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Abstract

Purpose: To investigate whether the movement of a rigid sphero-cylindrical contact lens has a 

greater impact on the visual image quality in highly aberrated eyes than in normal eyes.

Methods: For 20 normal and 20 keratoconic SyntEyes, a previously determined best sphero-

cylindrical rigid lens was permitted to shift by up to ±1 mm from the line of sight and rotate up 

to ±15°. Each of the 52,111 lens locations sampled were ray traced to determine the influence 

on the wavefront aberration. In turn, the logarithm of Visual Strehl ratio (log10(VSX)) was 

calculated for each aberration structure and used to estimate the associated changes in logMAR 

visual acuity. Finally, contour surfaces of two-letter change in visual acuity were plotted in 

three-dimensional misalignment space, consisting of decentrations in the x and y directions and 

rotation, and volumes within the surfaces were calculated.

Results: The variations in image quality within the misalignment space were unique to each eye. 

A two-letter loss was generally reached with smaller misalignments in keratoconic eyes (10.5 ± 

4.7° of rotation or 0.27 ± 0.13 mm of shift) than in normal eyes (13.4 ± 1.8° and 0.39 ± 0.15 

mm, respectively) due to larger cylindrical errors. For keratoconic eyes on average 14.4 ± 14.9% 

of misalignment space saw VSX values above the lower normal VSX threshold, well below the 

normal values of 48.5 ± 18.5%. In some eyes, a specific combination of lens shift, and rotation 

away from the line of sight may lead to improvement in visual image quality.

Conclusion: Variations in visual image quality due to misalignment of rigid sphero-cylindrical 

contact lens corrections are larger for keratoconic than normal eyes. In some cases, a specific 
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misalignment may improve visual image quality, which could be included into the design of the 

next generation of rigid contact lenses.
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Introduction

Paraxial geometric optics has primarily been used to explain why a sphero-cylindrical 

correction decreases in efficacy when rotated.1 This loss in effectiveness occurs as a 

proportion of the cylindrical power. Hence, eyes requiring larger cylindrical corrections 

will be quicker to suffer visually from a rotated cylinder correction than those requiring 

only modest cylinder corrections, as has been confirmed clinically for spectacles,2 contact 

lenses3,4 and intraocular lenses.5–7 Similarly, shifts of a refractive correction with respect 

to the line-of-sight of the eye8,9 lead to refractive changes that, even in small amounts, 

will shift the path of each ray passing through the entrance pupil of the eye. Clinically, 

these shifts cause each ray to strike each successive optical component at a slightly different 

location and at a different angle with respect to the surface normal, thus affecting the 

aberration structure and the resulting point spread function of the combined system of an eye 

and its corrective lens.

Highly aberrated eyes, such as those with keratoconus, corneal trauma or poor refractive 

surgery outcomes frequently present high or irregular astigmatism and elevated levels of 

higher order aberrations. In such eyes, rigid contact lenses are currently the preferred 

method of correction as they essentially place a new optically smooth surface in front of 

the irregular anterior corneal surface, thus dampening the anterior corneal surface optical 

aberrations through approximate refractive index matching between the tears and cornea. A 

rigid contact lens reduces the total higher order aberrations and astigmatism by about 60% in 

these eyes,10 but not completely as the posterior corneal aberrations of the distorted cornea 

remain uncorrected.

As rigid contact lenses are known to shift by up to ±1.0 mm and rotate by up to ±15°, 

the efficacy of sphero-cylindrical corrections has to vary with lens movement.11,12 To 

date, little is known on how sphero-cylindrical lens translation or rotation affects the 

ocular higher-order aberrations or, more importantly from the patient’s point of view, the 

resulting visual image quality. This is especially critical since aberrations can interact to 

increase or decrease visual image quality.13,14 Some work in that sense has been done for 

more complicated, wavefront-guided corrections, where misalignment can increase the total 

aberrations observed by the eye rather than decrease it.3,15 While the visual image quality 

for a well-aligned, best sphero-cylindrical correction has been determined for normal eyes,16 

the impact of a misaligned correction has yet to be evaluated in either normal eyes or the 

highly aberrated eye.

We hypothesise that the movement of a rigid sphero-cylindrical contact lens will have a 

greater impact on the visual image quality of a highly aberrated eye than of a normal eye. To 

investigate this hypothesis we use a published correction model,17,18 augmented to allow for 
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lens misalignment, and use an objective visual image quality metric to monitor the induced 

change in visual image quality, as well as estimating the resulting loss in visual acuity.

Methods

Previously, a method was described17,18 that applied refractive corrections to the SyntEyes 

models for normal19 and keratoconic eyes.20 In brief, SyntEyes are randomly generated 

ocular biometry sets that are statistically indistinguishable from real measured data. These 

SyntEyes were virtually fitted with rigid contact lenses, followed by a ray tracing analysis 

to determine the residual ocular wavefront. The technical details of the models19,20 and the 

contact lenses17,18 are provided elsewhere.

Thus far, the method assumed perfect alignment of the refractive correction with respect to 

the line-of-sight of the model. To study the influence of misalignment, both translationally 

and rotationally, the best sphero-cylindrical rigid lens correction calculated over a 5 mm 

pupil diameter centred on the line of sight of the model and determined for each of 20 

normal and 20 keratoconic SyntEyes,18 was shifted and rotated. Based on the existing 

literature,4,12,21 the range of decentrations in any direction was chosen to be ±1 mm 

from the line-of-sight in 0.05 mm increments, accompanied by rotations within ±15° in 

1° increments, corresponding to a total of 52,111 combinations per SyntEye, referred to here 

as the misalignment space.

The best correction was defined as the sphero-cylindrical correction to the nearest 0.25D for 

sphere and cylinder and 2.5° degrees in cylinder axis that optimised visual image quality as 

defined by the visual Strehl ratio (VSX).18 Such corrections have been demonstrated in a 

double blind study to be equivalent or superior to the subjective correction for normal22 and 

keratoconic eyes.23

The output of the ray tracing model was a series of 8th order Zernike coefficients over a 5 

mm exit pupil for each of the 52,111 misalignment states. In turn, each Zernike aberration 

structure was used to calculate the VSX.24,25 Differences in log10(VSX) were used to 

predict the number of letters of logMAR visual acuity one would lose or gain, relative to the 

aligned position from each misalignment using the equation:17,26

logMAR change = − 0.371 · log10 VSX − log10 VSXref (1)

Additionally, visual performance at the centred condition was compared with that for the 

position of the contact lens yielding the highest VSX, which is not necessarily the centred 

case. Geometrically, one may, for example, expect that a position over the apex of the 

keratconus may be beneficial. Hence, the position of the highest anterior corneal power 

(Kmax) was also considered.
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Results

Changes within misalignment space

The number of letters estimated to be gained or lost due to decentration or rotation, 

with respect to perfect alignment, are represented by a collection of iso-surfaces in 

the misalignment space. These surfaces are presented in 2-letter steps, which roughly 

correspond with the test-retest repeatability of the logMAR visual acuity chart,27 which 

is greater than a just noticeable difference in blur.28

From a position that is centred with respect to the pupil centre (line-of-sight), the visual 

image quality and predicted acuity of keratoconic SyntEyes were significantly more affected 

by lens rotation than normal SyntEyes (2-sample t-test, p < 0.01 for positive and p = 

0.02 for negative rotations; Table 1). The effect of rotation varied considerably between 

the individual keratoconic SyntEyes, as indicated by the larger standard deviations than 

in normal eyes (Table 1). These variations were correlated with the amplitude of the best 

cylindrical correction, regardless of its orientation (Figure 1; clockwise: Pearson r2 = 0.81, 

p = 0.001; counter clockwise: Pearson r2 = 0.90, p = 0.001). The effect of lens decentration 

greatly depended on the direction of the shift, especially in keratoconus, leading to very 

irregular iso-surface shapes (Figure 2). To account for this irregularity, the minimum vector 

distance one could shift in any direction before losing 2 letters was recorded and found to be 

significantly shorter in keratoconus (2-sample t-test, p = 0.01; Table 1).

The variability across normal and keratoconic SyntEyes is illustrated in Supplement A. 

This is highlighted for keratoconic eyes in Figure 2, where the iso-surfaces of logMAR 

visual acuity for SyntEye KTC 1 and 3 are irregular and limited in extent along the vertical 

axis, corresponding to a limited tolerance to lens rotation. In contrast, SyntEye KTC 10 

shows a monotonic pattern and a relative insensitivity to rotation (elongation in the vertical 

extent), as is typical in an eye requiring only a small astigmatic contact lens correction (here: 

−0.25D).

In keratoconic SyntEyes, centred alignment does not always provide the best possible optical 

correction, as 5/20 eyes gained one letter for a decentred lens position, while in an additional 

4/20 eyes, a gain of two or more letters was seen. For normal eyes, on the other hand, 

the centred location provided the best correction in 18/20 eyes, with only 2/20 gaining 

one or more letters for a decentred lens position. Normal eyes also consistently showed 

more vertically elongated and symmetric iso-surfaces in the misalignment space due to 

their typically lower astigmatic error, making their visual performance less sensitive to lens 

rotation (Figure 3, Supplement A). These surfaces may also be inclined (Figure 3, SyntEye 

10), indicating that the same level of visual acuity may result from specific combinations of 

decentration and rotation. This was found in 15/20 normal SyntEyes, compared to 8/20 of 

the keratoconic cases. The predicted visual acuity improved by >1 letter in only 2/20 normal 

SyntEyes through misalignment, indicating that visual image quality is impacted less in eyes 

with normal levels of higher order aberrations compared with those with much higher levels.

Because the same ranges of translation and rotation were evaluated for all normal and 

keratoconic SyntEyes, then the volume of misalignment space was identical across all eyes. 
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The volumes between successive iso-surfaces within the misalignment space indicates a 

tolerance to lens misalignment, where a large number of small-volume surfaces would 

correspond to a lower tolerance than a space with few large-volume surfaces. Plotting these 

volumes as a percentage of misalignment space for each level of letters gained or lost, it 

is seen that normal eyes are less sensitive to misalignment compared with keratoconic eyes 

(Figure 4).

In keratoconic eyes the position of the best correction that optimised VSX did not match 

the position of the maximum anterior corneal power (Kmax – see Figure 5); rather the best 

correction was consistently closer to the model’s line-of-sight. Similarly, there was no clear 

relationship between the corneal topography and the geometry of the iso-surfaces shown in 

Figure 2, as indicated by the open and solid markers. For normal eyes, the position of best 

correction was near the line of sight.

Average changes

Although the uniqueness of each eye caused considerable variation between individual eyes, 

one can distinguish some general trends by averaging the results of each group. Both normal 

and keratoconic SyntEyes showed approximately the same rate of hypermetropic increase 

for the residual sphere as the lens decentred (Figure 6) in all directions of misalignment 

space. For the residual cylinder after lens correction, the misalignment in normal SyntEyes 

leads to a set of concentric, amorphous iso-surfaces, while for the keratoconic SyntEyes 

these corresponding surfaces are flatter (i.e., more sensitive to rotation) and spaced further 

apart. In normal eyes, elongation along the vertical axis of rotation is associated with the 

amplitude of cylinder correction rotation (Figure 1).

On average for keratoconic eyes, 14.4 ± 14.9% (range 0.0 – 60.7%) of misalignment space 

saw VSX values above the lower normal VSX threshold16 of 0.25. For normal eyes, these 

values were 48.5 ± 18.5% (range 16.4 – 81.6%). For 16/20 keratoconic eyes, the centred 

lens position provided a VSX value above the threshold but remained below the average for 

normal eyes. This increased to 19/20 for the misaligned position with the highest VSX, half 

of which approximated the average for normal eyes. For the normal group, all eyes were 

above the threshold for either position.

Changes over time

Although it is fair to evaluate all misalignment space in order to estimate the impact on 

visual image quality, in reality, contact lenses are more likely to settle in an inferior and 

temporal position on the eye relative to the line of sight, and move around that location in a 

semi-random fashion governed by factors such as eyelid dynamics and gravity. These cause 

shift variations to be considerably smaller in the horizontal than in the vertical direction.29 

To simulate real eye motion over time, we generated a random path in misalignment 

space, where vertical shift was emphasised by a factor of 2.5 over the horizontal shift 

to partially include the influence of blinking. The resulting visual image quality changes 

were determined for the median eye, as well as the 25th and 75th percentile eyes, in terms 

of aligned VSX of the normal and keratoconic SyntEyes. This led to the average losses 
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given Table 2, with the variations of the median eyes shown in Figure 7. Videos of the 

corresponding variations in visual acuity are provided in Supplement B.

These fluctuations are unique to each eye, and closely tied to the geometry of the VSX 

iso-surfaces and the random path. Even so, when considered over a sufficiently long period, 

one would expect statistically similar variations in visual image quality for any SyntEye or 

any other random path. Keeping in mind that the absolute visual image quality under the 

best sphero-cylindrical rigid lens correction is generally lower in keratoconic eyes than in 

normal eyes, then the predicted variation suggests that noticeable changes in image quality 

are more likely in highly aberrated eyes than normal eyes.

Discussion

Based on these analyses, it is clear that even minor amounts of contact lens misalignment 

affect visual image quality more in keratoconic eyes than in normal eyes. As expected 

clinically, the impact of lens rotation on visual image quality depends primarily on the 

magnitude of the astigmatic correction, which is typically higher in keratoconic eyes (Table 

1, Figure 1).

Although the VSX patterns in misalignment space show many unique shapes, several 

general trends are seen (Figures 2 and 3, Supplement A), where normal and keratoconic 

eyes with low astigmatic corrections showed an elongated vertical green shape representing 

a high tolerance to rotation. In some cases, this vertically elongated shape along the rotation 

axis is tilted, indicating that a simultaneous lens shift is required to maintain good image 

quality (see, for example, SyntEye 24 in Supplement A). In most cases, the combined effect 

of shift and rotation will lead to losses of up to one line in logMAR, but occasionally a small 

gain of 1–2 letters can be found, with one extreme case showing a 5-letter gain (SyntEye 

KTC 16, Supplement A). The lens shift that produces this gain did not correlate with the 

position of the highest anterior corneal curvature, possibly due to the influence of either the 

posterior corneal surface or the crystalline lens.

While we used change in visual image quality to predict the change in high contrast 

logMAR acuity, it is important to remember that high contrast acuity testing is very 

forgiving. The average contrast in everyday scenes is around 30% rather than 100%,30 and 

our ability to detect changes in image quality is better than our ability to detect changes in 

acuity.28

Lens position

Generally, the aligned position of a contact lens depends on its base curve and geometry, eye 

motions, eyelid shape,31 tear film thickness32 and lens mass.33 These factors are responsible 

for the resting position of rigid corneal lenses often being inferior to the line-of-sight. The 

misalignment space considered here is large enough to encompass the realistic lens motion 

in Figure 7 and Supplement B.

Corneal lenses are more mobile than scleral lenses, whose position is mostly determined 

by the scleral elevation and conjunctival structure.11,34 Their visual impact depends upon 
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the speed at which the lens moves or rotates. However, not much is known about the speed 

of the contact lens motion, apart from a report by Gilman29 that during blinking a contact 

lens may move at 1.68 mm/s in the downward direction and then at 14.0 mm/s in the 

upward direction. Given that during the upward motion the lens is mostly covered by the 

eyelid, then the contact lens wearer will be more conscious of the downward motion, which 

they estimated at 1.58 mm. An eye blink35 lasts about 0.2 s and typically goes unnoticed. 

Hence, it is likely that the resulting contact lens motion is not very noticeable either. One 

might speculate that rapid, oscillating motions around the equilibrium location may be less 

bothersome, as the visual system is likely to stabilise the image by averaging the visual input 

over time, while slower lens movements may have more impact on vision.

Limitations

The current analysis suffers from several limitations, such as it does not consider contact 

lens tilt on the eye’s surface or prism purposely placed in the lens for rotation stabilisation. 

Both would change the light path through the optics slightly. However, the general 

conclusion that eyes with more astigmatic correction and eyes with higher aberration have 

less tolerance to lens rotation and decentration is unlikely to change. Finally, the model does 

not include the influence of lenticular astigmatism or the tolerances in lens manufacturing,36 

both of which may play a role in a certain percentage of normal eyes, but much less so in 

keratoconus.

Conclusion

Our model predicts that whenever a rigid contact lens shifts or rotates away from its 

intended position, the wearer will suffer minor, but measurable changes in visual image 

quality and acuity. These changes are more significant in highly astigmatic and highly 

aberrated eyes than normal eyes. In some cases, a specific combination of lens shift and lens 

rotation may also lead to an improvement in visual image quality that can be translated into 

an acuity gain of one or more letters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points:

• Rigid lens misalignment causing a two-letter loss in visual acuity is typically 

smaller for the keratoconic eye than the normal eye.

• This smaller tolerance to misalignment is due to larger cylindrical corrections 

and larger higher order aberrations in the keratoconic eye.

• In some eyes, specific combinations of lens shift and rotation may improve 

visual image quality
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Figure 1: 
Tolerance to lens rotation in clockwise (CLK) and counter clockwise (CNTR) direction for 

normal and keratoconic SyntEyes as a function of the best cylinder correction in a rigid lens. 

Tolerance was defined as a loss of 2 or more letters.

Rozema et al. Page 11

Ophthalmic Physiol Opt. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Examples of the tolerance to decentration and rotation within the misalignment space for 

keratoconic SyntEyes. Negative and positive x-axes correspond with the temporal and nasal 

sides, respectively, while the vertical direction corresponds with rotation. Solid marker 

indicates the position of maximum corneal power (Kmax), the open marker with the position 

of the best correction.
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Figure 3: 
Examples of the tolerance to decentration and rotation within the misalignment space for 

normal SyntEyes. Negative and positive x-axes correspond with temporal and nasal sides, 

respectively, while the vertical direction corresponds with rotation.
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Figure 4: 
Histograms showing the volumes between the iso-surfaces of letters gained or lost, where 

a broad distribution indicates a low tolerance to misalignment and a narrow distribution 

indicates a high tolerance.
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Figure 5: 
Relationship between the decentration with the best possible correction and the position of 

the maximal anterior keratometry power (Kmax). The blue box indicates the range of lens 

decentration tested.
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Figure 6: 
Average changes in spherical refraction, refractive cylinder and visual acuity resulting from 

decentration and rotation within the misalignment space, considered for all keratoconic (left 

column) and normal SyntEyes (right column). Negative and positive x-axes correspond with 

temporal and nasal sides, respectively, while the vertical direction corresponds with rotation.
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Figure 7: 
a. Random path within misalignment space used to assess VSX changes (colours). b. 

Changes in logMAR visual acuity experienced by the median normal and keratoconic 

SyntEyes for the alignment changes in 7a.
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Table 1:

Maximum rotation and decentration without a clinically significant predicted loss in logMAR visual acuity (< 

2 letters); mean ± standard deviation

Normal Keratoconus

Uncorrected astigmatism −0.66 ± 0.35D −2.82 ± 1.77D

Best cylinder correction −0.40 ± 0.46D −0.81 ± 1.06D

Rotation (Clockwise) +13.4 ± 1.8° +10.6 ± 4.8°

Rotation (Counter clockwise) −14.1 ± 1.6° −10.5 ± 4.7°

Rotation (Full range) 27.4 ± 3.1° 21.1 ± 9.4°

Min Decentration (any direction) 0.39 ± 0.15 mm 0.27 ± 0.13 mm
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Table 2:

Number of letters lost during the random lens motion shown in Figure 7 for 3 normal and 3 keratoconic 

SyntEyes; mean ± standard deviation [range]

Normal Keratoconus

25th percentile −0.17 ± 0.63 [−3.07, 0.88] −0.40 ± 0.84 [−3.38, 1.58]

Median −0.20 ± 0.24 [−1.19, 0.21] −0.75 ± 1.16 [−6.15, 0.52]

75th percentile −0.27 ± 0.38 [−1.47, 0.58] −0.61 ± 0.87 [−4.06, 0.77]
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