Skip to main content
. 2022 Oct 6;10:e14115. doi: 10.7717/peerj.14115

Table 2. ROC curve analysis of diagnostic indicators in differentiating GC from AG and SG.

Regressionmodel C16OH C6DC C6 C0 ARG
GCvsSG
AUC 0.9986 0.9779 0.9910 0.8793 0.7385 0.6818
Cut-off value 0.0555 0.227 0.0545 11.29 37.25
Sensitivity (%) 98.55 90.28 97.22 76.39 65.28 83.33
Specificity (%) 98.55 97.1 95.65 89.86 81.16 50.72
P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0002
GCvsAG
AUC 0.9961 0.9765 0.9882 0.8789 0.7309 0.7229
Cut-off value 0.0555 0.237 0.0625 9.462 30.99
Sensitivity (%) 98.55 87.84 98.65 82.43 54.05 75.68
Specificity (%) 100 97.1 94.2 79.71 91.3 63.77
P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
GCvs(AG+SG)
AUC 0.9977 0.9772 0.9896 0.8791 0.7347 0.7026
Cut-off value 0.0555 0.237 0.0625 10.59 37.25
Sensitivity (%) 99.32 89.04 97.95 83.56 59.59 83.56
Specificity (%) 98.55 97.1 94.2 79.71 85.51 50.72
P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001