensed nuclei, whereas the mHTT (82Q) 

transfected neurons that were treated with σ2R/TMEM97 ligands AMA-1127, DKR-1051, 

UKH-1114, EES-1686 and BEA-1687 had relatively normal nuclei (Figure 2A and B). 

Similarly, mHTT (82Q) transfected neurons treated with the selective σ1R ligand HLJ-1560 
also had relatively normal nuclei (Figure 2B).

The effects of selective σ2R/TMEM97 modulators on mHTT-induced neuronal toxicity were 

then assessed using a nuclear condensation assay (Figure 2C–H).51 Neurons were treated 

with σ2R/TMEM97 modulators at concentrations varying from 0.01–10 μM, and those 

compounds having protective effects are AMA-1127 (Figure 2C), DKR-1051 (Figure 2D), 

UKH-1114 (Figure 2E), BJM-1679 (Figure 2F), EES-1686 (Figure 2G) and BEA-1687 
(Figure 2H). These compounds provide significant neuroprotection at concentrations that 

range from a low of 10 nM for EES-1686 (Figure 2G) to a high of 5 μM for BJM-1679 
(Figure 2F). Importantly, the observed neuroprotective effects were dose dependent with 

higher concentrations of the σ2R/TMEM97 modulator having greater protective effects 

(Figure 2C–H). Because these compounds have no effect on neurons transfected with Htt-

N586–22Q, none appear to exhibit any intrinsic toxicity. Of the σ2R/TMEM97 modulators 

tested in these experiments, only DKR-1677 (Figure S1A) and JJS-1678 (Figure S1B) had 

no notable protective effect on neurons transfected with HTT-N586–82Q.

We also examined the effects of several selective σ1R modulators on neuron survival using 

the same assays, and both MPC-1154 (Figure 3A) and HLJ-1560 (Figure 3B) protected 

neurons from mHTT-induced cell toxicity at levels of 1 μM. The neuroprotective effects of 

these compounds are also dose dependent (Figure 3A, B).
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NE-100 did not block the neuroprotective effect of σ2R/TMEM97 ligands on mHTT-induced 
toxicity.

The binding profiles of AMA-1127, DKR-1051, UKH-1114, BJM-1679, EES-1686, and 

BEA-1687 show that they are all selective for σ2R/TMEM97 relative to σ1R and other CNS 

proteins (see Supporting Information), suggesting that their protective effect arises from 

modulating a pathway involving σ2R/TMEM97. However, the function of σ2R/TMEM97 

is not well understood, and because there are no ligands that are confirmed σ2R/TMEM97 

antagonists, we employed an established σ1R antagonist, NE-100, to block any σ1R pathway 

that might be operative.53, 54 NE-100 had no effect on the protective attributes of the 

σ2R/TMEM97-selective modulators AMA-1127, DKR-1051, UKH-1114, EES-1686 and 

BEA-1687, whereas NE-100 treatment abolished the neuroprotective effects of the selective 

σ1R modulators HLJ-1560 (Figure 4) and MCP-1154 (Figure S2). These results support the 

hypothesis that compounds that selectively bind to σ2R/TMEM97 mitigate mHTT-induced 

neuronal toxicity by a pathway that is distinct from interacting with σ1R.

DISCUSSION

Research using cell and animal models has resulted in significant progress toward 

understanding the etiology and pathology of HD, but treatments that slow disease 

progression have been elusive. mHTT is specifically toxic to striatal medium spiny 

neurons causing neuronal death in the striatum.1, 55, 56 The mechanism of neuronal death 

includes mHTT-related transcriptional dysregulation, neurotrophic factor deficit, abnormal 

mitochondrial function, energy and cholesterol metabolic abnormalities, and impaired 

protein degradation.57 Although numerous attempts to discover drugs that reduce or reverse 

mHTT-induced toxicity have been unsuccessful, genetic modification of mHTT expression 

has emerged as a promising strategy, albeit one limited by the need for CNS delivery of 

large molecules and the accompanying toxicity or the toxicity of small molecule splicing 

modifiers.58, 59

The present findings are significant because they are the first to demonstrate that small 

molecules that bind selectively to σ2R/TMEM97 are neuroprotective in an HD model. 

In particular, each of the σ2R/TMEM97 ligands AMA-1127, DKR-1051, UKH-1114, 
EES-1686 and BEA-1687 protects neurons from mHTT-induced toxicity in a dose-

dependent manner at concentrations as low as 10 nM. We also show that the σ1R-selective 

ligands MPC-1154 and HLJ-1560 are neuroprotective, but this is not surprising because 

σ1R agonists have been shown to be neuroprotective in HD cell and animal models.14–16 

Indeed, the σ1R agonist pridopidine is in clinical trials for treating patients with HD.17–19

Compounds AMA-1127, DKR-1051, UKH-1114, EES-1686 and BEA-1687 have high 

affinity for σ2R/TMEM97, and each has excellent selectivity for σ2R/TMEM97 relative to 

approximately 45 receptors, transmembrane proteins, and neurotransmitter transporters in 

the CNS (see Supporting Information). We thus surmise that modulation of σ2R/TMEM97 is 

responsible for their ability to protect neurons from mHTT-induced toxicity. Unfortunately, 

the standard pharmacological technique of blocking their activity with other σ2R/TMEM97 

ligands is not a meaningful approach to demonstrate target engagement because little is 

known about the function of σ2R/TMEM97, and there is no reliable method to assign 

Jin et al. Page 12

ACS Chem Neurosci. Author manuscript; available in PMC 2022 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



agonist or antagonist activity. Accordingly, we turned to an alternative approach to gather 

evidence supporting the neuroprotective role of σ2R/TMEM97. Because each of these 

ligands has some affinity for σ1R, we wanted to exclude the possibility that σ1R binding was 

involved in reducing mHTT-induced toxicity. Toward this end, co-transfected neurons were 

treated with AMA-1127, DKR-1051, UKH-1114, EES-1686 and BEA-1687 together with 

the known σ1R antagonist NE-100;53, 54 the σ1R ligand HLJ-1560 served as a positive σ1R 

control. NE-100 blocked the protective effect of the σ1R ligand HLJ-1560, but it did not 

block the effects of AMA-1127, DKR-1051, UKH-1114, EES-1686 or BEA-1687. These 

results exclude the possibility that the observed neuroprotective effects of these compounds 

arise from binding to σ1R.

It is notable that DKR-1051 and UKH-1114, which are neuroprotective in this HD model, 

also relieve mechanical hypersensitivity in an animal model of neuropathic pain,39 but 

neither mitigates behavioral deficits in a model of alcohol withdrawal.35 This is not the 

first time we have observed that σ2R/TMEM97 modulators that are active in one bioassay 

or disease model may be inactive in another. For example, DKR-1677 reduces axonal 

degeneration in a blast model of TBI and improves survival of cortical neurons and 

oligodendrocytes in the controlled cortical impact injury model of TBI;40 however, it has 

no neuroprotective activity in this model of HD. These observations suggest that biological 

outcomes arising from interactions of σ2R/TMEM97 with structurally distinct ligands can 

vary depending upon the pathology of the neurological condition. Understanding the effects 

of modulating σ2R/TMEM97 with small molecules is further complicated by findings that 

the benefits of a bioactive σ2R/TMEM97 ligand in one disease model can be blocked by 

another compound that binds to σ2R/TMEM97 and is active in a different model. For 

example, DKR-1051 induces a rapid Ca2+ transient in human SK-N-SH neuroblastoma 

cells that is blocked by pretreating the cells with SAS-0132, the norfluoro analog of 

AMA-1127. SAS-0132 does not induce significant Ca2+ release at similar concentrations, 

but it does have significant neuroprotective effects in AD models.34 We have also shown 

that SAS-0132, which has no antinociceptive effects, blocks the antinociceptive properties 

of UKH-1114.39 Collectively, these results demonstrate that the functional activities of 

bioactive σ2R/TMEM97 ligands do not fall into well-defined categories such as agonist or 

antagonist.

There is accumulating evidence that modulating σ2R/TMEM97 with small molecules may 

induce pleiotropic effects, and changes, sometimes relatively minor, in the structure of 

the ligand can have a profound influence upon biological outcomes, which appear to be 

dependent upon the etiology of the disease or condition. Based upon what little is known 

about the function of σ2R/TMEM97 in cells, regulating cholesterol and/or Ca2+ levels 

in some way may be an essential component of its mechanism of action.27, 28, 30, 31 It 

also appears that interactions of σ2R/TMEM97 with other membrane proteins including 

PGRMC1, NPC1, and the LDLR are important,31, 33–36 but details of the roles of such 

protein-protein interactions are lacking. Similarly, the role of any endogenous ligands such 

as (20S)-hydroxycholesterol must be clarified.32 Before one can understand the downstream 

effects of small molecule binding to σ2R/TMEM97, the function of σ2R/TMEM97 in 

stressed cells must be elucidated.
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Work toward developing a better understanding of the mechanism and function of σ2R/

TMEM97 are ongoing, but the results presented herein are significant because they show for 

the first time that compounds modulating σ2R/TMEM97 are neuroprotective in a HD cell 

model. EES-1686, the most potent compound studied, is a promising lead compound for 

advancing to in vivo experiments. Although further studies are needed, these investigations 

suggest that targeting σ2R/TMEM97 may be a novel therapeutic strategy for developing HD 

treatments.
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Figure 1. Structure of σ2R/TMEM97-selective modulators and their binding affinities.
A. Structures of racemic B-norbenzomorphans (AMA-1127 and DKR-1677) and 

methanobenzazocines (DKR-1051 and UKH-1114) that are selective modulators of σ2R/

TMEM97 and their binding affinities. Ki, for σ2R/TMEM97 (rat) and σ1R (guinea pig). 

B. Structures of racemic B-norbenzomorphans (JJS-1678, BJM-1679, and EES-1686) and 

methanobenzazocines (BEA-1687) that are selective modulators of σ2R/TMEM97 and their 

binding affinities. Ki, for σ2R/TMEM97 (human) and σ1R (human). C. Structures of σ1R-

selective modulators MPC-1154 and racemic HLJ-1560 and their binding affinities, Ki, for 

σ2R/TMEM97 (rat) and σ1R (guinea pig).
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Figure 2. Neuroprotective effect of σ2R/TMEM97-selective modulators on mHTT induced 
toxicity.
Primary cortical neurons were co-transfected with either Htt-N586–22Q or Htt-N586–82Q 

and GFP. Four hours after transfection, neurons were treated with either σ1R or σ2R/

TMEM97 modulators for 48 h, whereupon neurons were fixed, and nuclei were stained with 

Hoechst. Cells with condensed nuclei were counted as dead cells. Only neurons transfected 

with plasmid were counted. A. Representative pictures for neurons transfected with Htt-

N586–22Q or Htt-N586–82Q and GFP. B. Representative pictures for neurons transfected 

with Htt-N586–82Q/GFP and treated with σ2R/TMEM97 or σ1R modulators. Neurons were 

treated with 1 μM of the indicated modulators. Insert boxes indicated viable cells with 

normal nucleic morphology. C-H. σ2R/TMEM97-selective modulators tested in HD cell 

model showing neuroprotection. These compounds are AMA-1127 (C), DKR-1051 (D), 
UKH-1114 (E), BJM-1679 (F), EES-1686 (G), and BEA-1687 (H). ### p<0.0001 vs Htt 
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N586–22Q with 0. * p<0.05, *** p<0.0001 vs Htt N586–82Q with 0. n=6–8 independent 

experiments.
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Figure 3. Neuroprotection effect of σ1R-selective modulators on mHTT induced toxicity.
Primary cortical neurons were co-transfected with either Htt-N586–22Q or Htt-N586–

82Q and GFP. Four hours after transfection, neurons were treated with or without σ1R 

modulators at different concentrations. σ1R-selective modulators tested in HD cell model 

were as follows: MPC-1154 (A) or HLJ-1560 (B). ### p<0.0001 vs Htt N586–22Q with 0. 

*** p<0.0001 vs Htt N586–82Qwith 0. n=6–8 independent experiments.
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Figure 4. Specificity of σ2R/TMEM97 modulators.
To further explore the specificity of σ2R/TMEM97 modulators, selective σ1R antagonist, 

NE-100 was used in the primary cortical neurons treated σ1R or σ2R/TMEM97 modulators 

(10 μM). Primary cortical neurons were co-transfected with either Htt-N586–22Q or Htt-

N586–82Q and GFP. Four hours after transfection, neurons were treated with modulators 

with or without a pretreatment with 10 μM of NE-100. After 48 h, neurons were fixed and 

nuclei were stained. We included one σ1R-selective modulator, HLJ-1560, as a positive 

control, which its effect will be blocked by NE-100. Cell death were quantified using a 

nuclei condensation assay. NE-100 abolished the protective effect of the σ1R modulator, 

HLJ-1560, but it did not influence the effects of σ2R/TMEM97 modulators. *** p<0,0001 

vs Htt N586–82Q, # p<0,001 vs Htt N586–22Q. n=4–6 independent experiments.
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Scheme 1. 
Synthesis of AMA-1127
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Scheme 2. 
Syntheses of JJS-1678 and EES-1686
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Scheme 3. 
Synthesis of BJM-1679
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Scheme 4. 
Synthesis of BEA-1687.
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Scheme 5. 
Synthesis of HLJ-1560.
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