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Abstract

Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against
liquid and gas leakage and aid the stoppage of bleeding. To their credit, tissue adhesives have
made an indelible impact on almost all wound-related surgeries. Their unique properties include
minimal damage to tissues, low chance of infection, ease of use and short wound-closure time. In
contrast, classic closures, like suturing and stapling, exhibit potential additional complications with
long operation times and undesirable inflammatory responses. Although tremendous progress has
been made in the development of tissue adhesives, they are not yet ideal. Therefore, highlighting
and summarizing existing adhesive designs and synthesis, and comparing the different products
will contribute to future development. This review first provides a summary of current commercial
traditional tissue adhesives. Then, based on adhesion interaction mechanisms, the tissue adhesives
are categorized into three main types: adhesive patches that bind molecularly with tissue, tissue-
stitching adhesives based on pre-polymer or precursor solutions, and bioinspired or biomimetic
tissue adhesives. Their specific adhesion mechanisms, properties and related applications are dis-
cussed. The adhesion mechanisms of commercial traditional adhesives as well as their limitations
and shortcomings are also reviewed. Finally, we also discuss the future perspectives of tissue
adhesives.

Highlights

* Adhesion interaction mechanisms of tissue adhesives.
* Limitations and shortcomings of commercial traditional adhesives.
* Future perspectives of multifunctional tissue adhesives.
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Background

Surgical reconnection of wound tissues is necessary for
recovery of the tissue’s structure and function. For decades,
researchers have been working on developing techniques
for rejoining tissues. Nowadays, surgical operations are
performed daily for wound sealing in order to prevent leaks,
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stop bleeding and promote healing. Wound closure is the
last step of a surgical operation and surgeons depend on
it to gather separated tissues and control bleeding [1-4].
Conventional methods, like sutures and staples, are treated
as the gold standard in wound closure, and they function
well in most cases. However, these methods suffer up to
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30% leakage in some special application scenarios (e.g.
against high pressure in lungs and arteries) [5,6]. Due to
their simplicity, sutures are one of the most common ways
to close injured tissues [7]. Staples are also fast and are able
to decrease the infection rate more efficiently than sutures
[8]. However, despite the merits of sutures, they also cause
damage to healthy tissues and result in tissue trauma and
possible scarring. Besides, sutures are not ideal when minimal
invasion is required; in addition, they increase the chance
of bacterial infection [9,10]. Although quickly performed
stapling avoids these drawbacks, it is still not appropriate
for intrinsically complicated procedures, such as preventing
leaks of body fluids and air in blood vessels and tissues with
relatively low cohesion energy like lungs, livers, spleen and
kidneys [11-13]. The difficulty of using sutures and staples
while operating on areas inside the body that are not easily
reachable cannot be ignored; in addition, sutures and staples
do not perform satisfactorily for mending bone fractures.
[14] In addition, these procedures generally require further
removal steps, which is time-consuming and requires the
work of a skillful surgeon.

Tissue adhesives or sealants have been made as a replace-
ment for sutures and staples since the middle of the last
century. Tissue adhesives can be defined as glues or patches
that are used to bind tissues to tissues, or tissues to patches,
in order to control bleeding and stop gas or liquid leaking;
adhesion occurs due to intermolecular interactions at the
interfaces of the two surfaces [15-17]. Adhesives provide
superior convenience for wound healing, such as less trau-
matic closure, less pain, easier operation and no post-surgical
removal, and can even release drugs and growth factors to
accelerate healing [18,19]. Some are applied as commercial
adhesives, e.g. fibrin glue was recommended in the 1940s
[20] and cyanoacrylate adhesive was widely used in the 1980s
[21].

A perfect tissue adhesive should show sufficient adhesion
and cohesion of tissue bonding in even relatively humid con-
ditions, stay stable in the physiological environment, perform
rapid curing in a specific environment, and exhibit biocom-
patibility, biodegradability, non-toxicity and non-cytotoxicity
[22-24]. Sometimes, extremely high adhesion strength is not a
merit, as it may lead to undesired adherence between surgical
implements and tissues, or even damage tissues; an optimal
balance in adhesion strength needs to be pursued. An essential
feature of adhesives is liquid repulsion, as adhesives need to
maintain adhesion even under aqueous conditions since the
physiological environment of human tissues is likely to be
aqueous.

Based on interfacial interactions, tissue adhesives can
be divided mainly into three types: (1) adhesive patches
containing functional groups for molecularly binding with
nucleophiles (such as amines, thiols, imidazole, etc.) of
tissues through intermolecular forces; (2) pre-polymer or
precursor solutions of adhesives can penetrate into porous
tissues and then polymerize iz situ to form interpenetrating
bonding networks to stitch tissues together; and (3)

nature-inspired adhesives can generate special adhesion such
as mussel-inspired catechol functional adhesion, gecko foot
pad-inspired fibrillar array-like adhesion, tree frog-inspired
amphibians two-phase adhesion, octopus suction cup-
inspired hollow structure-related negative-pressure adhesion
etc. This review will describe and characterize the mecha-
nisms, materials and synthesis of a range of tissue adhesives.

Review

Commercial traditional adhesives

Cyanoacrylate (CA) adhesives As a commonly used commer-
cial adhesive, CA adhesives, which have strong and rapid
adhesion behavior, were chemically synthesized and first
applied as superglues in households and industries. [25] The
potential of CAs for use in wound closure was discovered in
the 1960s. CAs can immediately bind to the target surface
at 23°C without the presence of a catalyst, heat or pressure.
The liquid monomers undergo exothermic polymerization to
form a strong adhesion as acrylate bonds are polarized and
thus ready to attack nucleophiles of weak basic substances
(such as water, body tissues and blood), because of the
electron-withdrawing nitrile group [26]. When used as tissue
adhesives, the liquid monomers flow and penetrate into
wound interfaces, providing strong covalent bonding between
CAs and functional groups in the tissues (primary amines in
proteins). The adhesion strength depends on the alkyl chain’s
length. There are four main CA adhesives based on the alkyl
chain length: methyl-CA, ethyl-CA, 7n-butyl-CA and 2-octyl-
CA. Short chains provide stronger polymerized networks,
whereas longer alkyl chains offer more flexible bonds,
which leads to higher breaking strength [27,28]. However,
the CAs show toxicity to humans, since they degrade into
cyanoacetate compounds and formaldehyde that cannot be
metabolized and eliminated, and these can in turn cause
inflammation [29]. In addition, CAs become brittle after
polymerization, which leads to poor mechanical properties
and an inability to coalesce with tissues when applied on soft
interfaces (skin or viscera) [30,31].

Fibrin-based adhesives Another commercialized adhesive is
fibrin, which is a protein existing in human blood. The first
fibrin-based adhesive was introduced in the 1940s for nerve
adhesion [32]. Typically, fibrin contains three main compo-
nents: fibrinogen, thrombin and factor XIII. After coming
together, thrombin can cleave fibrinopeptides A and B that
are contained in fibrinogen to form fibrin monomers. These
monomers are self-assembled as fibrin polymer clots through
H-bonds. Synchronously, the thrombin can also activate fac-
tor XIII and then catalyze the crosslinking of fibrin by produc-
ing amide bonds in the presence of calcium ions. As to wound
tissue, fibrinogen can interact with thrombin as described
above and form unstable fibrin clots. These clots work as
hemostatic agents and sealants for wounds; in addition, the
fibrin can crosslink with tissue collagen (forming amides
among glutamine and lysine residues). At the wound site,
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Figure 1. Adhesive molecules bind with tissue via covalent interactions of functional groups

fibrin—collagen crosslinking anchors the clots; also, platelets
are activated by thrombin to provide receptors for fibrin
and collagen, and then trapped in fibrin clots, which further
enhance clot stabilization. Calcium ions are always needed
for these reactions [33,34]. Different from CAs, fibrin-based
adhesives are biocompatible and absorbable within 2 weeks
[18,35]. However, they needs preparation time before use, and
fibrinogen and thrombin must be stored at low temperature
separately. Fibrin adhesives may transmit infectious diseases
because they are made from plasma, and they may elicit an
immune response and cause an allergic reaction [36,37]. In
addition, fibrin adhesives have poor adhesion strength when
applied to tissue, and even worse on wet surfaces [38].

Traditional gelatin adhesives Gelatin is a protein dena-
tured from collagen via irreversibly thermal degeneration.
One common gelatin-based adhesive is gelatin-resorcinol-
formaldehyde (GRF), which was first introduced in the
1960s [39]; gelatin-resorcinol-formaldehyde-glutaraldehyde
(GRFG) was proposed later on due to the toxicity of
formaldehyde [40]. Gelatin is non-toxic and contains inherent
peptide sequences. It can be crosslinked via the reaction
between amines in the lysine side chains and aldehyde groups
in the formaldehyde or glutaraldehyde [41,42]. When applied
to wound tissue, the same reaction can be activated and
the amines of tissues can be crosslinked. Usually, the GRFG
adhesive components, the gelatin solution and the aldehyde
solution, are stored separately. The adhesive is biodegradable
via macrophage phagocytosis that starts about 60 days after
use, but the degradation rate is slow. [43] During application,
the toxicity of formaldehyde and glutaraldehyde cannot be
ignored.

Albumin adhesives Albumin is a plasma protein in mammals.
As a protein-based adhesive, similar to GRFG glue, albumin-
glutaraldehyde adhesive (BioGlue®) was developed commer-
cially in the late 1990s [44,45]. With the same reaction

mechanism, the amines of lysine residues in albumin or the
wound tissues can react with the aldehyde. This adhesive
does not contain formaldehyde which makes it of relatively
low toxicity. However, infections after use have been found
because of its mammalian origin, and allergic reactions may
occur [46,47].

Adhesives molecularly binding with tissue

Mechanisms The first type of mechanism relates to adhesive
patches (such as adhesion polymers, hydrogels, tapes, etc.)
with functional groups that can molecularly bind with diverse
nucleophiles on tissue, in which the adhesives are first poly-
merized or gelled and then attach to the wound. The inter-
molecular forces between adhesive and tissues include chemi-
cally covalent interactions and physical interactions such as
hydrogen bonding, ionic interactions, electrostatic interac-
tions and van der Waals forces. For covalent interactions, usu-
ally, the adhesives provide functional groups (primary amine,
aldehyde, isocyanate, carboxylic acid, phenolic hydroxy) that
react with groups in the tissue (such as primary amines,
carboxylic acid, thiol, hydroxy groups, etc.) (Figure 1). The
physical interactions usually result in adhesion. Electrostatic
interaction uses oppositely charged groups for adhesion, and
hydrogen bonding, van der Waals forces and ionic inter-
actions also can enhance interface adhesion energy. Tissue
penetration may occur when patches are attached to wound
tissues, but since the patches have already been polymerized
or gelled, relatively few macromolecules diffuse into the
tissues. Adhesive patches with different binding mechanisms
and their performance are listed and reviewed in Table 1.

Adhesive patches rely on coupling reagents Some adhesive
patches are modified with functional groups (amine or
carboxyl). They cannot directly react with tissue nucleophiles
(carboxylic acid or primary amines) spontaneously. Thus,
coupling reagents like N-hydroxysuccinimide (NHS) and
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Figure 2. Adhesive patches molecularly bind to tissue. (a) Primary amines covalently bonding with carboxylic acids on tissues with coupling reagents (NHS
and EDC). (Reprinted from ref. [48] with permission from the American Association for the Advancement of Science.) (b) Adhesive tapes based on carboxylic
acid groups covalently bonded with primary amines on tissues to form intermolecular bonds with tissue surfaces (Reprinted from ref. [49] with permission
from Springer Nature Limited.) (¢) Photo-triggered hydrogel: the UV photo-generated aldehydes on HA-NB react with amines on G-MA; simultaneously, the
generated aldehydes interact with amines on tissue. (Reprinted from ref. [56] with permission from Springer Nature Limited.) (d) (i) Pre-crosslinked G-MA
hydrogel network strengthened by TA; (i) G-MA-TA adhesion gel adhering to porcine skins by H-bonding; (iii) hydrogel adhesive healed gastric incision without
suture. (Reprinted from ref. [61] with permission from Elsevier B.V.) (e) Pressure-sensitive egg white alboumen adhesion on multi-substrates by intramolecular—
intermolecular hydrogen bonding of peptide chains (Reprinted from ref. [66] with permission from John Wiley & Sons, Inc.) NHS N-hydroxysuccinimide, EDC

(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, UV ultraviolet, TA tannic acid

(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) are
needed to facilitate the reactions.

Li et al. [48] developed a tough adhesive made from poly-
mers containing positively charged amine groups (chitosan,
polyallylamine, polyethyleneimine, collagen, polyacrylamide
and gelatin) that could covalently bond with carboxylic acid
groups on tissues with the aid of coupling reagents (NHS
and EDC). The positively charged amines can also inter-
act electrostatically with the negative groups on the tissue
(carboxylic) (Figure 2a). With the help of NHS and EDC
coupling, Yuk et al. [49] developed poly (acrylic acid) (PAA),
gelatin and methacryloyl-gelatin (G-MA) based adhesives,
that possess carboxylic acid groups that can covalently bond
with primary amines on tissues. In addition, they can form

intermolecular H-bonds and electrostatic interactions with
tissues (Figure 2b).

Adhesive patches with aldehyde groups Adhesives with alde-
hyde groups can directly react with wound tissues without
extra coupling reagents (NHS and EDC), by forming imines.
This reaction is also known as the Schiff base reaction and
happens in a short time [50-53]. Polysaccharides can act as
adhesives in multiple ways but the most popular approach
is through oxidization of a hydroxyl group into an aldehyde
group via sodium periodate oxidation. The Schiff base reac-
tion time, which is related to adhesion curing efficiency, can
be tuned by the degree of oxidation. The optimum oxidation
level was 50% since over-oxidation leads to overly rapid
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crosslinking which does not allow sufficient time for the
polysaccharide to bind to tissue, in addition to being toxic
to cells.

For example, dextran was oxidized to dextran aldehyde
and then formed a hydrogel with amine-modified eight-arm
polyethylene glycol (PEG); meanwhile, the remaining dextran
aldehyde can form imines with tissue [54]. Liu et al. [55]
also synthesized an in situ-forming adhesive polysaccharide-
based hydrogel, which is made from aldehyde hydroxyethyl
starch and carboxymethyl chitosan. Ethylenediamine was
grafted onto carboxymethyl chitosan to obtain more amino
groups. Then, aldehyde hydroxyethyl starch could form
a gel with chitosan and react with amines on wound
tissue. In addition, Hong et al. [56] developed a G-MA
and  N-(2-aminoethyl)-4-(4-hydroxymethyl)-2-methoxy-5-
nitrosophenoxy) butanamide (NB) linked to glycosamino-
glycan hyaluronic acid (HA-NB)-based adhesive, in which
aldehydes can be photo-generated under UV stimulstion of
HA-NB. The aldehydes further react with G-MA and tissue,
simultaneously (Figure 2¢). This adhesive can polymerize and
glue tissues together within seconds.

Adhesive patches with phenolic hydroxyl groups Phenolic
hydroxyl groups called plant catechols that can function
like mussel catechol groups are also used for adhesion. The
phenolic hydroxyl groups can covalently bond with diverse
nucleophiles (amines, thiol, and imidazole) from peptides and
proteins on tissues. Usually, phenolic hydroxyl adhesion is
achieved by introducing tannic acid (TA).

For example, Shao et al. [57] developed a TA surface-
modified cellulose nanocrystal-based adhesive. When applied
to tissue, the phenolic hydroxyl groups can work as mussel-
like catechol that interacts with amines, thiol and imidazole
on tissues. Beyond this, hydrogen bonding also contributes
to adhesion. With the same adhesion mechanism, Dong ef al.
[58] synthesized a TA and silk fibroin-based adhesive in which
the phenolic hydroxyl groups can bond with tissue through
both covalent (phenolic hydroxyl-nucleophiles) and physical
(hydrogen bonding) interactions. Kim et al. [59] fabricated a
polyphenol-incorporated adhesive hydrogel for wet tissue
adhesion, which is made from epigallocatechin gallate
(EGCG)-modified HAs (HA-E) and tyramine-modified HAs
(HA-T). The 1,2,3-trihydroxyphenyl on EGCGs showed
a high affinity for tyrosinase, which made HA-E oxidize
rapidly and conjugate with HA-T to generate the mixed
hydrogel (HA-TE). Furthermore, the 1,2,3-trihydroxyphenyl
moiety is oxidized by tyrosinase to produce activated
quinone that is the same as the catechol functional groups
in mussel-inspired adhesive products. In this way, oxidized
1,2,3-trihydroxyphenyl moieties can bond with multiple
nucleophiles (such as amine, thiol, imidazole or other
phenolic moieties) on tissue via non-enzymatic reactions [60].

However, besides phenolic hydroxyl groups, the abun-
dant hydroxyl groups of TA can provide enhanced hydrogen
bonding. [61] TA-G-MA adhesive gel was made by a two-
step operation: the crosslinked G-MA hydrogel was firstly

synthesized and then soaked in TA solution to form a TA-
reinforced double network structure (Figure 2d). Thus, TA-
G-MA gel patches could be used on porcine skin or gastric
surface for wound closure. In addition, it showed good adhe-
sion on the wet surface as hydrogen bonding enhanced the
adhesion.

Adhesive patches based on physical interactions Unlike adhe-
sive patches that mostly rely on covalent bonding, adhesives
based on physical bonding show repeatable adhesion. Phys-
ical interactions usually include hydrogen bonding, Van der
Waals forces, hydrophobic interactions, etc. Alternatively, the
charge-balance concept provides a novel adhesion strategy.
To balance the surface charge, the opposite charged adhesive
and tissue can glue together [62,63].

Roy et al. [64] synthesized a charge-balanced polyam-
pholyte adhesive hydrogel via ionic bonds, which was
made from sodium 4-vinyl-benzenesulfonate (NaSS) and (2-
acryloyloxyethyl)-trimethylammonium chloride quaternary
(DMAEA-Q). As reported, this polyampholyte adhesive
can adhere to either a positively or negatively charged
tissue surface through mild dynamic ionic interactions. For
example, positively charged PDMAPAA-Q gel could glue
onto the negatively-charged liver surface, but negatively
charged PNaAMPS gel could not. The advance of this
adhesive was that the adhesion behavior could be repeatable
since no permanent reaction occurs between tissue and the
gel system; however the adhesion strength may be an issue.

In addition, another physically bonding-only concept
was introduced to synthesize a strong adhesive. Cui
et al. [65] developed a self-adhesive hydrogel via radical
polymerization, which was made from N-acryloyl 2-glycine
(ACG) and hydroxyapatite (Hap). First, poly (N-acryloyl 2-
glycine) (PACG) was crosslinked via XL-1000 UV, then the
side chains (carboxyl) formed can create both H-bonding
interactions and ionic crosslinking of carboxyl-Ca’t with
Hap nanoparticles to create a high-strength hydrogel. When
gluing on target substrates (tissues or inorganic surfaces), the
carboxyl groups can offer strong hydrogen bonding; also,
the introduced Ca®* (Hap nanoparticles) will adsorb PACG
chains and expose more chain ends outward, which allows
more carboxyl groups to come into contact with the substrate
surface and adhere strongly to it via more hydrogen bonding.

Advanced materials for adhesion patches that molecularly
bind with tissue

Most of the tissue adhesive patches
summarized above were fabricated from synthesized materi-

Non-synthesized materials

als. Even though some of the adhesives were derived from
natural materials, in order to modify them with functional
groups, chemicals had to be applied. These synthesis or mod-
ification processes may introduce some undesired chemicals
and may cause potential toxicity. As one of the requirements
for an ideal tissue adhesive is that it be non-toxic, non-
chemically modified natural materials may be an option.
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Figure 3. Tissue-stitching adhesives: pre-polymerized or precursor solutions penetrating and diffusing into tissues and forming crosslinked networks to stitch

tissues together

Xu et al. [66] developed a fast and strong pressure-
sensitive medical adhesive glue that was made from natural
egg white albumen via a simple and ecologically friendly
method: the fresh egg white albumen was taken and air-dried
(Figure 2e). The adhesion mechanism could be explained
by hydrogen bonding network formation and conformation
changes of egg white albumen proteins. Egg white albumen
can build strong interactions with substrates by hydrogen
bonds and van der Waals forces.

Hydrophobic adbesive hydrogels (potential use as tissue adbesives)
Adhesive hydrogels have proved to have strong adhesion.
However, their aqueous swelling behavior may limit their
application on fluid-abundant tissue wounds (vessels, livers,
uterus, etc.) since hydrogels are usually formed through
crosslinking of hydrophilic polymer chains and are able to
hold a large volume of water [67]. Therefore, the hydrogels
may need to be made hydrophobic to avoid aqueous
swelling. Oliveira et al. [68] manufactured a hydrophobic
hydrogel by coating hydrophobic microparticles on a G-MA
surface. First, 1TH,1H,2H,2H-perfluorodecyltriethoxysilane
(PFDTS)-modified diatomaceous earth (DE) particles were
made. Then, a hydrophobic hydrogel was obtained by
crosslinking the PEDTS-DE microparticle-containing G-
MA prepolymer under UV light. The gel exhibited liquid
repelling properties and could float on the water surface.
Inspired by this design concept, hydrophobic materials may
be added to adhesives to solve the issue of swelling when
they are used in fluid-abundant wound tissues. The adhesion
mechanisms on tissue may be via hydrophobic interactions,
hydrogen bonding or even electrostatic interactions [69-73].
In addition, hydrophobicity can lead platelets to aggregate,
which promotes blood clotting and accelerates wound closure
[74,75].

Among the adhesives listed in Table 1, a modified
PVA-based adhesive was designed from the concept of
hydrophobically modified alkyl groups anchored to the skin
cell membranes and showed strong interfacial adhesion [76].
Hydrogen-bonding created a coacervate adhesive hydrogel

that contains TA and also showed antibacterial ability
[77]. Adhesive hydrogels dissipate energy during separation
and exhibit strong and sparse interlinks with tissues [78].
Furthermore, an acrylic elastomer (VHB-4905, 3 M)-based
adhesive was designed from the concept of bond-stitch
topology [79]. Since the aldehyde group could covalently
bond with amine groups, the aldehyde-modified adhesive was
applied to fill a cartilage defect [80]. Apart from these well-
performing adhesive patches, more adhesives with special
properties were designed successfully, such as cell ingrowth-
facilitating bone adhesive [81], water-proof adhesive [82-84],
force responsive and self-adhesion adhesive [85,86],
fast-adhesion adhesive [87], injectable adhesive [88-90],
reusable adhesive [91-93] and diverse solvents-adhesion
adhesive [94].

Tissue-stitching adhesives

Mechanisms Due to the porous nature of tissue, adhesives
that do not rely on covalently bonding with tissue’s nucle-
ophile groups can be applied to wounds. As pre-polymerized
precursors, they can penetrate and diffuse through the tissue
interface to self-crosslink upon stimulation with visible light,
ultraviolet light (UV), etc. (Figure 3). In this way, the wound
tissues can be linked together by the formation of interpen-
etrating networks between tissues (Table 2). Visible and UV
light are sources frequently used to initiate the crosslinking.
In addition, physical interactions such as hydrogen bonding,
Van der Waals forces, ionic interactions and electrostatic
interactions can act as co-workers to enhance the adhesion.

Diffusion followed by light crosslinking Gelatin-based stitch-
ing adhesion can be achieved using a pre-polymer solu-
tion of G-MA combined with photo initiators followed by
crosslinking [95]. Before crosslinking, the G-MA penetrates
into wound tissue interfaces, and after crosslinking, the pen-
etrated solutions form interpenetrating networks to stitch
wound tissue together.
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Figure 4. Pre-polymerized or precursor solution-dependent tissue-stitching adhesives. (a) G-MA adhesive hydrogel for corneal repair: pregel solution penetrated
into the cornea for visible light-crosslinking in the presence of photo initiators. (Reprinted from ref. [96] with permission from the American Association for
the Advancement of Science.) (b) Polyacrylamide-alginate-Ca2t adhesive hydrogel glued the tissue together via chitosan-EDC-NHS spraying to form amide
interlinks and physical bonding by virtue of positively charged amines and negatively charged carboxylic acid. (Reprinted from ref. [78] with permission from
the American Chemical Society.) (¢) Chitosan and coupling agents (NHS and EDC) solution penetrate into tissues and PNIPAM-alginate hydrogel to form amide
bonds. (Reprinted from ref. [99] with permission from the American Association for the Advancement of Science.) (d) Chitosan (pH < 6.5) penetrated into two
PAM hydrogels, then formed new networks via NH2-OH hydrogen bonding as the pH increased (pH > 6.5), which became entangled with existing gel networks.

(Reprinted from ref. [100] with permission from John Wiley & Sons, Inc.)

For example, Sani et al. [96] developed G-MA for corneal
injury repair, in which the G-MA was pre-blended with a
photo initiator (eEosin Y), and triethanolamine (TEA) and
N-vinylcaprolactam (VC) as co-initiator and co-monomer,
respectively (Figure 4a). After the pre-polymer penetrated
into the cornea, it was crosslinked via visible light to close
the wound. The UV initiator Irgacure 2959 is used most com-
monly. Assmann et al. [97] sprayed Irgacure 2959 with G-MA
on tissues under UV for strong adhesion. Likewise, gelatin can

offer extra adhesion to wound tissue because it has several
regions that can adsorb onto cells and extracellular matrix,
thereby enhancing adhesion. In order to improve adhesive
elasticity, methacryloyl-modified human protein tropoelastin
(Metro) was used. Annabi et al. [98] sprayed Metro and
Irgacure 2959 pre-polymerized solution onto tissue interfaces
using UV exposure for tissue binding. In addition, Metro
gel can also physically entangle within tissue collagen fibers
causing physical interlocking at the interfaces. Meanwhile,
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positively charged tropoelastin can electrostatically interact
with negatively charged glycosaminoglycans, which also
improves adhesion.

Diffusion followed by EDC and NHS crosslinking As tissue-
stitching adhesives, coupling reagents are also able to trigger
covalent reactions between the adhesive and tissues. Usually,
the coupling reagents, such as EDC and NHS, are first sprayed
onto adhesives and tissues before attaching them. Thus, not
only can the penetrated adhesive molecules be ‘anchored’
with tissues via interpenetrating network formation, but the
covalent bonding can also further firmly fasten the interface
adhesion.

Yang et al. [78] researched an adhesive containing
alginate-Ca*" and polyacrylamide. They sprayed chitosan
containing coupling reagents (EDC and NHS) onto hydrogel
and tissue, which formed amide interlinks through amines
and carboxylic acid groups. In addition, the positively
charged amines and the negatively charged carboxyl
can physically interact together to enhance the adhesion
(Figure 4b).

Furthermore, Blacklow et al. [99] developed a thermo-
responsive adhesive that is made from poly(N-isopropyl
acrylamide) (PNIPAM) and alginate, and achieved adhesion
with the help of amines from chitosan and coupling agents
(EDC/NHS) (Figure 4c). As a thermo-responsive polymer,
PNIPAM repels water and shrinks when the temperature
is >32°C. When placed on the skin, PNIPAM-alginate
adhesive dressings can shrink to produce contractile forces,
and these forces transfer to the wound edges to close the
wound. In order to transfer contractile forces efficiently,
PNIPAM-alginate adhesive must strongly glue on the skin.
Thus, chitosan, EDC and NHS were sprayed onto tissue and
PNIPAM-alginate. After penetration, tissue and adhesive can
adhere together.

Diffusion caused topological entanglement Strong adhesion
can be achieve by topological entanglements, without the
requirement for functional groups. The pre-polymer diffuses
into two interfaces (e.g. hydrogels) that have pre-existing
polymer networks. After polymerization, a new network is
formed to entangle the primary networks. Unlike other tissue-
stitching adhesives, no initiators or coupling reagents are
required. Although some adhesives rely on specific functional
groups that can offer relatively strong wet adhesion, they may
require complicated fabrication and inconvenient application
processes. Therefore, adhesives based on topological entan-
glement can address these issues.

Yang et al. [100] placed chitosan, poly(4-aminostyrene)
(PAS), alginate and cellulose onto the interfaces, respectively
(Figure 4d). After diffusion of these polymer chains, pH was
a trigger to make the polymer chains form new networks that
became topologically entangled with the existing networks
of the interfaces. Chitosan solution (pH < 6.5 for dissolu-
tion) was sprayed onto polyacrylamide (PAM) hydrogel, then
another piece of PAM was placed on top for compression. The

two gels can strongly adhere together since the penetrating
chitosan chains (pH < 6.5) form new networks via NH;-
OH hydrogen bonding when the pH at the hydrogel interface
is increased to pH 7, which become entangled with the
existing PAM networks. They then applied this mechanism to
various porcine tissues (liver, heart, artery and skin iz vitro).
Topological entanglement may offer an alternative method
for wet adhesion since chemical reactions are not required.

Considerations for improved adhesion of advanced materials
Swelling is one issue that must be considered in designing
tissue adhesives. As adhesives are applied in fluid-abundant
environments, water uptake will lead to a weakening at the
adhesive interface. Besides, undesired swelling may squeeze
surrounding tissues in confined areas [101-103]. Thus, non-
swelling or negative-swelling adhesives would be promising.

Du et al. [104] designed a non-swelling hydrogel adhesive
via the free radical polymerization of poly(ethylene glycol)
diacrylate (PEGDA), Pluronic F127 diacrylate (F127DA) and
modified sodium alginate (MAlg, synthesized via an ami-
dation reaction with 2-aminoethyl methacrylate hydrochlo-
ride). The hydrogel was then coated with TA. The non-
swelling property was mainly because strong hydrogen bond-
ing between TA and poly (propylene oxide) (PPO) produces
a hydrophobic effect within a 3D vinyl crosslinked net-
work. The TA’s multiple catechol groups formed robust H-
bonding with dense networks of PEGDA, F127DA and MAlg,
which constrained water intake. Furthermore, Barrett et al.
[105] have manufactured negative-swelling polymer hydrogel
adhesives, i.e. amphiphilic block copolymers of PPO-poly
(ethylene oxide) (PPO-PEO) with catechol terminals. The
catechols provide tissue adhesion, and the thermosensitive
PPO-PEO blocks change from hydrophilic to hydrophobic
with changes in physiological temperature, which results in
gel contraction.

More tissue-stitching adhesives with highlighted char-
acteristics are summarized in Table 2. Since almost all
adhesives are used in wet conditions, water-resistance should
be the first consideration for adhesive design. Due to
their special tissue penetration and diffusion mechanism,
tissue-stitching adhesives exhibit better water-resistance
properties than other adhesives [106-112]. Furthermore,
tissue-stitching adhesives with other properties performed
very well, e.g. healing-promotion [113], fast-adhesion [114],
antifreeze [115], photo-detachable [116], conductive [117],
wet-responsive [118] and 3D-printable [119].

Bioinspired adhesives

As one of the most popular tissue adhesive approaches,
bioinspired, naturally occurring adhesives include mussel
protein-inspired adhesives (Figure 5a), fibrillar array-like
gecko foot pad-inspired adhesive, two-phase adhesion
inspired from amphibious tree frogs, adhesives inspired from
Octopus suction cups (hollow structures generate negative
pressure) (Figure 5b) and tree roots interpenetrating into the
soil (Figure 5c), etc.
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Figure 5. Adhesion mechanisms of bioinspired adhesives. (a) Mussel-inspired adhesives adhere to tissues through multiple interactions. (b) Octopus suction
cups generate negative pressure for tissue attachment. (c) Adhesives are bioinspired from growing tree roots interpenetrating soil

Mussel-inspired adhesives Among bioinspired adhesives, one
main category is the bioadhesive generated by mussels. In
nature, mussels can robustly stick to the surfaces of natural
structures in aqueous conditions (rock surfaces in the ocean)
and can be functionalized under alkaline conditions, which
mainly relies on L-3,4-dihydroxyphenylalanine (DOPA)
being oxidized to form its quinone products, and adhere to
target surfaces via a variety of interactions (such as chemical
bonding by catechol to nucleophile groups on tissue, 7—7m
interactions, w—cation interactions, hydrogen bonding and
even metal complexation etc. (Figure 5a) [120-122]. Due to
these unique advantages, dopamine has been widely used in
many areas apart from for tissue adhesives [123-126]. In
tissue adhesives application, mussels are usually used for wet
or underwater adhesion (Table 3).

For example, inspired by the mussel, Han et al. [127]
researched a conductive adhesion hydrogel made from
polydopamine-decorated carbon nanotubes, glycerol, acry-
lamide (AM) and acrylic acid (AA), in which the poly-
dopamine can interact with PAM-PAA networks via multiple
interactions among catechol and carboxylic/amino groups
(Figure 6a). Also, the reactive catechol on polydopamine can
bind with high affinity to diverse nucleophiles (amines, thiol
and imidazole) on tissue peptides and proteins.

Liao et al. [128] synthesized a conductive and adhesive
gel that contains single-wall carbon nanotubes (SWCNTs),
polyvinyl alcohol (PVA) and dopamine. Pre-oxidized and
polymerized dopamine was mixed with PVA and FSWCNTs
solution, in which supramolecular crosslinking was generated
among FSWCNTSs, PVA and polydopamine in the presence of
borate by hydrogen bonds, 7-7 stacks and dynamic inter-
actions between the hydroxyl groups of PVA and tetra-
functional borate ions. In addition, the oxidized catechols
can covalently react with amine, imidazole and thiol residues
that are contained in tissues, thus making them adhere to
tissue. Much research is devoted to mussel-inspired adhesives
because of their great biocompatibility and good adhesion
performance even underwater.

In addition, Salzlechner ez al. [129] developed a DOPA-
modified hyaluronic acid-methacryloyl adhesive, in which
DOPA can be passively oxidized in tissue environments
and then the oxidized catechol chemically bonds with
amine, thiol and carboxyl groups in tissues. Ruprai et al.
[130] also developed an L-DOPA-modified porous chitosan
adhesive (chitosan and L-DOPA were mixed to form a
solution which was then freeze-dried to make a porous
film); thus, oxidized catechol groups in L-DOPA covalently
bond with amine, imidazole and thiol residues present in
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Figure 6. Mussel-inspired tissue adhesives. (a) Mussel-inspired conductive adhesion hydrogel: PDA-PAM-PAA networks are formed via multiple interactions
among catechol and carboxylic/amino, and the reactive catechol binds with high affinity to diverse nucleophiles on tissue. (Reprinted from ref. [127] with
permission from John Wiley & Sons, Inc.) (b) Dopamine-MBA was used as a crosslinker to conjugate with a G-MA and PCL sheet combined with 12959 under UV;
the catechol groups on dopamine showed mussel-inspired adhesion to tissue. (Reprinted from ref. [131] with permission from the Royal Society of Chemistry)
(¢) Adhesive conductive hydrogel patch: Fe3*t induced ionic coordination of gelatin-dopamine and dopamine-Ppy networks, and the gelatin-dopamine-Ppy
adhesive hydrogel patch could adhere to tissue via catechol groups. (Reprinted from ref. [134] with permission from the American Chemical Society) (d) Mussel-
inspired adhesive hydrogel: seawater-like ions in nanoclay result in in situ oxidation of dopamine to form an adhesive gel with acrylamide under the action of
an initiator and crosslinker; catechol groups provide tissue adhesion ability. (Reprinted from ref. [135] with permission from the American Chemical Society)
(e) Hyperbranched polymer adhesive: hydrophilic adhesive catechol side branches and hydrophobic backbone show strong underwater adhesion due to water
triggering hydrophobic chain aggregation to generate coacervates that quickly repel water, leading to the revealing of catechol groups and robust adherence to
surfaces. (Reprinted from ref. [136] with permission from John Wiley & Sons, Inc)
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tissue proteins, thus adhering to tissue. Jiang ef al. [131]
developed a mussel-inspired adhesion nanofibrous sheet for
stomach incision healing. This adhesion sheet was made
from dopamine-N,N’methylenebisacrylamide (MBA) as a
crosslinker to crosslink the G-MA and PCL sheet that was
synthesized via an electrically-spun technique under UV
with photoinitiator 12959 (Figure 6b). The crosslinker was
produced via Michael reaction of dopamine and MBA and
then the G-MA/PCL nanofibrous sheet was assembled by
electrospinning out the mixture solution. The MBA did not
affect the catechol groups on dopamine-MBA which still
worked as adhesion groups to bond with tissue. Furthermore,
with the same design concept, a dopamine-MBA crosslinker
was applied to gather polypyrrole (Ppy) nanoparticles, G-
MA and PEGDA into a cryogel that worked as a cardiac pad
for myocardial infarction treatment [132]. A mussel-inspired
adhesive hydrogel made from polydopamine, nanoclay and
polyacrylamide has been manufactured [133]. Instead of
using oxidants that may cause inflammation (FeCl3, NaOly,
Oy, etc.) as curing agents to oxidize dopamine (Figure 6¢)
[134], nanoclay was applied, which can provide seawater-
like ions to provide alkaline conditions for dopamine
polymerization (Figure 6d) [135]. In addition, the clay’s
layered construction promoted the insertion of dopamine into
the limited clay interstices, which resulted in polydopamine-
inserted clay nanosheets that involved enough free catechols
but was not overoxidized. Acrylamide was introduced
and formed a durable adhesive hydrogel under the action
of an initiator and crosslinker. Catechol groups in the
polydopamine provide all the tissue adhesion ability.

For the purpose of boosting underwater or wet adhe-
sion strength, mussel-inspired adhesive combined with a
hydrophobic backbone is one of the best design strategies
since catechol groups in mussel can provide wet adhesion
as well as hydrophobic chains that can offer water-repelling
behavior. Cui et al. [136] designed a hyperbranched polymer
adhesive that contained hydrophilic adhesive catechol side
branches and a hydrophobic backbone that can show strong
underwater adhesion (Figure 6e). This adhesive, which was
made from pentaerythritol tetraacrylate (PETEA), poly
(ethylene glycol) diacrylate and dopamine, was prepared via
Michael reaction of multi-vinyl monocase with dopamine
(providing amines). When applied on a water or fluid-
abundant target surface area, the water triggers the aggre-
gation of the hydrophobic chains to generate coacervates
that quickly repel water on the target surface, leading to the
revealing of catechol groups and robust adherence to surfaces.

The latest research on mussel adhesion proved that, apart
from catechol-rich mussel foot proteins (Mfps), thiol-rich
Mfp-6 works as a significant contributor to mussels’ extraor-
dinary adhesion and rapid gelation properties [137-139].
Even though there is only 3 mol% catechol in Mfp-6, the
cysteine residues can quickly crosslink with catechol-rich
proteins (Mfp-3 and Mfp-5) [140]. Inspired by this function,
Wei et al. [141] synthesized an injectable adhesive hydrogel
made from thiourea-catechol-modified gelatin (G-TU-Cat),

in which thiourea mimicked thiol-rich Mfp-6. As a relatively
mild crosslinking condition, peroxidase from horseradish and
hydrogen peroxide was used to enzymatically crosslink G-
TU-Cat rapidly. When applied to tissue wounds, catechol
groups in hydrogel play the adhesion role to glue the tissue
together.

More wet-resistant mussel-inspired adhesives [142-145]
with some other characteristics are included in Table 3. For
example, mussel-inspired adhesives with conductivity may
promote cell proliferation and adhesion [134,146]. Also,
environment-dependent adhesives that could adhere to var-
ious mineral surfaces have been designed [147,148]. Due
to the great biocompatibility of PDA, a growth-factor-free
adhesive was made for cartilage regeneration [149]. With the
addition of a cationic antimicrobial peptide, one DOPA-based
adhesive exhibited infection prevention [150]. In addition,
mussel-inspired adhesives were also designed with thermal
curing ability [151] and swelling-mediated performance [152]
and others that could be delivered by microcatheter [153] and
were injectable [154].

Other bioinspired or biomimetic adhesives After millions of
years of evolution, Nature provides alternative concepts for
reliable adhesion to sophisticated surfaces. Bioinspired or
biomimetic adhesives have merits that synthetic adhesives
cannot match. Such merits offer rapidly reversible adhesion
that has allowed geckos to walk on walls and ceilings and
octopuses to stroll freely on rocks in the harsh ocean environ-
ment. The clingfish also exhibits tough adhesion in extreme
and rugged ocean environments since the suction disc on
the clingfish has hexagonal shapes divided by connection
grooves, which can increase the water drainage rate and pre-
vent water trapping (Table 4). As a result of water drainage,
the suction disc can form a cavity chamber and generate
negative pressure with the target surface, thus adsorbing on
the adherend.

Rao et al. [63] developed an adhesive patch with a surface
pattern modified with hexagonal facets separated by inter-
connecting grooves made from a polyampholyte hydrogel of
negatively charged sodium p-styrenesulfonate and positively
charged methyl chloride quarternized N,N-dimethylamino
ethylacrylate (Figure 7a). The adhesion mechanism is via the
hexagonal facets attached to the substrate that form bridges
between the dynamic electrostatic bonds of the hydrogel and
the substrate. This surface pattern design can accelerate water
drainage and prevent water becoming trapped inside, thus
giving it the potential for underwater adhesion. Similarly and
serendipitously, octopus suction cups also present a hollow
structure, which can generate negative pressure for anchor-
ing purposes (Figure 5b). In the ocean, the octopus shows
controllable adhesion to slippery and rough surfaces; their
suckers also offer multiple capacities for movement, hunting
food and recognizing tactilely [155-157]. Artificial adhesion
suckers have been developed inspired by this periodic adhe-
sion performance and has been used for wearable electronics
(Figure 7b. [158-162].
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Figure 7. Bioinspired or biomimetic adhesives. (a) Adhesion hydrogel with water-proof adhesion ability inspired from the features of clingfish adhesion discs:
hexagonal facets separated by grooves. (Reprinted from ref. [63] with permission from John Wiley & Sons, Inc.) (b) Adhesion patch inspired from the suction
cups of an octopus: negative pressure generated by the inner hollow structure. (Reprinted from ref. [162] with permission from Springer Nature Limited.) (c)
Bioinspired wet adhesion patch using hierarchical hexagonal structures: hexagonal structures (pads of tree frog) and protuberances with a hollow structure
(suction cup of octopus vulgaris tentacle). (Reprinted from ref. [165] with permission from John Wiley & Sons, Inc.) (d) Adhesion patch made by nanopile
interlocking inspired from the stretching of fractal roots into soft soil (Reprinted from ref. [166] with permission from John Wiley & Sons, Inc.)

Nano-suckers based on protuberant nano-balls have been
produced using a solvent settlement method. UV-sensitive
resin-coated polystyrene nano-spheres were soaked in high-
polar solvents (like acetonitrile, nitromethane, propylene car-
bonate, etc.). The solvents caused the external surface of
the inner nano-spheres swell but did not etch any polymers,
which then formed a negative-pressure between the cavity
nano-suckers and the substrates [163]. Despite their good
adhesion strength, the harmful solvent may limit their appli-
cation on tissues.

As an alternative method of using nano-suckers, a silicon
wafer was covered with nano-silica crystals and ethoxylated
trimethylolpropane triacrylate (ETPTA) via spin-coating, fol-
lowed by coating with PVA and HCI solution. Thus, silica
particles were embedded in a PVA film to create a positive
PDMS replica mold mounted with nano-suckers for adhesion
[164].

Aside from marine organisms, other forms of life on earth
also provide inspiration for designing water-proof tissue
adhesives. A wet adhesion skin patch from both amphibians
(tree frogs) and the octopus has been manufactured
[165]. The PMDS adhesion presented a surface pattern of
octopus-like gibbous cups on a hexagonal structure (Figure 7c¢).
The hexagonal micropatterns can adhere to the wet skin
surface by draining liquid; meanwhile, the convex-shaped
architecture can force liquid molecules into the inner chamber
of the sucker to form a vacuum state, which induces a
capillary-assisted suction effect to enhance normal adhesion
strength on the wet substrate.

Inspired by growing tree roots interpenetrating into
soil (Figure 5¢), Liu et al. [166] developed high-adhesive,

stretchable electrodes that were made from gold nanopiles
and PDMS (Figure 7d). They fabricated gold nanopiles
interlocked into PDMS substrates via interpenetration. The
PDMS substrate can be glued to the target cylindrical wood
surface by epoxy resin.

Moreover, inspired by the gecko foot pad, adhesive patches
have been made from fibrillar arrays of micropatterned films.
These patches can adhere to tissue via physical absorbance
force in a chemical reaction-free scenario, which is safe and
repeatable. In addition, the amphibian tree frogs also inspired
the idea of two-phase (solid/liquid) adhesion. For example,
a gel-like translucent adhesive was developed by dispersing
PVDF spheres (~200 nm diameter) in PDMS [167]. PVDF
spheres were chosen as the solid-phase because they have
a large surface area and contain fluorine atoms that can
bond with the contact surface via dipolar interactions. PDMS
works as the liquid-phase due to the large elasticity of its
polymer chain that can efficiently disperse the PVDF spheres
and provide long-term stability. When compressed, the liquid
phase (PDMS) allowed the solid spheres (PVDF) to flow onto
the contact surface, increasing the contact area and strength-
ening the dipolar interactions with the contact surface.

A range of bioinspired or biomimetic adhesives with
good performance are listed in Table 4. As with mussel-
inspired adhesives, these bioinspired or biomimetic adhesives
also exhibited excellent wet-adhesion ability [168-170]. As
well as water-resistance, they exhibit reversible adhesion
[162] and a switchable adhesion structure [171] due to
their special mimicking structure. One adhesive with a
microstructure surface could adhere tightly to targets by
mimicking a mushroom shape [172]. Another adhesive,
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bioinspired by a gecko foot, could glue tightly to a rough
surface [173].

Future perspectives

Most tissue adhesives outperform traditional wound closure
by sutures and staples. Having said that, there are limitations
where underwater and bioactive diversity is concerned. In
order to exploit adhesives with multiple functions, some
extra features are worthy of mention, such as shape mem-
ory, controllable adhesion—cyclic adhesion and non-adhesion,
one-side adhesion, adhesive electronics, and antibacterial and
hemostasis adhesion, which will be a focus of future designs
(Figure 8).

Shape memory adhesives Most adhesives, so far, are focused
on the interfacial strength, anti-water ability [174], or adhe-
sion time, cost etc [175]. From the perspective of biological
evolution, tissue adhesives could also bear the smart nature
of environmental-adaptive adhesion ability. Shape memory
is the ability of materials to memorize their original shapes
from a temporary deformed state under an external stimulus
[176,177]. Adhesives can be designed with shape memory
ability, e.g. as microneedles. As the microneedles penetrate
through the epidermis into the dermis layer, they can change
shape via contact with water (interstitial fluid) or temper-
ature (body temperature), becoming firmly locked in the
tissues. In this way, a moisture-induced microneedles-based
adhesive patch can mechanically interlock with tissue. This
patch contains swelling and non-swelling parts. Upon con-
tact with physiological fluid, the volume change on one
side leads to morphological transition and thus the needles
become anchored inside (Figure 9a). [178] Smart needles
may be laden with antibacterial agents or wound-healing
regulators to promote tissue repair, or even biocompati-
ble electronic materials to create a tissue-adhesive sensor to
detect infection and control the healing process, temperature
and pH on the wound bed [179-181]. Furthermore, the
shape-memory adhesive can be designed for injured and

bleeding organs with minimally invasive delivery. Instead of
invasive surgery, an adhesive cardiac patch can be injected
into the heart via a small orifice and return to its initial struc-
ture to form a firmly attached membrane after myocardial
infarction [182].

adhesives Adhesives are
functionalized for single use and not for repeatable purposes.

Repeatable-adhesion generally
After a first application, the performance of interfacial surface
molecules will be compromised for the next use, e.g. covalent
bonds are consumed and non-recoverable [50,86,108,183].
In order to address this concern, physical interaction is
an alternative approach. For example, an octopus-inspired
microsuckers-based wearable device can attach and detach
cyclically on the skin by controlling the pressure, so that
negative inner pressure results in adherence and detachment
(Figure 9b) [50].

One-side adhesion One-side adhesion is an essential consider-
ation when undesired tissue adherence is a concern. For exam-
ple, in heart defect repairs, an adhesive cardiac patch may
be undesirably glued to thorax tissue. We may design one-
side-adhesion adhesives by simply grafting non-fouling and
non-adhesive functional molecules to the other side for pro-
tection (Figure 9¢) [49,184,185]. Tissue adhesives can work
via photoinitiation and be activated by light exposure. Thus,
Directional light (either UV or visible light) can be used to
activate one side and achieve one-side adhesion.

Adhesives-based wearable electronics Consideration of inte-
gration between adhesives and bioelectronics allows us to
consider a future image where biocompatible devices can take
a foothold in tissues. Adhesives-based wearable electronics
can be used to close wounds; on the other hand, they can
be used to monitor healing processes in some essential body
constituents, e.g. -brain, heart, blood vessel, nerves, skin, etc.
Besides, through electronics, bio-electrics can mimic tissue
and cell electrical signals, then tame cells for repairing or even
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an agarose hydrogel. (Reprinted from ref. [178] with permission from Springer Nature Limited.) (b) rGO-coated polyurethane-polyester fabric and rGO-loaded
PDMS wearable sensor. (Reprinted from ref. [190] with permission from the American Chemical Society.) (c) Double-sided adhesive tape with polyethylene-
coated paper backing. (Reprinted from ref. [49] with permission from Springer Nature Limited.) (d) (i) Vessel anastomosis; and (ii) arterial blood flow monitored
by the biosensor. (Reprinted from ref. [186] with permission from Springer Nature Limited.) (e) Attachable MWCNT-based gum sensor: (i) MWCNT-loaded gum
membrane; (ii) SEM of membrane cross-section; (iii) optical image of the membrane. (Reprinted from ref. [187] with permission from the American Chemical
Society.) (f) Wearable self-healing electronic hydrogel sensor made from natural egg white. (Reprinted from ref. [188] with permission from the Royal Society of

Chemistry)

regenerating multifunctional organs. For example, a biosen-
sor was designed to monitor blood flow after vessel anas-
tomosis reconstructive surgery, in which the vessel patency
could be detected in real time (Figure 9d) [186]. An adhesive-
based biosensor could be designed for vessel anastomosis
instead of suturing (Figure 9d(i)) and post-operative blood
flow could also be monitored via this sensor (Figure 9d(ii)). In
addition, such adhesive-based biosensors may be used in the
future to detect body motion, e.g. by attaching them to skin or
joints to sense muscle or joint motion (Figure 9¢) [187]. Smart
sensors have additional advantages e.g. wearable adhesive
sensors with self-healing properties may solve breaking issues
during the attachment/detachment process and in high-strain
environments (Figure 9f) [188,189,190].

Conclusions

Despite a lot of research being carried out on tissue adhe-
sives, there are no commercial products that meet all of the
requirements, which leaves scope for future designs. When
attempting to generate a nearly ideal tissue adhesive, the
biggest challenge will be that it has characteristics that make
it stand out from the others by possessing special qualities
that means it can outperform all current products. We look
forward to when multiple advanced tissue adhesives will
become commercially available, in particular those that are
simple and practical for surgeons, have greater adhesion
abilities, smart attributes, underwater performance and that
are flexible, permitting them to be altered on demand.
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