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Abstract

Background—Mild cognitive impairment (MCI) individuals with neuropsychiatric symptoms 

(NPS) are more likely to develop dementia.

Objective—We sought to understand the relationship between neuroimaging markers such as 

tau pathology and cognitive symptoms both with and without the presence of NPS during the 

prodromal period of Alzheimer’s disease (AD).

Methods—A total of 151 MCI subjects with tau positron emission tomographic (PET) scanning 

with 18F AV-1451, β-amyloid (Aβ) PET scanning with florbetapir or florbetaben, magnetic 

resonance imaging (MRI), and cognitive and behavioral evaluations were selected from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). A 4-group division approach was proposed 

using amyloid (A−/A+) and behavior (B−/B+) status: A−B−, A−B+, A+B−, and A+B+. Pearson’s 
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correlation test was conducted for each group to examine the association between tau deposition 

and cognitive performance.

Results—No statistically significant association between tau deposition and cognitive 

impairment was found for subjects without behavior symptoms in either the A−B− or A+B− 

groups after correction for false discovery rate (FDR). In contrast, tau deposition was found to be 

significantly associated with cognitive impairment in entorhinal cortex and temporal pole for the 

A−B+ group and nearly the whole cerebrum for the A+B+ group.

Conclusions—Enhanced associations between tauopathy and cognitive impairment are present 

in MCI subjects with behavior symptoms, which is more prominent in the presence of elevated 

amyloid pathology. MCI individuals with NPS may thus be at greater risk for further cognitive 

decline with the increase of tau deposition in comparison to those without NPS.
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Introduction

The prodromal period of Alzheimer’s disease (AD) referred to as mild cognitive impairment 

(MCI) due to AD is a transitional stage, which provides the opportunity to prevent the 

further deterioration of disease [1–3]. However, accurate diagnosis of MCI is a complex 

topic because of its heterogeneity. Widely varying progression rates of the disease may 

occur within MCI individuals that have diverse clinical symptoms [4]. Recently, MCI 

diagnosis has been improved by utilizing neuropsychological assessment [5, 6], blood-based 

biomarkers [7], or considering more than one impaired scores [8]. Among the most prevalent 

events over the disease course of AD, the specific role of neuropsychiatric symptoms (NPS) 

during the prodromal MCI period, however, has been relatively understudied.

The clinical symptoms of MCI individuals with NPS have been well characterized in 

previous observational studies. Depression, apathy, and anxiety are the most frequently 

observed symptoms in people with MCI due to AD [9, 10]. MCI subjects with behavior 

symptoms exhibited greater impairment in cognition and daily function compared to those 

without behavior abnormalities [11]. Across the AD continuum, NPS tend to be more 

prevalent with the progression of disease stages, and peak in prevalence in the more 

moderate disease stages [12]. For example, symptoms of delusions and hallucinations, 

apathy, and sleep problems increased in frequency as disease progresses, and were found 

to be associated with higher risk of conversion from MCI to dementia [13–15]. The 

presence of delusions, agitation/aggression, and aberrant motor behavior has been regarded 

as the predictor of progression from MCI to probable AD [16]. Treating the symptoms 

such as depression and apathy, on the other hand, could possibly delay the deterioration 

of the disease [17]. Recently, improved diagnostic accuracy for the MCI individuals has 

been optimized using multimodal behavioral analysis [18]. These results indicate that MCI 

individuals with behavior symptoms are more likely to develop dementia, but the biological 

underpinnings of these observations remain unclear.
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While neuroimaging has been widely used in AD research and provided an in vivo window 

to examine the biological changes such as cortical thickness and misfolded tau and β-

amyloid (Aβ) proteins during disease progression, not much is known about the variation 

of neuroimaging markers in MCI individuals with NPS. Non-AD specific biomarkers such 

as cortical atrophy, white matter lesions, and connectivity deficits were commonly used in 

previous studies. For example, frontal cortices were the brain regions whose atrophy was 

the most associated with NPS in AD patients [19–21]. Abnormal functional connectivity 

between the frontal regions and amygdala was revealed in AD patients with depression [22]. 

The increase of NPS such as delusion, hallucination, agitation, depression, and irritability 

was significantly associated with white matter hyperintensities (WMHs) of the temporal and 

frontal lobes in subjects with MCI due to AD [23]. Connectivity changes of the superior 

longitudinal fasciculus (SLF) between the frontal and temporal/parietal lobe was observed 

in MCI and AD individuals with NPS [24]. In addition, a limited number of investigations 

suggested that there was some degree of association between behavior symptoms and AD 

specific biomarkers such as Aβ plaques [25]. Delusion, apathy, and depression were the 

most prevalent NPS associated with Aβ plaque burden and neurofibrillary tangles [26]. 

Strong associations were observed between behavior performance and tau positron emission 

tomographic (PET) signals in the parietal association area, superior frontal, temporal, and 

medial occipital lobes of aging and dementia due to AD [27]. While these previous studies 

provided valuable information about NPS at the moderate to severe stage of AD, there is 

a lack of detailed characterization of how neuroimaging patterns vary with respect to NPS 

during the disease progression of MCI patients.

As a systematic approach to organize neuroimaging markers in AD research, the 

amyloid/tau/neurodegeneration (AT[N]) framework was proposed recently as a dichotomous 

method for the classification of individuals across the clinically normal to dementia 

spectrum [28–30]. Due to the fluctuation of NPS in the course of AD, the relationship 

between the alterations of neuroimaging markers and the severity of NPS had been 

challenging to delineate directly [31, 32]. To overcome this difficulty, we will follow the 

approach of the AT[N] framework and classify MCI individuals into several subsets based 

on the dichotomous measures of NPS [33] and Aβ plaques. Tau pathology patterns as 

well as the association patterns between tau deposition and cognitive performance will then 

be characterized for each group. We hypothesize that tau deposition exhibits anatomically 

diverse patterns for MCI individuals with different amyloid and behavioral profiles. There 

may be an enhanced association between cognitive impairment and tauopathy in the 

presence of behavior symptoms, especially with the elevated amyloid pathology for subjects 

in the prodromal stage. The delineation of NPS in MCI may provide additional information 

regarding the risk of disease progression and lead to improved screening tools for patient 

selection in clinical trials.

Materials and methods

Participants and grouping strategy

In the current study, we used data from elderly MCI subjects of the multi-center Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) study (adni.loni.usc.edu). The ADNI was launched 
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in 2003 as a public-private partnership, led by principal investigator Michael W. Weiner, 

MD. Among the goals of ADNI is to test whether serial MRI, PET, other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of MCI and early AD [34]. The diagnostic criteria in ADNI was previously described [35]. 

Informed written consent was obtained from all participants at each site. Subjects underwent 

both 18F -AV-1451 PET and structural T1 scans in the latest visit were first screened. 

Subjects with amyloid florbetapir (AV-45) or florbetaben (FBB) PET scans within the time 

interval of one year before/after to the acquisition time of tau PET scans were then selected. 

The behavioral performance of each subject was assessed by the total Neuropsychiatric 

Inventory (NPI) score based on 12 domains and the cognitive performance was assessed by 

the total ADAS-Cog-13 score based on 13 cognitive domains. The time interval between the 

acquisition of tau PET scans and clinical scores were less than three months. Since we focus 

on late-onset MCI, only participants with age>65y and complete cognitive and behavioral 

assessments were included. By the time of June 11th of 2019, 151 participants meeting the 

above requirements were selected from ADNI-2 and ADNI-3.

Score of each behavioral domain of NPI is acquired based on the subjective perception from 

caregivers and calculated as the product of severity and frequency, which is discontinuous 

as compared to other clinical scores [36]. In addition, the neuropsychological testing in 

ADNI is not a mechanical process. The psychometrist must simultaneously administer tests, 

observe, and assess participant behavior, and make necessary adjustments during an actual 

test session. Subjects with severe behavior abnormalities were excluded from ADNI to 

reduce the impact on the assessment of cognitive performance. As shown in Figure 1, a large 

number of the subjects have a total NPI score of 0 and most subjects were scored less than 

5. This “floor” effect of the NPI score may lead to insufficient statistical power to detect 

its association with imaging markers [37, 38]. Following the dichotomous classification 

approach of the AT[N] framework, we thus adopt a binary grouping approach to categorize 

the behavior status of the subjects with a threshold of zero to the total NPI score (behavior 

normal/abnormal: B−/B+). To analyze the impact of behavioral status in the context of AD 

spectrum, we combine it with the amyloid status (amyloid negative/positive: A−/A+) of 

these MCI subjects, which was calculated by ADNI with a cutoff of 1.11 for AV-45 tracer 

and 1.08 for FBB tracer. Four groups were finally generated with both amyloid and behavior 

profiles: A−B−, A−B+, A+B−, and A+B+.

T1-weighted MRI acquisition and processing

All subjects were scanned by 3.0 T MRI scanners using a 3D MP-RAGE or IR-SPGR 

T1-weighted sequences. The detailed protocol can be found online (http://adni.loni.usc.edu/

methods/documents/mri-protocols). These T1-weighted MRI images were processed 

with the FreeSurfer software (version 6.0) (https://surfer.nmr.mgh.harvard.edu/), which 

automatically segmented the MRI into 34 cortical regions of interest (ROIs) in the native 

space of each subject using the Desikan-Killiany atlas [39].

Tau PET image acquisition and processing

The radiochemical synthesis of 18F-AV-1451 were overseen and regulated by Avid 

Radiopharmaceuticals and distributed to qualifying ADNI sites. PET imaging was 
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performed at each ADNI site according to standardized protocols. These images all passed 

the quality control and were realigned, averaged, resliced to an isotropic voxel size of 1.5 

mm, and smoothed to 8 mm3 resolution.

All preprocessed tau PET scans from ADNI were then further processed with PetSurfer 

[40] in FreeSurfer (version 6.0). A high-resolution segmentation was first created using 

the Desikan-Killiany Atlas [39] to derive the ROIs for partial volume correction (PVC). 

The PET scan was then registered to the structural T1-weigthed MRI space. The Mueller-

Gaertner approach [40, 41] was applied to correct the partial volume effects and the full-

width/half-max (FWHM) kernel of the point-spread function used for smoothing was 8×8×8 

mm3. Standardized uptake value ratio (SUVR) images were calculated for each subject 

using the whole cerebellum grey matter as the reference region and then mapped to cortical 

surface. Mean SUVRs of 34 cortical ROIs on each hemisphere were finally calculated.

Statistical analysis

To assess the association of cognitive performance and tau SUVR, Pearson’s correlation 

test between the total score of ADAS-Cog 13 and regional mean SUVR of AV-1451 was 

first conducted on two groups (A+ and A−) and then on four groups (A−B−, A−B+, 

A+B−, and A+B+) at the level of cortical ROIs. As a sensitivity analysis, to confirm the 

influence of AD-related factors, we also conducted linear regression analysis with the total 

score of ADAS-Cog-13 as the response variable and the regional mean SUVR of AV-1451 

as the predictor, adjusting for age, gender, education, and APOE allele ԑ4 carrier status 

(Supplementary Material). For all statistical tests across cortical regions, the false discovery 

rate (FDR) correction was applied for the correction of multiple comparisons. An adjusted 

p-value of p<0.05 (−log10(p)>1.3) was considered as statistically significant in all analyses.

Results

Study cohort characteristics

Demographic and clinical characteristics of the study cohort are presented in Table 1. There 

were no significant differences in demographic or cognitive characteristics within the A− 

groups (A−B− vs A−B+). Within the A+ groups, the A+B+ group was more impaired than 

the A+B− group based on the ADAS-Cog-13 score (T-test, p=0.0204). It is worth noting that 

there is no significant difference in age and education between subjects with and without 

behavioral changes for either the A− or the A+ groups.

Patterns of tau deposition based on amyloid status (A− and A+ groups) and the 
association with cognitive scores

Mean tau SUVR of 34 cortical regions of both hemispheres based on amyloid status 

(A+/A−) are plotted in Figure 2. Significantly elevated regional mean tau SUVR is observed 

in nearly the whole cerebrum for the A+ subjects as compared to the A− subjects based on 

the two tailed student t-test (FDR correction, −log10(p) > 1.3).

The statistical results (p-value maps) for the association between tau SUVR and ADAS-

Cog-13 based on their amyloid status (A+/A−) are shown in Figure 3. For the A− group, the 
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ADAS-Cog-13 score is significantly associated with cortical tau SUVR in the temporal pole 

and the entorhinal cortex in both hemispheres after FDR correction. The associated regions 

extended into nearly the whole cerebrum for the A+ group. Statistical results are similar 

when we conducted the multivariable regression analysis with adjustment for age, gender, 

education, and APOE status (Supplementary Material, Figure S1).

Patterns of tau deposition according to amyloid and behavioral profiles and the 
association with cognitive scores

Mean tau SUVR of the cortical regions based on the 4-group division (A−B−, A−B+, A+B−, 

and A+B+) are plotted in Figure 4. T-test results of the regional tau SUVR between each 

group are shown in the second row. After FDR correction, there is no significant difference 

between subjects with and without behavior symptoms within either the A− or the A+ group 

(A−B− vs A−B+ and A+B− vs A+B+). It is worth noting that there is significant difference 

between the A−B+ group and A+B− group, and the significant regions are displayed in 

nearly all the brain regions except for the entorhinal cortex and temporal pole.

The statistical results (p value maps) between tau SUVR and cognitive scores according 

to amyloid and behavioral profiles are plotted in Figure 5. Among the A− subjects, no 

association is found in either hemisphere between cognitive scores and tau SUVR for 

the A−B− group, while significant association is discovered in the temporal pole on both 

hemispheres for the A−B+ group after FDR correction. Among the A+ subjects, there 

is still no significant association between the tau SUVR and cognitive scores in either 

hemisphere for subjects without behavior symptoms (A+B− group) after FDR correction. 

On the contrary, for the A+B+ group, regions with significant associations spread into nearly 

the whole cerebrum on both hemispheres. Within both A− and A+ groups, it is worth 

noting that regions with significant association increased significantly (with or without 

FDR correction) when the behavior status of the MCI subjects switches from normal 

(B−) to abnormal (B+). Similar statistical results are obtained when we conducted the 

multivariable regression analysis with adjustment for age, gender, education, and APOE 
status (Supplementary Material, Figure S2).

Discussion

The prodromal period is the stage in which the common AD pathology may coexist with 

other age-related pathologies, which could be reflected by diverse cognitive and behavioral 

symptoms. Using AD-related markers to distinguish the diverse patterns of MCI is essential 

for clinical diagnosis and treatment, as well as confirming which MCI patients should 

be included in different clinical trials [42]. In the current study, we included 151 MCI 

subjects from ADNI and demonstrated the association between cognitive performance and 

tau deposition of four sub-groups based on their amyloid status and the presence or absence 

of behavioral symptoms (A−B−, A−B+, A+B−, and A+B). Enhanced association between 

tau deposition and cognitive scores was found for subjects in the sub-groups with behavior 

symptoms, especially in the presence of elevated amyloid status. Based on the current 

neuroimaging study, MCI individuals with NPS may be at greater risk for further cognitive 

decline with the increase of tau deposition in comparison to those without NPS.
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Aβ is the first biomarker reported to become abnormal in carriers of autosomal dominant 

AD [43, 44]. Positive amyloid biomarkers have been associated with long-term increased 

risk of incident dementia, especially for individuals with MCI [45, 46]. Across the normal 

aging to clinical dementia spectrum, there is a strong association of elevated tau deposition 

in both medial temporal lobe structures and the whole neocortex with positive amyloid status 

[47, 48]. In our study, as expected, higher tau SUVR values were found in the A+ group 

relative to the A− group for the MCI subjects. The distribution of regions with significant 

associations between tau SUVR and cognitive impairment increase significantly from the 

A− group to the A+ group. Our results thus confirm the increased disease severity and 

enhanced association between tauopathy and cognitive impairment for subjects with elevated 

Aβ pathology in the MCI cohort.

However, there may contain several distinct disease patterns of the MCI individuals even 

if they are under the same amyloid status. For example, vascular disease and depression 

may account for the AD like phenotype for the amyloid negative subjects that have been 

diagnosed as MCI [49]. Suspected non-AD pathology was also observed in a MCI cohort 

with elevated amyloid pathology [50]. To observe the heterogeneity of MCI, traditional 

methods have been proposed to define the subtypes of MCI as amnestic, non-amnestic, 

single-domain, and multi-domain [51, 52]. Diverse patterns of clinical characteristics 

and rates of disease conversion were observed among these subtypes [53]. However, 

longitudinal studies demonstrated that both amnestic and non-amnestic MCI exhibit 

approximately equal proportions of “pure” AD pathology or other pathologies at autopsy 

[54]. Traditional subtyping of MCI may be insufficient to characterize the underlying 

neuropathologic substrates of “amnestic” and “non-amnestic” cognitive impairment profiles. 

As a consequence, empirically-derived subtypes of MCI based on neuropsychological scores 

or the combination of multiple impaired scores were proposed to identify homogenous 

subgroups reflecting potentially common etiology and probable outcomes [4, 5]. Phenotype 

harmonization consortium (PHC) based on the cognitive composite scores including 

memory, executive function, language, and visual-spatial have been developed previously 

for the accurate diagnosis of AD patients, which may also have the potential to classify the 

subtypes of MCI [55–57].

In our current study, we proposed a dichotomous grouping approach based on the NPS and 

amyloid status to consider the heterogeneity within MCI subjects. As the most prevalent 

co-occurring events over the disease course of AD, NPS including depression, anxiety, and 

apathy are common in MCI and subjects with these symptoms may represent a higher risk 

of cognitive decline and disease progression [58]. NPS were also found to be correlated 

with increased neurofibrillary tangles and amyloid plaques, which are specific biomarkers 

of AD [59]. For instance, tau deposition in the entorhinal cortex and inferior temporal lobe 

was found to be modestly associated with depressive symptoms [60]. The accumulation 

of tau in the brainstem early during the course of AD may affect sleep [61]. The AT[N] 

framework provides a formal descriptive classification scheme to describe the staging of AD 

spectrum [29]. Clinical information such as behavior status could be used to supplement 

and enhance the application of AT[N] in cognitive aging and dementia research [29]. 

As can be seen from Figure 5, cognitive impairment is associated with tau SUVR in 

the entorhinal cortex and temporal pole in both hemispheres for A−B+ group, while no 
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association is detected for A−B− groups after FDR correction. In contrast, the regions 

with significant association for the A+B+ group extended into nearly the whole cerebrum, 

while there was no region with such an association in the A+B− group. Additionally, 

amyloid positive subjects with behavior symptoms (the A+B+ group) are more impaired 

than those without behavior symptoms (the A+B− group) as assessed by the ADAS-Cog-13 

score. Our results demonstrate that the relationship between tau deposition and cognitive 

impairment is enhanced in subjects with abnormal behavior status in both the A− and 

A+ groups, and the enhancement is more prominent for amyloid-positive subjects. Similar 

to the AT[N] framework, current grouping strategy provides a perspective to identify the 

homogenous subgroups reflecting common etiology and probable outcomes other than 

requiring individuals to conform to predetermined criteria (i.e., amnestic, or non-amnestic). 

MCI individuals with NPS may be at greater risk for further cognitive decline with the 

increase of tau deposition in comparison to those without NPS.

It is worth noting that the MCI subjects in the A−B+ group show no significant difference 

in the cognitive scores as compared to the A−B− group. However, significant association 

between tau deposition and cognitive performance is observed in a number of cortical 

areas (mostly in the temporal lobe) for the A−B+ group, while no significant association is 

found in any cortical ROI for the A−B− group after FDR correction. Aged individuals with 

neurofibrillary tangles but in the absence of amyloid plaques is recommended as primary 

age-related tauopathy (PART) [62]. It is recognized as a distinct clinical entity that lies on 

the Alzheimer pathologic spectrum. However, the definitive characterization of the boundary 

between the PART and other tauopathies including typical AD is challenging. The positive 

correlation between cognitive scores and the tau SUVR in the temporal lobe for the A−B+ 

group may represent subtle behavioral changes occurring in the context of PART. Future 

studies would be required to understand the specific role of behavior symptoms in PART.

Our results also have potential implications regarding patient screening in AD clinical trials. 

The multifactorial causes of dementia are a challenge for both diagnosis and treatment as 

various neuropathologic processes contribute to cognitive impairment. For the confirmation 

of the disease status of a patient, the amyloid and tau pathologies, as well as other possible 

comorbidities such as vascular changes and Lewy Body pathology, should be considered 

collectively. As can be seen in the current study, the A−B+ group in our MCI cohort 

may contain subjects with non-AD neuropsychiatric disorders or subjects with high risk in 

conversion to AD, which cannot be regarded simply as controls even if they are amyloid 

negative in clinical trials with MCI subjects. On the other hand, subjects in the A+B− group 

exhibit distinct association pattern of the tauopathy with cognitive decline compared to those 

in the A+B+ group. We propose that groups A+B− and A+B+ thus should not be treated 

equally in clinical trials. Our study provides imaging support for the notion that the presence 

of behavioral symptoms combined with the presence of specific biomarkers (Aβ pathology 

etc.) might be used as an enrichment strategy for the enrollment of MCI subjects in AD 

clinical trials.

There are several limitations that must be acknowledged in the current study. The relatively 

small sample size of the MCI cohort makes it impossible to disentangle how each type of 

behavior domain of the NPI might influence the association between tau deposition and 
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cognitive performance. Because subjects with severe NPS were excluded from the ADNI 

project, persons with high NPI scores were not well represented in the current study. As can 

be seen from Table 1, about 2/5 of the entire cohort have a total NPI score of 0. This leads 

to a very limited sample size of subject with non-zeros NPI scores. We thus did not further 

distinguish between participants with minimal behavioral symptoms and those with more 

severe symptoms in our analysis and instead used the NPI total score as a dichotomous (−/+) 

measure to profile the cohort and delineate the association between tau SUVR pattern and 

cognitive impairment under different amyloid and behavior status. Because the NPI scale 

was originally developed to assess NPS in AD patients at the dementia stage, one possible 

limitation of our approach is that NPI alone maybe insufficient in the detection of behavior 

abnormality in the MCI population. New scales such as Mild Behavioral Impairment (MBI) 

has been recently proposed to measure NPS in MCI population and should be considered in 

future studies [63, 64].

The inclusion criteria for the current study are that all subjects should undergo T1-weighted 

MRI, tau PET, and amyloid PET scans, as well as have the ADAS-cog-13 and NPI total 

scores. However, complete scans of tau PET images were not acquired on all subjects for 

each visit, thus limiting our ability to perform longitudinal analysis and examine whether 

subjects with behavior symptoms suffer a higher risk of disease conversion than those 

without behavior symptoms. In addition, subjects in the A−B+ group are likely to represent 

a complex and heterogenous group, including primary age-related tauopathy (PART), in 

which the presence of NPS was hard to interpret. It likely represents the influence of various 

neuropsychiatric disorders including AD in this group as different syndromes may have 

similar NPS but diverse neurobiological mechanisms [65, 66]. This may be one of the 

reasons why no significant difference of tau deposition in the entorhinal cortex and temporal 

pole between the A−B+ group and A+B− group was detected. Subjects in the A+B− group, 

on the other hand, showed lower ADAS_cog scores as compared to those in the A+B+ 

group. However, no significant difference of the tau deposition was found between the two 

groups. Amyloid positive subjects with the presence of behavior abnormalities may suffer 

a more serious cognitive decline with the increase of tau deposition, while those without 

NPS exhibit different disease patterns. To verify the current results and make predictive 

inferences, longitudinal analyses will need to be conducted with the increased sample size of 

ADNI.

Conclusions:

The alterations of neuroimaging markers such as tau-PET signals of the MCI individuals 

with the presence of NPS are still under recognized. The enhanced association between 

the cortical tau pathology and cognitive impairment for subjects with behavior symptoms 

provides neuroimaging evidence of the role of NPS during the prodromal period, especially 

in the presence of elevated Aβ pathology. Behavioral symptoms combined with the 

commonly used Aβ pathology biomarker may be beneficial for improving the classification 

of MCI, and possibly as an inclusion criterion in clinical trials.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Distribution of the NPI total score for the current cohort. A: the violin plot of NPI total score 

for the A− group; B: the violin plot of NPI total score for the A+ group; C: the scatter plot 

of NPI total score and ADAS_cog 13 total score for the A− group; D: the scatter plot of NPI 

total score and ADAS_cog 13 total score for the A+ group.
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Figure 2: 
Maps of the regional mean tau SUVR of each group (A− and A+) are shown in the first 

two columns. The p-value map (−log10(p)) of t-test for the difference in regional mean tau 

SUVR between the subjects of A− and A+ group was shown in the third column. FDR 

corrected p-values with −log10(p) > 1.3, i.e., p<0.05 was treated as statistically significant.
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Figure 3: 
Based on the amyloid status (A− and A+ groups), associations between regional mean tau 

SUVR and ADAS-Cog-13 score were identified using Pearson’s correlation. The p-value 

maps (−log10(p)) were shown in the first (uncorrected) and second (FDR corrected) rows. 

P-values with −log10(p) > 1.3, i.e., p<0.05 was considered as statistically significant.
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Figure 4: 
Based on the amyloid (A− and A+) and behavior (B− and B+) status, maps of the regional 

mean tau SUVR of each group were shown in the first row. The p-value maps (−log10(p)) 

of t-test were shown in the second row. FDR corrected p-values with −log10(p) > 1.3, i.e., 

p<0.05 was considered as statistically significant.
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Figure 5: 
Based on the amyloid (A− and A+) and behavior (B− and B+) status, statistically significant 

associations between regional mean SUVR and ADAS-Cog-13 score were identified using 

Pearson’s correlation for each group. The p-value maps (−log10(p)) were shown in the first 

(uncorrected) and second (FDR corrected) rows. P-values with −log10(p) > 1.3, i.e., p<0.05 

was considered as statistically significant.
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Table 1:

Demographic Information of the MCI subjects

Amyloid status A− A+

Behavior status Total (79) B− (36) B+ (43) p Total (72) B− (25) B+ (47) p

Gender (M/F) 52/27 23/13 29/14 \ 45/27 15/10 30/17 \

Education 16.61±2.75 17.03±2.29 16.26±3.06 n.s. 15.81±2.73 15.60±2.60 15.91±2.82 n.s.

Age 76.35±6.57 76.21±5.04 76.48±7.67 n.s. 78.09±6.39 78.48±6.34 77.89±6.48 n.s.

ADAS-cog-13 16.48±5.35 16.59±5.89 16.39±4.91 n.s. 20.63±7.30 17.92±6.61 22.08±7.30 0.0204

MMSE 28.47±1.68 28.78±1.44 28.21±1.83 n.s. 26.85±2.61 27.52±1.58 26.49±2.97 n.s.

APOE allele ԑ4 (0/1/2) 63/8/1 26/5/0 37/3/1 \ 28/24/12 12/9/2 16/15/10 \

For the whole cohort, all subjects have NPI total score, ADAS-cog-13 score, MMSE score, and Amyloid state information. 15 subjects have no 
APOE genetic information. Values are given as mean ± standard deviation. Two tailed student t-tests were conducted for comparisons between 
conditions. Abbreviation: A−: amyloid negative, A+: amyloid positive, B−: behavior normal; B+: behavior abnormal, M: male, F: female, APOE: 
apolipoprotein E, NPI: Neuropsychiatric Inventory, MMSE: Mini-mental State Examination, ADAS-cog-13: Alzheimer’s Disease Assessment 
Scale cognition 13, n.s.: no significance.
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