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Abstract
The COVID-19 pandemic highlights the need for computational tools to automate and accelerate drug design for novel
protein targets. We leverage deep learning language models to generate and score drug candidates based on predicted
protein binding affinity.We pre-trained a deep learning language model (BERT) on∼9.6 billion molecules and achieved peak
performance of 603 petaflops in mixed precision. Our work reduces pre-training time from days to hours, compared to
previous efforts with this architecture, while also increasing the dataset size by nearly an order of magnitude. For scoring,
we fine-tuned the language model using an assembled set of thousands of protein targets with binding affinity data and
searched for inhibitors of specific protein targets, SARS-CoV-2 Mpro and PLpro. We utilized a genetic algorithm approach
for finding optimal candidates using the generation and scoring capabilities of the language model. Our generalizable models
accelerate the identification of inhibitors for emerging therapeutic targets.
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1. Justification for Prize

We:

· pre-train a BERT model on a dataset of 9.6 billion
molecules, nearly an order of magnitude larger than
previous efforts (1.1–1.6 billion) (Jacobs et al., 2021;
Xue et al., 2020),

· achieve 603 petaflops in mixed precision on 4032
Summit nodes, reducing pre-training time-to-solution
from days to hours, and

· train a general model for protein binding affinity,
accelerating the search for drug candidates relevant to
SARS-CoV-2.

2. Performance attributes

Performance attribute Our submission

Category of
achievement

Time-to-solution, scalability

Type of method used Machine learning
Results reported for Whole application with and without I/O

(continued)

(continued)

Performance attribute Our submission

Precision reported Mixed precision (FP16 and FP32)
System scale Measured on full-scale system (summit)
Measurement
mechanism

Internal timers, DeepSpeed FLOPS
profiler

3. Overview of the problem

The COVID-19 pandemic has drastically altered living
conditions in countries throughout the world over the past
2 years. To date, approximately 230 million people have
been infected and 4.7 million have been killed by variants of
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the SARS-CoV-2 virus (Dong et al., 2020). It is not un-
realistic to assume that another event like this is possible;
several infectious diseases with the potential for global
impact have been documented in recent years, including
SARS, MERS, Ebola, and Zika (Reperant and Osterhaus,
2017). Within this broader context, the current pandemic
highlights the need for the development of therapeutic
agents to combat emerging infectious diseases. Unfortu-
nately, the speed at which antivirals have been developed
has not maintained pace with the frequency of outbreaks.
For example, although vaccines have been developed as an
effective means to prevent SARS-CoV-2 infection, no
clinically tested therapeutics have been approved for
widespread use except for antibody treatment (WHO, 2021;
NIH, 2021; HHS, 2021). Furthermore, recent clinical trials
highlight the continued need for antivirals (Fischer et al.,
2021). Therefore, the timely development of drugs to treat
emerging viral threats, in combination with preventive
vaccines, poses a key challenge with global implications.

Although many previous efforts in drug discovery have
been successful, the process can be prohibitively long (i.e.,
10–15 years) for response to an emerging pandemic. The
approval of a single compound for widespread use typically
involves the screening of small molecules for potential
candidates, hit-to-lead testing followed by extensive multi-
stage clinical trials (Hughes et al., 2011). The initial step of
determining interesting molecules for further investigation
is pivotal due to the vast size of chemical space, which
prevents an exhaustive search using costly experiments and
trials. To accelerate the screening process, tools from ma-
chine learning (ML) and high-performance computing
(HPC) have been increasingly used to guide the selection of
promising drug candidates (Minnich et al., 2020; Sanchez-
Lengeling and Aspuru-Guzik, 2018; Vanhaelen et al.,
2020). Although computational methods can partially al-
leviate some of the associated experimental costs, typical
approaches require the creation of a large compound library
with measured properties for ML model training (Minnich
et al., 2020; Vanhaelen et al., 2020). Therefore, a timely
response to an emerging pandemic also poses a challenge
for computational methods, as custom models and datasets
must be quickly generated for the new targets of interest.

To overcome the challenges associated with accelerating
the discovery of drug candidates for novel protein targets, a
computational approach is needed that satisfies the fol-
lowing criteria: (i) leverages existing large compound li-
braries without the need for chemical property
measurements; (ii) predicts affinities for novel protein
targets with limited or no additional experimental data; (iii)
explores chemical space to efficiently identify compounds
for further investigation. To satisfy the three criteria, we
leverage HPC to train generalizable ML models for both
candidate generation and affinity prediction.

To take advantage of large existing compound libraries,
we utilize a text representation for molecule data known as
SMILES, Simplified Molecular Input Line Entry System
(Weininger, 1998). Using Enamine REAL database
(Enamine, 2020) as a starting point, we generate a novel
dataset of approximately 9.6 billion unique molecules. The
dataset is used to pre-train a Transformer model (i.e. BERT),
using the mask prediction task commonly found in natural
language processing applications. During pre-training, sub-
sequences of a given molecule are replaced by a mask, and
the model must predict the appropriate sequence based on
context. Therefore, the model learns a representation for
chemical structure in a completely unsupervised manner
that does not require additional property measurements.

To predict affinities for protein targets, we fine-tune the
pre-trained molecule model on a dataset with over a million
known protein and ligand binding affinities. The fine-tuned
model utilizes two pre-trained language models to generate
embeddings for a given molecule and protein. For the
protein embedding, we utilize a recently published Trans-
former model for protein sequences (Elnaggar et al., 2021).
By using models for molecules and proteins trained in an
unsupervised manner on large datasets, the fine-tuned
model leverages the structural information in the respec-
tive embeddings. A final cross-attention layer is added on
top of the embeddings to generate an affinity score for any
given protein and molecule combination. The fine-tuned
model, therefore, can be used to predict affinities for novel
proteins outside the training set and/or can be additionally
fine-tuned given new experimental data.

The pre-trained and fine-tuned models enable both the
generation and scoring of new candidates. For a given input
molecule, the pre-trained model can be used to predict
viable sub-sequence rearrangements similar to the mask
prediction task. The fine-tuned model can then be used to
predict the binding affinity for a newly generated molecule
with a provided protein sequence. We utilize a genetic al-
gorithm to automate rounds of molecule generation, scor-
ing, and the selection of high scoring candidates.

The large scale of the pre-training and fine-tuning da-
tasets necessitates the HPC resources of a leadership
computing facility. Similar to natural language processing
applications, the scale of the dataset (i.e., billions of mol-
ecules) enables the pre-trained model to learn generalizable
features of molecule structure that are useful for affinity
prediction. Fortunately, after pre-training and fine-tuning,
the models can be used for inference or genetic algorithm
optimization with modest resources (i.e., a single GPU).
Therefore, our work provides models that can generalize to
new protein targets, accelerate screening of potential can-
didates with limited or no additional fine-tuning, and be
utilized throughout the research community for drug dis-
covery efforts.
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4. Current state of the art

4.1. Drug discovery pipelines

The complexity and challenges associated with the drug
discovery process have motivated the development of
pipelines to collect data and organize research efforts
(Gentile et al., 2020; Minnich et al., 2020). The compu-
tational techniques in such pipelines are primarily organized
around the generation and scoring of new molecules. For
molecule generation, multiple different representations have
been used (e.g., SMILES and graph) along with several ML
model architectures (e.g., generative adversarial networks
(GAN, VAE, RNN) (Arús-Pous et al., 2019; Blanchard
et al., 2021; De Cao and Kipf, 2018; Jacobs et al., 2021;
Segler et al., 2018). In addition, manually defined rules
(e.g., add an atom, change atom type) have been used to
generate new candidates starting from an initial population
of molecules (Jensen, 2019; Virshup et al., 2013). For
scoring candidates, both ML models and docking simula-
tions have been used along with hybrid approaches
(Acharya et al., 2020; Gentile et al., 2020; Minnich et al.,
2020). The features used in ML models for scoring range
from learned embeddings to chemical descriptors and
molecular fingerprints (Minnich et al., 2020).

Determining the correct metric for scoring and opti-
mizing molecules is a key difficulty for the practical ap-
plication of computational drug discovery pipelines.
Cheminformatics packages, such as rdkit (RDKit, 2021),
provide standard heuristic metrics for chemical properties,
including solubility (Wildman and Crippen, 1999), syn-
thesizability (Ertl and Schuffenhauer, 2009), and quanti-
tative estimation of drug-likeness (Bickerton et al., 2012).
However, these metrics are not specific for a given thera-
peutic target. Alternatively, a supervised ML model for
scoring can provide customized optimization metrics but
requires a suitable experimentally measured dataset
(Martins et al., 2012; Subramanian et al., 2016). To over-
come this difficulty, we here utilize a strategy from natural
language processing, where a model is initially trained in an
unsupervised manner before being fine-tuned to make
specific predictions.

4.2. Transformers

Over the past few years, the field of natural language
processing (NLP) has undergone a paradigm shift powered
by the use of Transformer-based models (Devlin et al.,
2019). Previously, the application of ML models was
largely task specific, with a single model being trained in a
supervised manner for each task (e.g., classification, sim-
ilarity, entity recognition). However, with the introduction
of Transformer models (e.g., BERT), training was split into
two distinct stages. In the first stage (i.e., pre-training) the

model is typically trained on a large corpus of text in an
unsupervised manner. Unsupervised training was accom-
plished by using a mask prediction task, in which the model
was trained to predict a given word based on context. In the
second stage (i.e., fine-tuning), the pre-trained model is
trained in a supervised manner on a relatively small labeled
dataset. In this way, a single pre-trained model can be fine-
tuned for any number of specific tasks. Models developed
according to this two stage approach have achieved state-of-
the-art results for a number of NLP tasks (Devlin et al.,
2019; Gu et al., 2020; Liu et al., 2019).

Advances in NLP can be directly applied to drug dis-
covery efforts, as proteins and molecules can be represented
as sequences of text. Recent efforts have indeed trained
Transformer models using molecules in SMILES format for
chemical property prediction tasks (Chithrananda et al.,
2020; Honda et al., 2019; Wang et al., 2019; Xue et al.,
2020). Most previous work, however, has focused on a
language model vocabulary of individual characters or
atoms within a sequence, limiting the ability of the model to
concisely represent commonly occurring chemical struc-
tures. Furthermore, the largest dataset used for pre-training
contained approximately 1 billion molecules (Xue et al.,
2020), with most investigations using fewer than 100
million (Chithrananda et al., 2020; Honda et al., 2019;Wang
et al., 2019). With the success of previous Transformer
models using SMILES and text data, we were motivated to
increase the number of pre-training samples by an order of
magnitude and utilize different model vocabularies.

Transformer models have also been trained using protein
sequence data. A recent study investigated the performance
of multiple model architectures on protein prediction tasks
(Elnaggar et al., 2021). Furthermore, the outputs of pre-
trained models for both molecule data and protein data can
be used as embeddings for additional downstream tasks
(Gurbych et al., 2020). In the context of drug discovery, this
enables the pre-trained models to be fine-tuned on a dataset
consisting of many different protein and ligand combina-
tions with experimentally determined binding affinity.
Notably, Transformer-based approaches have shown sig-
nificant performance improvements for affinity prediction
over alternative architectures, such as convolutional neural
networks (Gurbych et al., 2020; Öztürk et al., 2018). In the
current work, we leverage the Transformer architecture to
develop a fine-tuned model capable of predicting binding
affinity for novel protein targets.

4.3. Deep learning at scale

Using increasingly large training datasets poses a sub-
stantial challenge in terms of time-to-solution. Data par-
allelism enables many deep learning models to be trained
efficiently at the scale of current supercomputers (Kurth
et al., 2018; Laanait et al., 2019). Transformers are one such
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model; for example, large scale data parallelism has been
used to dramatically reduce BERT pre-training times
(Rasley et al., 2020; You et al., 2019; Zheng et al., 2020).
Larger Transformer models, such as Megatron-LM, have
achieved performance of over 500 petaflops in mixed
precision on Nvidia’s Selene supercomputer (Narayanan
et al., 2021). Inasmuch as a previous effort to train a BERT
model using 1 billion molecules required approximately
4 days for pre-training (Xue et al., 2020), the potential
advantage of using large scale data parallelism to enable
pre-training on larger datasets with faster turnaround times
is clear.

However, extreme scale data parallelism necessarily
leads to extremely large batch sizes and large batch sizes can
lead to instability during training which degrades model
evaluation performance. While this problem is general
(Goyal et al., 2017), it has also specifically been observed as
a scaling bottleneck in the context of developing deep
learning models for drug discovery: a recent study found
that an overall batch size above 4096 (across eight or 16
GPUs) was detrimental to model training on molecule data
for a variational autoencoder (Jacobs et al., 2021). The
recently developed LAMB optimizer has been shown to
address this problem for batch sizes of up to 96 thousand,
maintaining similar evaluation performance as batch size
increased (You et al., 2019; Zheng et al., 2020).

4.4. Genetic algorithms

Inspired by the mutation and selection observed in natural
systems, genetic algorithms provide a useful framework for
solving optimization problems across scientific and engi-
neering disciplines (Brown et al., 2004; Eiben and Smith,
2015; Hornby et al., 2011; Morse and Stanley, 2016).
Specifically, for drug discovery, genetic algorithms have
been used in several studies to search chemical space. For
example, Virshup et al. proposed a set of hand-crafted rules
for mutation and recombination (e.g., add an atom, modify
an atom type) to generate new compounds. The generated
compounds were then selected based on diversity criteria to
expand to unexplored regions of chemical space (Virshup
et al., 2013). Additional studies have used genetic algo-
rithms to optimize for drug-specific metrics (e.g., solubility
and quantitative estimation of drug-likeness) (Brown et al.,
2004, 2019; Jensen, 2019; Yoshikawa et al., 2018). Typi-
cally, mutation operators are manually defined based on the
application and not learned from the data. However,
comparisons with alternative ML optimization techniques
have shown that genetic algorithms perform well across a
range of drug discovery tasks (Brown et al., 2019).

As an alternative to the manually defined mutation and
recombination operators, molecule rearrangements can be
determined by a ML model. Generative models, such as
GANs can be used to produce molecules with desired

properties (Blanchard et al., 2021; De Cao and Kipf 2018).
Furthermore, masked language models provide a useful
modeling framework in which to learn viable rearrange-
ments of molecular sequences. During pre-training the
language model learns to predict missing sequences based
on context. The predictions provide a ranked list of all
possible substitutions for a given sub-sequence. Therefore,
by sampling from the predictions, a set of mutations can be
generated for a molecule without the need for manually
defined rules. A similar procedure has been used to find
adversarial examples for NLP applications (Li et al., 2020a,
2020b). In this work, we utilize a masked language model to
generate candidate molecules and then apply selection
based on scoring from the fine-tuned model for binding
affinity.

5. Innovations realized

Our strategy for accelerating computational drug discov-
ery is summarized in Figure 1. We begin by constructing
the largest molecule dataset to date for pre-training a
masked language model. Pre-training is performed at scale
using a batch size of over a million molecules for two
different tokenization schemes. We then fine-tune the
language model on a dataset with binding affinities for
thousands of protein targets. After developing the general
pre-trained and fine-tuned models, we search for drug
candidates that optimize the predicted binding affinities for
a given protein.

5.1. Pre-training molecule language models

5.1.1. Dataset generation. Motivated by the success of
Transformer models (i.e., BERT) for a range of natural
language processing tasks, recent efforts have investigated
using the SMILES text representation of molecules to train a
masked language model (Chithrananda et al., 2020; Honda
et al., 2019; Wang et al., 2019; Xue et al., 2020). Large
compound libraries such as Enamine REAL database
(Enamine, 2020) can be used for the unsupervised pre-
training stage, before the model is fine-tuned for a desired
prediction task. Although compound libraries provide a
valuable source of training data, the overwhelming size of
chemical space ensures that many potentially useful com-
pounds will be excluded from current collections. Current
state-of-the-art generative and masked language models
have reached a training data size of approximately 1.1–1.6
billion compounds, pushing the boundaries of currently
available compound libraries and compute resources
(Jacobs et al., 2021; Xue et al., 2020). As a step toward
enabling larger explorations of chemical space, here, we
utilize the Enamine REAL database as a starting point to
generate a training dataset with ∼9.6 billion unique
molecules.
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Our strategy for dataset augmentation is motivated by the
pre-training stage for masked language models. During pre-
training, random sequences of an input molecule SMILES
are masked, and the model is trained to predict the identity
of the masked sequences based on the surrounding context.
We, therefore, use a pre-trained model, developed using
Enamine as the training data, to predict possible structural
rearrangements for a given molecule as shown in Figure 1.
We also use the pre-trained model to combine two mole-
cules; initial sequences are chosen from each respective
molecule, and a mask is placed in between. To be included
in the training set, all produced molecules must be valid
(RDKit, 2021) and have a normalized synthesizability (De
Cao and Kipf, 2018; Ertl and Schuffenhauer, 2009) score
above 0.3. To arrive at the final dataset of 9.57 billion
molecules, we applied random structural rearrangements to
molecules in the Enamine dataset with a maximum of five
masks per molecule. The top five predicted rearrangements
from the pre-trained model were considered, resulting in the
dataset growing from approximately 1.34 billion unique
compounds to 4.14 billion unique compounds. Another
round of rearrangements for the expanded dataset was
accompanied by combinations of molecules to generate the
final training set. All molecules were converted to canonical
form using rdkit (RDKit, 2021) and only unique molecules
were retained in the final dataset. As shown in Figure 2, the
histograms for drug-likeness, normalized synthesizability,
and solubility did not substantially change between the
original data and the augmented data, although the total
number of compounds substantially increased.

5.1.2. Tokenization. The process of tokenization is used to
convert any given sequence of text into a format that can be
recognized by the model. This is accomplished by con-
structing a vocabulary for the model, which consists of a
mapping between sub-sequences of text and unique integer
ids. One common method, WordPiece tokenization
(Schuster and Nakajima, 2012; Wu et al., 2016), builds the
model vocabulary by assembling all unique single char-
acters and then including commonly occurring sequences of
increasing length. Although a collection of different toke-
nization methods have been used for NLP tasks, for mol-
ecule language models a simple vocabulary based on single
atoms and characters has predominantly been used (Arús-
Pous et al., 2019; Grisoni et al., 2020; Honda et al., 2019;
Schwaller et al., 2018; Segler et al., 2018;Wang et al., 2019;
Xue et al., 2020). Here, we utilized two different tokeni-
zation methods, the standard single atom and character
Regex (Schwaller et al., 2018) and WordPiece tokenization.
As shown in Figure 3, the vocabulary generated by
WordPiece tokenization enables large sub-sequences of a
SMILES string (e.g., a benzene ring) to be represented as a
single token. Notice that for the Regex tokenizer, the vo-
cabulary will contain only individual characters and atoms,
so commonly occurring chemical structures cannot be as-
signed to a single token. Also, the size of the vocabularies
for the two tokenizers is drastically different, with the
WordPiece tokenizer having 3 � 104 different tokens, while
the Regex tokenizer has around 200. Given the substantially
different representations of molecules produced by the two
tokenizers, we utilized both methods for pre-training and

Figure 1. Our strategy for developing general models for drug discovery contains three components. The molecule language model is
trained in an unsupervised manner; for pre-training, the model learns to reconstruct an original input molecule after masking. For data
augmentation, the model predictions can be used to generate new molecules. To predict binding affinities, we use a dataset with
measurements for protein and ligands to fine-tune the pre-trained model for predictions. To search for drug candidates, we use both the
pre-trained language model and the fine-tuned model. The pre-trained model generates new molecules, which are scored by the fine-
tuned model. Molecules are then selected based on the predicted score. The process is iterated in the search for optimized drug
candidates.
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fine-tuning tasks to determine the impact of tokenization on
fine-tuning and molecule generation performance.

5.1.3. Pre-training with large batch sizes. We trained BERT
models using the LAMB optimizer with both the Regex and
WordPiece tokenizers utilizing different numbers of nodes
on Summit. Each node contained six GPUs, each having a
single partition of 3.95 � 105 unique molecules. The batch
size per GPU was set to 240 (80 with three gradient ac-
cumulation steps); therefore, the total batch size is given by
1440 (i.e., 240�6) multiplied by the number of nodes (Lin
et al., 2017). At 1000 nodes, this results in over 1.4 million
molecules per batch. As shown in Tables 1 and 2, even with
large batch sizes, the model can be trained successfully, as
evidenced by the validation accuracy for mask prediction.
Validation accuracy was determined by evaluating the
model on a hold-out set of 105 molecules; for each molecule
a random number of masks (up to five for Regex and up to
three for WordPiece) were sampled and used to replace
tokens. Each pre-training run consisted of seven epochs,
with model checkpoints saved and validation accuracy
determined after each epoch. The maximum accuracy across
checkpoints is shown. Notice that a comparison of accuracy
between Tables 1 and 2 should not be made, as the mask
prediction task is substantially easier for the Regex to-
kenizer (i.e., only single atoms or characters are predicted).

For the full dataset, we used two different training
configurations. First, we used 1008 nodes, with four par-
titions of 3.95 � 105 unique molecules per GPU. For
comparison, we also performed pre-training on over 4000

nodes for theWordPiece tokenizer with a single partition per
GPU (last row of Table 1). Both pre-training runs used a
warmup of 1 epoch. As expected from previous studies (You
et al., 2019), the increased batch size for the 4032 node run
resulted in decreased validation accuracy; however, it is
notable that a batch size of nearly six million incurred only a
slight decrease in performance, suggesting that distributed
training for even larger molecule datasets is possible. The
1008 node runs were completed in 8 h each for 7 epochs; the
4032 node run was stopped after failing to increase vali-
dation accuracy (maximum was at 5 epochs), taking less
than 2 h. For downstream tasks, such as fine-tuning, we used
the models trained on 1008 nodes for the WordPiece and
Regex tokenizers.

5.2. Predicting binding affinities

To determine whether a given drug molecule binds to a
target molecule, that is, a protein, both the candidate
molecule and the amino acid sequence of the protein need to
be embedded. Then, to predict the binding affinity, hidden
layers are added that accept the concatentation of the two
embeddings as inputs. The predictive power of such an
ensemble model is chiefly determined by the expressive
power of the individual embeddings. Therefore, we expect
that using powerful pre-trained models to embed the
molecules results in superior performance on the down-
stream task. Here, we focus on regression to predict the
numerical value of the binding affinity, however, the model
architecture lends itself equally well to classification. Pre-
trained embeddings and extra layers are fine-tuned simul-
taneously, that is, with all weights adjustable, on a labeled
dataset of 1.67 � 106 receptor amino acid sequences and
ligand SMILES, with binding affinities. Note that this
dataset used for fine-tuning is much smaller than the da-
tasets used for pre-training (Tables 1 and 2).

Figure 2. Although the augmented dataset contains roughly 7
times more molecules than the original dataset, the histograms
show that the augmentation strategy largely preserves the
distribution of multiple molecule metrics. For Synthesizability,
generated molecules for data augmentation were required to
have a score above 0.3, resulting in the observed sharp decline in
the histogram. For drug-likeness, no constraints were placed on
the augmented data, which resulted in a decrease in typical
scores relative to Enamine.

Figure 3. The vocabulary generated by WordPiece tokenization
represents commonly occurring sub-sequences from the
training data as individual tokens. The histogram shows the
distribution of number of characters for all tokens in the vocab
along with the chemical structure for sample tokens of different
length.
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5.2.1. Binding affinity dataset. We curated a dataset (Glaser
2021) of binding affinities by concatenating the entries of
the BindingDB (Liu et al., 2007), PDBBind-cn (Liu et al.,
2015), BindingMOAD (Hu et al., 2005), and BioLIP (Yang
et al., 2012) databases, following the example of Ref.
(Oleksandr et al., 2020). Records containing Ki, 1/Ka, Kb,
and IC50 values were retained and converted to
pKd = � log10Kd[M] units, and MACCS fingerprints were
calculated on the molecules to remove duplicates, resulting
in 1,670,637 protein sequences, SMILES strings and
binding affinities.

5.2.2. Model architecture. Figure 4 shows the neural network
architecture used to predict affinities. For embedding
molecules, we use the tokenizers and pre-trained models
discussed above. For embedding proteins, we make use of
the readily available pre-trained ProtBERT model (Wolf
et al., 2020), where every token is a letter in the amino acid
alphabet. The embeddings are fed to a cross-attention
module (Koyama et al., 2020). The purpose of the cross-
attention layer is that molecule sub-units attend to amino-
acids in the protein sequence, and vice versa. This archi-
tecture represents the physical situation in which the
molecule makes well-defined atom-atom contacts with the

protein. However, the model is not constrained to learn real
physical contacts, and importantly, it is not given any in-
formation about which residues belong to the active site of
the protein, which it has to learn by itself from the given
correlation between structures and binding affinities. De-
spite the physical motivation behind its architecture, the
model is still to be considered as a “black-box.” It cannot be
expected that the cross-attention weights directly corre-
spond to observable physical contacts, as sometimes sug-
gested (Koyama et al., 2020; Oleksandr et al., 2020).

The hidden layer outputs of the cross-attention module are
concatenated, their mean is taken over the sequence length
and they are connected to a linear layer to predict the binding
affinity. The model is fine-tuned by minimizing the mean-
squared error (MSE) between the predicted and the experi-
mental affinity.We validated themodel on a hold-out set from
the training data as well as three additional datasets as shown
in Tables 3 and 4. We characterize the ability of the model to
correctly reproduce the order of the experimental affinity
values by the Spearman-ρ rank correlation coefficient (higher
is better) (Spearman, 1961), as well as themean-squared error
for the predicted affinity (lower is better). We calculate the
uncertainty in the reported values using the bootstrap method
with n = 500 samples. Notably, the Regex tokenizer (and

Figure 4. Architecture of the affinity prediction model used for fine-tuning. It uses two independent models for protein sequences
(Protein Language Model) and molecule SMILES (Molecule Language Model) connected to a cross-attention module that predicts the
logarithm of the binding affinity.

Table 1. Validation accuracy for pre-training runs with
WordPiece tokenizer.

Nodes Molecules Batch size Accuracy

1 2.4 � 106 1.4 � 103 0.760
10 2.4 � 107 1.4 � 104 0.783
100 2.4 � 108 1.4 � 105 0.797
1000 2.4 � 109 1.4 � 106 0.798
1008 9.6 � 109 1.5 � 106 0.808
4032 9.6 � 109 5.8 � 106 0.801

Table 2. Validation accuracy for pre-training runs with regex
tokenizer.

Nodes Molecules Batch size Accuracy

1 2.4 � 106 1.4 � 103 0.845
10 2.4 � 107 1.4 � 104 0.866
100 2.4 � 108 1.4 � 105 0.878
1000 2.4 � 109 1.4 � 106 0.882
1008 9.6 � 109 1.5 � 106 0.889
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associated ensemble) outperforms the WordPiece tokenizer
for certain datasets (i.e., Hold-out and Kinases), but under-
performs for others (i.e., PLpro), suggesting that different
molecule representations may be suitable for different affinity
prediction tasks.

Figure 5 demonstrates the performance for the validated
and transferable model on a binary classification task, using
the metrics of precision and recall. Here, we impose a
threshold of 5μ M (Mpro) and 1μ M (PLpro) on the exper-
imental IC50 value (lower is better) to label active molecules.
These thresholds are typical of more potent non-covalent
inhibitors for the Mpro and PLpro targets. We use sam-
pling from the normal distribution of affinities implied by the
mean and the variance of the ensemble model to estimate the
confidence intervals, as well as the standard error from n = 500
bootstrap samples. Remarkably, the model achieves a max-
imum precision of 0.60 both for Mpro and PLpro, meaning
that 60% of the highest scoring molecules are true actives,
which suggests excellent virtual-screening performance.

5.3. Searching for drug candidates

Similar to the strategy we used for data augmentation, the
pre-trained model can easily be adapted to generate re-
arrangements for a given population of molecules. Here, we
utilize three different types of rearrangements for a given
tokenized molecule: insertion, deletion, and replacement.
For insertion, a mask is randomly inserted in between
existing tokens or at the beginning or end. For deletion, a
mask randomly replaces two adjacent existing tokens. With

replacement, a single existing token is randomly masked. To
search for new drug candidates, we randomly sampled up to
five masks and a rearrangement type for molecules in the
population. In addition, we consider recombination by
randomly sampling two molecules, selecting a sub-
sequence from each and inserting a mask in between. A
canonical and randomized SMILES were used to represent
each molecule before masking, and the top 10 molecules
predicted by the pre-trained model were used as candidates.
As a starting population, we used molecules from the
validation set for pre-training. Only unique molecules were
retained in the population, as determined by canonical
SMILES computed using rdkit (RDKit, 2021).

To score the molecules generated through rearrange-
ments, we utilized three metrics: normalized synthesiz-
ability, quantitative estimation of drug-likeness, and the
affinity predictions of the fine-tuned model. The predicted
score for the affinity was divided by 10 and clipped between
0 and one to generate a normalized affinity metric. The
harmonic mean of the three metrics was then used to define
the fitness of a given candidate. To find optimized candi-
dates, an initial population of 104 molecules was used from
the validation set for pre-training. Then, masked re-
arrangements were applied to 5 � 103 samples and recom-
bination was applied to 5 � 103 sampled pairs. The resulting
molecules were added to the population and ranked ac-
cording to fitness; the top 104 overall were retained as the
starting population for the next generation. Based on the
Hold-out fine-tuning results, we selected Model 3 with a
Regex Tokenizer to predict scores. For molecule

Table 3. Validation of the affinity prediction on different test sets, with Regex tokenizer for SMILES. Shown are Spearman ρ rank
correlation coefficient, and mean-squared error (MSE) for the ensemble and the individual models. Values in parentheses indicate the
uncertainty of the last reported digit.

Ensemble Model 1 Model 2 Model 3

Test set ρ MSE ρ MSE ρ MSE ρ MSE

Hold-out 0.881(2) 0.69(1) 0.866(3) 0.77(1) 0.865(3) 0.79(1) 0.866(3) 0.75(1)
Kinases (Davis et al., 2011) 0.38(1) 1.67(3) 0.35(1) 1.80(3) 0.35(1) 1.88(3) 0.35(1) 1.80(3)
Mpro (Achdout et al., 2020) 0.39(2) 1.82(5) 0.28(2) 1.79(5) 0.37(2) 2.24(6) 0.32(2) 1.82(5)
PLpro (Shen et al., 2021) 0.54(8) 0.8(1) 0.55(8) 0.9(1) 0.25(10) 0.67(11) 0.45(8) 1.3(2)

Table 4. Validation of the affinity prediction on different test sets, with WordPiece tokenizer for SMILES. Shown are Spearman ρ rank
correlation coefficient, and mean-squared error (MSE) for the ensemble and the individual models. Values in parentheses indicate the
uncertainty of the last reported digit.

Ensemble Model 1 Model 2 Model 3

Test set ρ MSE ρ MSE ρ MSE ρ MSE

Hold-out 0.864(3) 0.72(1) 0.830(3) 0.94(2) 0.846(3) 0.84(1) 0.854(3) 0.77(1)
Kinases (Davis et al., 2011) 0.30(1) 2.03(3) 0.23(1) 2.90(4) 0.26(1) 1.95(3) 0.30(1) 1.94(3)
Mpro (Achdout et al., 2020) 0.37(2) 1.23(5) 0.33(3) 1.23(5) 0.29(2) 1.49(5) 0.31(3) 1.44(5)
PLpro (Shen et al., 2021) 0.57(8) 0.71(10) 0.51(8) 0.45(7) 0.61(7) 0.76(10) 0.30(10) 1.7(2)
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rearrangements, we used the pre-trained model with
WordPiece Tokenizer as it generated higher fitness scores
than the corresponding Regex Tokenizer.

As shown in Figure 6 (top two rows), 50 generations of
optimization to search for Mpro inhibitors resulted in a
substantial shift in the distributions of the three optimized
metrics. Notably, the mean for the affinity score increases,
with the maximum generated molecule having a normalized
affinity score greater than 0.9. By optimizing for synthe-
sizability and drug-likeness in addition to affinity, the gen-
erated molecules are constrained by useful heuristic scoring
functions for drug discovery (Bickerton et al., 2012; Ertl and
Schuffenhauer, 2009).We also show the top scoringmolecule
in the final population for each respective metric. The three
examples show that optimization successfully found mole-
cules with higher predicted affinities while maintaining high
synthesizability and drug-likeness scores. The bottom two
rows of Figure 6 show the corresponding results for PLpro.
The only change to the genetic algorithm is the input protein
sequence, highlighting the generality of our approach.

6. How performance was measured

6.1. Applications used to measure performance

In this study, we performed pre-training, fine-tuning, and a
genetic algorithm on Transformer models. All models are

written in PyTorch using the Hugging Face Transformers
API (Wolf et al., 2019). Models are pre-trained and fine-
tuned with DeepSpeed (Rasley et al., 2020), a high-
performance wrapper for distributed Transformer training.
Model training is performed with data parallelism using
DeepSpeed’s fused-kernel LAMB optimizers. Sharded I/O
is performed using the WebDataset library (Aizman et al.,
2019). As pre-training of the molecule language model is by
far the most computationally expensive stage of the study, it
is the focus of the performance analysis.

The architecture used for the molecule language model is
BERT-base, which has approximately 109 million learnable
parameters. Pre-training of the model is performed with data
parallelism, in which each GPU trains the model on separate
data. Communication takes the form of a global asyn-
chronous AllReduce which is performed during back-
propagation on each batch.

6.2. Measuring performance

Performance of molecule language model pre-training was
measured in two respects. First, sustained performance was
measured using built-in timers which report the total
wallclock time elapsed during training and the time for I/O
operations (specifically, saving checkpoints and trained
models). Additionally, to measure peak application per-
formance relative to theoretical machine peak, mixed pre-
cision floating point operations per second (FLOPs) are
computed using the DeepSpeed FLOPS Profiler.

6.3. System

6.3.1. Hardware. Performance was measured on the Summit
supercomputer at the Oak Ridge Leadership Computing
Facility at ORNL (Vazhkudai et al., 2018). Summit is
comprised of 4674 IBM Power System AC922 nodes which
are arranged in a non-blocking Fat Tree topology with dual-
rail EDR InfiniBand interconnect. Each node has two IBM
Power9 CPUs, six Nvidia 16 GB V100 GPUs, and 512GB
of main memory. The V100 device has an estimated peak
performance of 14 teraflops for single precision (FP32) and
112 teraflops for mixed precision using the Tensor Cores,
which are capable of performing matrix multiply in FP16
with FP32 accumulation for some kernels. Consequently,
Summit’s peak performance for mixed precision is ap-
proximately 3.1 exaflops.

6.3.2. Software. Summit runs the Red Hat Enterprise Linux
eight operating system and uses the IBM LSF job scheduler.
Our Python-based software stack uses Open Cognitive
Environment v1.2.0, PyTorch v1.7.1, Transformers v4.5.1,
DeepSpeed v0.4.5, and WebDataset v0.1.62. The GPU li-
braries include CUDA 11.0.3, NCCL 2.7.8, and cuDNN
8.0.4.

Figure 5. Transferability and virtual-screening performance of
the fine-tuned model on two experimental SARS-CoV-2 protein
affinity datasets, Mpro (top, from Ref. (Achdout et al., 2020)) and
PLpro (bottom, from Ref. (Shen et al., 2021)), showing precision
[=tp/(tp + fp)] as a function of recall [=tp/(tp + fn)].
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7. Performance results

7.1. Node level optimization

The results of node level optimization for molecule lan-
guage model pre-training are shown in Figure 7, in terms of
runtime per epoch plotted versus a series of successive
optimizations. In this setting, data parallelism is applied to
train the molecule language model across the six GPUs of a
Summit node. The baseline case uses the Adam optimizer,
single precision arithmetic, and the largest batch size per
device (96) for which the model fits in GPU memory.
Enabling mixed precision with the V100 Tensor Cores
decreases runtime by approximately 43%. In addition,
mixed precision enables a larger per device batch size (128)
to be used while keeping the model within GPU memory,
further decreasing runtime per epoch by about 15%. While
the decision to switch to the LAMB optimizer was moti-
vated by large batch sizes, as discussed in section 5.1.3,
DeepSpeed’s fused LAMB optimizer implementation also
improves performance by roughly 15%. Finally, leveraging
LAMB’s stability for very large batches, we changed the
batch size to 80 and added three gradient accumulation
steps, for an effective batch size per device of 240.While the
addition of gradient accumulation does not improve node

level performance, this configuration enables better scaling
at very high node counts due to reduced communication
frequency and, after hyperparameter optimization, main-
tains comparable accuracy.

7.2. Scaling

As this study incorporates the largest molecule dataset ever
used for pre-training, the primary focus for scalability was
weak scaling. In Figure 8, we assess the weak scaling of pre-
training the molecule language model on Summit. For weak
scaling, the problem size per device is kept constant at 3.95 �
105 molecules. The training configuration is that identified
in section 7.1, extended to the multi-node setting, with data
parallelism used to train a single model across the given
number of nodes. These runs are the production runs in
section 5.1.3 with the WordPiece tokenizer, and therefore
include I/O operations to save checkpoints and the final
trained model. Parallel efficiency for weak scaling from 1 to
4032 Summit nodes is measured at 68.0%. However, a
significant amount of performance degradation at large node
counts is due to I/O; when I/O time is subtracted out, parallel
efficiency over the same interval improves to 83.3%. In
combination with the validation accuracy results from
Tables 1 and 2, this clearly indicates that pre-training can be

Figure 6. Results from optimizing molecules for the harmonic mean of synthesizability, drug-likeness, and affinity. The top two rows
show results for Mpro; the bottom two rows show results for PLpro. The histograms show the changes in the probability distributions
from the starting population to the optimized population after 50 generations. The three examples show the highest scoring molecules
for each respective metric in the optimized population.
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extended to incorporate unprecedented molecule dataset
and batch sizes without significantly compromising com-
putational efficiency or accuracy.

Strong scaling of the molecule language model pre-
training is shown in Figure 9 from 25 to 1600 Summit
nodes. The total problem size is kept constant at approxi-
mately 1.9 billion molecules, with the same training con-
figuration as for weak scaling. However, as full runs could
not be completed within facility wallclock limits for many
node counts, the reported runtime per epoch is measured for
the first 0.25 epochs for the 25 node job and for the first
epoch for all other node counts. Strong scaling is near linear
from 25 to 400 Summit nodes and maintains approximately
67.4% parallel efficiency at 1600 nodes versus the 25 node
baseline.

7.3. Peak performance

Table 5 shows the peak performance achieved for molecule
language model pre-training on Summit during the largest
weak scaling run from section 7.2. On 4032 nodes, peak
performance of approximately 603.4 petaflops in mixed
precision is achieved. As Summit’s theoretical peak at this
node count is projected at ∼2.71 exaflops, our result rep-
resents about 22.3% of this mixed precision peak.

8. Implications

8.1. ML models for drug discovery

Supervised training of ML models for drug discovery poses
a key difficulty in terms of both time and resources, as a
labeled dataset must be created for each new therapeutic

target. As demonstrated by language models for both text
(Devlin et al., 2019) and chemical sequence data (Xue et al.,
2020), an alternative approach is to leverage large unlabeled
datasets to train a general model. The general model is then
fine-tuned on a relatively small dataset for a specific task of
interest. Although fine-tuning still requires supervised
training, unsupervised pre-training has enabled state-of-the-
art results across a range of tasks with limited labeled data
(Devlin et al., 2019; Gu et al., 2020). Here, we have taken

Figure 7. Single node algorithmic and performance optimization
for pre-training the molecule language model: (1) baseline with
Adam optimizer, (2) use of mixed precision arithmetic on V100
Tensor Cores, (3) larger per device batch size enabled by mixed
precision, (4) fused LAMB optimizer, and (5) optimal balance of
batch size per device and gradient accumulation steps for single
node performance and scalability.

Figure 8. Weak scaling of molecule language model pre-training
on Summit for a constant 395 thousand molecule problem size
per GPU. I/O operations are saving checkpoints and trained
models.

Figure 9. Strong scaling of molecule language model pre-training
on Summit for a constant total problem size of ∼1.9 billion
molecules.

Table 5. Peak performance for molecule language model pre-
training on Summit in mixed precision floating point operations
per second (FLOPs).

Nodes Molecules Batch size FLOPs

4032 9.6 � 109 5.8 � 106 603.4 petaflops
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the shift towards general models a step further by using pre-
training and fine-tuning tasks that can generalize to any
protein and molecule sequence.

The ability to pre-train molecule language models with
large batch sizes enables an unprecedented exploration of
chemical space. Current chemical databases provide hun-
dreds of billions of molecules, but contain only a small
fraction of potentially synthesizable molecules (Reymond,
2015). Through the process of tokenization and mask
prediction, language models can leverage large datasets to
automatically learn commonly occurring sub-sequences
(i.e., structural components) and possible rearrangements
for effective searches of chemical space.

By combining a pre-trained model for molecule and
protein sequences, the fine-tuning task can leverage data
from many previous experimental investigations. Further-
more, additional modeling techniques, such as docking
simulations, could be used to augment the training data in
novel regions of interest. Recent development in protein
structure prediction (Jumper et al., 2021) leverages both
sequence and spatial information to increase predictive
performance. Although there is still much work to be done
to make a truly general model for drug discovery, the in-
crease in unsupervised and semi-supervised approaches to
training along with the increase in available experimental
and simulation data for protein and ligand interactions
makes possible the development of off-the-shelf models that
generalize across therapeutic targets. Developing a gener-
alizable model is key to reducing the time for discovering
and screening new targets in an emerging pandemic, such as
COVID-19.

Using a genetic algorithm coupled with a pre-trained
language model for optimization enables incremental ex-
ploration and refinement from known drugs as well as
population searches. For example, a certain sub-sequence of
a known compound can be masked, and the language model
can predict the most likely rearrangements. Heuristic
metrics and ML models can then be used to analyze the
expected impact of structural changes. The intuitive process
of making incremental changes during exploration can be
used to complement and guide researcher intuition during
the drug discovery process. Therefore, our suggested op-
timization strategy provides a natural framework for both
fully-automated and user-guided exploration of chemical
space.

8.2. HPC resources for model development

The pre-training phase of developing a language model
requires substantial computational resources; here, we
utilized thousands of GPUs and corresponding node hours
to complete training. Similarly, as the labeled dataset and the
compound library for screening grows, fine-tuning and
inference can also necessitate the resources of a leadership

computing facility. Although these resource requirements
provide an excellent use case and motivation for the con-
tinued development of HPC systems, they generate chal-
lenges for the utilization and training of models throughout
the research community. Fortunately, the pre-trained models
can be leveraged for inference and to some extent fine-
tuning applications with only a single GPU.

For fine-tuning tasks with a specific protein target or
chemical property, training can typically be done without
the need for HPC resources. For inference, our results show
that a genetic algorithm using the pre-trained model for
mutations can be used to generate optimized candidates
without the need for large scale model evaluations. Fur-
thermore, the genetic algorithm approach provides an in-
terpretable scheme for modifying a single molecule. The
mask predictions and scores can be inspected to determine
single mutations that lead to higher scores for a given
metric. Also, the reported genetic algorithm runs from this
work used only a single V100 GPU for less than 10 h for
optimization. Therefore, although the pre-trained models
require substantial computational resources for training, the
models can be used for exploration throughout the research
community1.
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