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Abstract

Background: Psoriasis is a common chronic skin inflammatory disease. Understanding the pathogenesis of psoriasis and
identifying novel therapeutic targets are under investigation.
Methods:Gene expression profiles were obtained fromGSE13355, GSE30999 and GSE54456 datasets to identify differentially
expressed genes (DEGs) between psoriasis and normal controls. Enrichment analysis was used to identify the biological
functions and pathways of common genes from three groups of DEGs. Protein-protein interaction (PPI) network was then
constructed to identify key genes according to degree of connectivity. Expression of genes was detected by the method of qRT-
PCR and immunohistochemistry. The infiltration of immune cells of psoriasis were quantified and detected by flow cytometry.
Results: A total of 146 common genes were identified between psoriasis and normal controls. They were significantly enriched
in IL-17, chemokine, and NOD-like receptor (NLR) signaling pathway. Ten key genes were selected with bigger degree of
connectivity through PPI network, and ARG1 and CXCL2 had better predictive ability based on ROC curves. Increased
expression of ARG1 and CXCL2 in psoriasis patients were verified by qRT-PCR and immunohistochemistry method. In
addition, a lot of immune cells were upregulated in psoriasis compared to healthy controls through ssGSEA and flow cytometry.
Conclusion: ARG1 and CXCL2 may serve as biomarkers and potential therapy for psoriasis. This may be related to the
immune response and NLR pathway.
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Introduction

Psoriasis is a chronic inflammatory skin disease with strong
genetic predisposition and autoimmunity, causing severe
damage to patients’ quality of life.1 The worldwide prev-
alence of psoriasis is estimated to be 2–4%.2 Psoriatic pa-
tients often present with concomitant psoriatic arthritis,
autoimmune diseases, cardiovascular diseases as well as
metabolic diseases.3 Despite the variety of methods for
treating psoriasis, 52.3% of psoriatic patients reported that
they were not satisfied with the treatment due to ineffective
methods and adverse effects.4 Previous studies have shown
that life expectancy of patients with moderate to severe
psoriasis is reduced by approximately 5 years.5 Therefore, it
is important to explore the molecular dysregulation

mechanisms of psoriasis and thereby develop effective
means of evaluation and treatment.
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The dermatological manifestations of psoriasis are di-
verse, and psoriasis vulgaris, also known as plaque psoriasis,
is the most common type of psoriasis, which may be asso-
ciated with the disturbance of keratinocytes.6 While kerati-
nocyte differentiation and proliferation may result from the
interaction between immune cells and keratinocytes. Multiple
genetic variations and interactions occurring between im-
mune cells and keratinocytes in the microenvironment de-
termine the development of psoriasis, the severity of the
disease, as well as therapeutic responses.7 With advances in
molecular biology, various novel targets for the treatment of
psoriasis are under investigation. Indeed, there is accumu-
lating clinical and experimental evidence that both autoim-
mune and autoinflammatory mechanisms are central to
psoriasis, including T cells, macrophages, and dendritic cells,
among others.8,9

Moreover, the complexity of gene expression alterations
during the development of psoriasis is an important patho-
logical mechanism.10 Currently, multiple biological therapies
for the treatment of psoriasis are approved by the FDA to
exert therapeutic effects through the regulation of immune
and inflammatory responses.11 Herein, we sought to explore
the pathomolecular mechanisms of psoriatic patients, as well
as the related gene targets. The aberrant activation of immune
cells was identified, and the correlation between gene targets
and immune cells was further recognized. Thus providing a
new direction for immunotherapy of psoriasis patients.

Materials and methods

Data processing

Gene expression profiles were collected from GSE13355,12

GSE3099913 and GSE5445614 datasets in the Gene Ex-
pression Omnibus (GEO) database. GSE13355 included gene
expression profiles of punch biopsies from 58 psoriatic pa-
tients and 64 normal healthy controls profiled by array based
on GPL570 platform. GSE30999 contains 85 paired lesional
and non-lesional samples, which profiling by array based on
GPL570 platform. For GSE54456, 92 psoriatic and 82
normal skin samples were profiling by high throughput se-
quencing based on GPL9052 platform. For array data pro-
cessing, the Robust Multichip Average (RMA) method15 was
used. For high throughput sequencing, the number of reads
per kilobase per million mapped reads (RPKM) was used to
normalize the expression. Reads were aligned to the reference
genome NCBI build 37 using TopHat and counting using
Cufflinks.16

Differentially expressed genes (DEGs) between psoriasis
and normal controls in GSE13355 and GSE30999 datasets
were analyzed using limma package17 in R. DEGs between
psoriasis and normal controls in GSE54456 dataset were
identified using DEseq2 package18 in R. All DEGs were
obtained by setting a filtering threshold of |log2 fold change
(FC)| >1 and p < 0.05.

Enrichment analysis

Enrichment analysis of Gene Ontology (GO) functions and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways for DEGs using clusterProfiler package19 in R. In
the results, terms with p < 0.05 were selected as significantly
enriched. Gene set variation analysis (GSVA) package20 in R
was used to calculate KEGG pathways that were activated or
inhibited in the psoriasis compared to controls.

Construction of protein-protein interaction
(PPI) network

The PPI network was constructed using DEGs through
STRING database (https://string-db.org) and displayed by
Cytoscape software. The key genes were selected according
to the higher degree of connectivity in the network. The
predictive values of key genes were determined using re-
ceiver operating characteristic (ROC) curves by calculating
area under ROC curve (AUC) values.

Immune infiltration score

Single-sample gene set enrichment analysis (ssGSEA) was
used to quantify the infiltration score of immune cells in
psoriasis based on 28 immune cell signatures.21 The differ-
ences between psoriasis and normal controls were determined
using limma R package. Correlations between immune cells
and key genes were calculated using Pearson’s correlation.

Sample collection

Five paired lesional and non-lesional samples were collected from
adult psoriasis patients. In addition, peripheral blood samples were
also collected from five adult psoriasis patients and five healthy
controls. All studied were approved by the Ethics Committee of
General Hospital of Xinjiang Military Command (No.
XJJQZYY100). All participants gave written informed consent.

Quantitative real-time PCR

Total RNA of lesional and non-lesional samples was
extracted using Trizol reagent (Invitrogen, CA, USA). Then
the cDNA was obtained from RNA reverse transcription
reactions using cDNA synthesis kit (Takara, Dalian, China).
Quantitative real-time PCR (qRT-PCR) was performed
subsequently using SYBR Premix Ex Taq II kit (Takara,
Dalian, China). The relative expression of target genes was
normalized to GAPDH using 2-ΔΔCt method. Primers used in
this study were as follows: ARG1 (F: 50-TTGGCTTGA-
GAGACGTGGAC-30; R: 50-GTGCCAGTAGCTGGTGT-
GAA-30); CXCL2 (F: 50-GCTTGTCTCAACCCCGCATC-
30; R: 50-TGGATTTGCCATTTTTCAGCATCTT-30); GAPDH
(F: 50-GCACCGTCAAGGCTGAGAAC-30; R: 50-
GGATCTCGCTCCTGGAAGATG-30).
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Flow cytometry

Peripheral blood samples were used to determine the pro-
portion of immune cells in psoriasis patients and healthy
controls using flow cytometry. The peripheral blood
samples were washed twice with PBS after incubation
using red blood cell lysate. The samples were stained
immediately with various antibodies for 30 min at 4°C.
Antibodies for flow cytometry were as follows: anti-CD3
(PC5.5-A), anti-CD19 (FITC-A), anti-CD8 (ECD-A),
anti-CD4 (PE-A), anti-CD45 (FITC-A), anti-CD56 (PE-A),
anti-CD4 (FITC-A), anti-CXCR5 (PE-A), anti-CD183 (PC5.5-
A), anti-CD196 (PE-A). All antibodieswere purchased fromBD
Biosciences. Data were analyzed by Kaluza or FlowJo software.

Immunohistochemistry

For immunohistochemistry (IHC), five paired lesional and
non-lesional samples were fixed in 4% formalin overnight
and embedded in paraffin with standard techniques. 4 μm
sections were deparaffinized with xylene and rehydrated in
graded ethanol. Hydrogen peroxide was used to inactivate
the intrinsic peroxidases. Antigen retrieval was performed
using citrate EDTA buffer (10 mM citric acid, 2 mM
EDTA, 0.05% Tween 20, pH 6.2) in a water bath. Sub-
sequently, the sections were incubated with primary

antibodies (ARG1 and CXCL2, Abcam, Cambridge, UK)
overnight in a humidified chamber at 4°C. Biotin conju-
gated secondary antibodies were incubated for 30 min.
Staining was visualized after sections were counterstained
with hematoxylin.

Statistics

Statistical analysis was performed with SPSS19.0 statistical
software. The data was shown as mean ± standard deviation
(SD). Comparison analyses were performed using t test. p <
0.05 was considered statistically significant.

Results

DEGs in psoriasis

To identify the DEGs in psoriasis, we performed differential
expression of genes between psoriasis and normal controls.
We identified 163 DEGs between psoriasis and normal
controls in GSE13355 dataset (Figure 1(a)), 1275 DEGs in
GSE30999 dataset (Figure 1(b)), and 2092 DEGs in
GSE54456 dataset (Figure 1(c)). Through intersection
analysis, we obtained 146 common genes from these three
groups of DEGs (Figure 1(d)). The common genes may have
great relationship with psoriasis.

Figure 1. Differentially expressed genes between psoriasis and normal controls. (a) Volcano plot of DEGs between psoriasis and normal
controls in GSE13355 dataset. (b) Volcano plot of DEGs between psoriasis and normal controls in GSE30999 dataset. (c) Volcano plot of
DEGs between psoriasis and normal controls in GSE54456 dataset. Red is up regulated and blue is down regulated. FDR, false discovery rate;
FC, fold change; sig, significant. (d) Intersection analysis of the three sets of DEGs. Intersected 146 common genes were identified.
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Biological functions of common genes

To identify the biological functions in which common genes
involved, we performed enrichment analysis. In the bio-
logical processes (BP) of GO results, keratinocyte differen-
tiation, cellular response to type I interferon, and type I

interferon signaling pathway were significantly enriched
(Figure 2(a)). For the cellular components (CC), specific
granule lumen, secretory granule lumen, and specific granule
were enriched by common genes (Figure 2(a)). Then, che-
mokine activity, chemokine receptor binding, and CXCR
chemokine receptor binding were involved in the molecular

Figure 2. GO and KEGG pathways of common genes. (a) Important GO enriched in the common genes. Which included biological
processes, cellular components, and molecular functions. BP, biological processes; CC, cellular components; MF, molecular functions. (b)
Important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by the common genes. The larger the dot, the greater
count of genes involved; the redder the color, the more significant the p value.
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functions (MF) (Figure 2(a)). In addition, we also found IL-
17 signaling pathway, chemokine signaling pathway, and
NOD-like receptor signaling pathway were mainly enriched
in KEGG pathways (Figure 2(b)).

PPI network of common genes

To identify genes with significant roles in psoriasis, we
constructed a PPI network for common genes (Supplemental
Figure S1(a)). Then, we identified the top 10 genes
(CXCL10, STAT1, CXCL1, CXCL9, ARG1, LCN2, ISG15,
CCL20, LTF, and CXCL2) with biggest degree of con-
nectivity in the network as key genes (Figure 3(a)). Through
ROC curves, we found that ARG1 and CXCL2 may be more
important with bigger AUC values among key genes in
GSE13355 (Figure 3(b)), GSE30999 (Figure 3(c)) and
GSE54456 (Figure 3(d)) datasets, especially in GSE13355
dataset.

In addition, we calculated the activation differences of
KEGG pathways between psoriasis patients and controls
using GSVA method. We found that NOD-like receptor
signaling pathway was activated in psoriasis, while circadian
rhythm mammal was inhibited (Figure 3(e)). Correlation
analysis results showed significant positive between NOD-

like receptor signaling pathway and ARG1 or CXCL2 (Figure
3(f), Supplemental Figure S1(b) and S1(c)).

Immune cell infiltration in psoriasis

According to single-sample GSEA results, we found that
psoriasis samples contained higher proportion of immune cell
types than controls (Figure 4(a), Supplemental Figure S2(a),
and S2(b)). Differential analysis results showed that most
immune cells were significantly upregulated between psoriasis
patients and controls (Figure 4(b), Supplemental Figure S2(c),
and S2(d)). Importantly, ARG1 and CXCL2 were increased
expression in psoriasis compared to controls in all three da-
tasets (Figure 4(c)). Activated CD4 Tcell, neutrophil, activated
B cell, type 17 T helper (Th17) cell, type 2 T helper cell (Th2),
activated CD8 T cell, T follicular helper cell (Tfh), macro-
phage, MDSC, activated dendritic cell, and CD56dim natural
killer (NK) cell were correlated positively with ARG1 and
CXCL2 (Figure 4(d), Supplemental Figure S3(a), and S3(b)).

Molecular experimental validation

To validate key results in clinical samples, we performed
molecular experiments. In the results of qRT-PCR, we

Figure 3. Identification of key genes through PPI network and ROC curves. (a) Genes with top ten degree of connectivity in PPI network. The
redder the color, the greater the connectivity. The ROC curves of key genes in GSE13355 (b), GSE30999 (c) and GSE54456 (d) datasets.
AUC, area under ROC curve. (e) The top 30 activated or inhibited KEGG pathways in psoriasis. The longer the column, the higher the fold
change. (f) Correlation between activated or inhibited KEGG pathways and ARG1 and CXCL2 in GSE13355.
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Figure 4. Immune cell infiltration in psoriasis. (a) Heatmap of different infiltration of immune cell in psoriasis and controls of GSE13355. Red
is high expression and blue is low expression. (b) Differences in immune cell infiltration between psoriasis and controls of GSE13355. **p <
0.01, ***p < 0.001,. p < 0.1, - p > 0.1. (c) The expression of key genes in psoriasis and controls of GSE13355, GSE30999 and GSE54456
datasets. ***p < 0.001. RPKM, reads per kilobase per million mapped reads. (d) Correlations between ARG1, CXCL2 expression and
infiltration levels of different immune cell types in psoriasis of GSE13355. Red is positive correlation and blue is negative correlation.
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verified the high expression of ARG1 and CXCL2 in patients
with psoriasis compared to controls (Figure 5(a)). We ex-
amined the protein expression of ARG1 and CXCL2 by IHC.
They were increased expression in psoriasis patients than that
in controls (Figure 6). Through flow cytometry detection, we
found that the proportion of CD4 T cell, neutrophil, B cell,
Th17, Th1, CD8 Tcell, Tfh, and NK cell were all significantly

higher in psoriatic patients than in controls (Figure 5(b)).
However, Th2 was decreased in psoriasis.

Discussion

Psoriasis, as one of the most common skin diseases, has
received much attention from clinicians and basic scientists.

Figure 5. Key results were verified by molecular experiments. (a) The expression of ARG1 and CXCL2 between psoriasis and healthy
controls which detected by qRT-PCRmethod. **p < 0.01, ***p < 0.001. (b) The proportion of significantly changed immune cells in psoriasis
compared to controls which detected by flow cytometry.
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There have been numerous studies elucidating many of the
underlying pathogenic mechanisms and being translated into
novel therapeutic strategies.22 However, there remains a
constant need for new, effective, and safe decisions in the
management of psoriasis, leading to improved patient care.
This study used bioinformatics to screen ARG1 and CXCL2
as diagnostic and therapeutic targets in psoriasis, and to
identify the signaling pathways and immune cells associated
with them. Key results were further validated utilizing mo-
lecular experiments in clinical samples.

The differentially expressed genes between psoriasis and
normal controls may be associated with pathological alter-
ations. The enrichment results of common genes may indicate
the pathological mechanism of psoriasis. We found that type I
interferon was significantly enriched in biological processes.
Previous studies have shown the potential role of type I
interferon in the pathogenesis of psoriasis.23 Plasmacytoid
dendritic cells (pDCs) in psoriatic skin activate and produce
type I interferon, evoking autoimmune T cell responses in
patients with psoriasis.24 Among the enrichment results of
KEGG pathways, the IL-17 signaling pathway has been
confirmed by numerous studies for its therapeutic role in
psoriasis.25,26 IL-17 family cytokines are overexpressed in
psoriatic skin, induce psoriasis associated chemokines and
inflammatory pathways, and promote keratinization.27,28 Nod
like receptor (NLR) signaling pathways are significantly
activated in psoriasis, thereby mediating immune responses
and participating in the onset and progression of
psoriasis.29,30 Keratinocytes are the main cell type of the

epidermis with widespread expression of NLRs involved in
protection against harmful threats.31 However, the function of
NLRs in keratinocytes has not been clearly evaluated.32

Therefore, we need continued exploration to better under-
stand specific NLR functions in the skin and to understand
their contribution to skin disease.

On the other hand, the results of our analysis suggest that
arginase 1 (ARG1) and CXCL2 may have a predictive role in
psoriasis. Myeloid derived suppressor cells (MDSCs) express
ARG1 which is involved in regulating Th17 cell proliferation
and is involved in the disease process of psoriasis.33,34

Previous studies have suggested that ARG1 over-
expression, possibly by limiting iNOS activity, is a molecular
mechanism underlying the hyperproliferation of psoriatic
keratinocytes.35 ARG1 is recognized as an inflammatory
associated genes with up-regulated expression in psoriasis,
accompanied by the production of a large number of pro-
inflammatory Th1 cytokines.36,37 The neutrophil chemokine
CXCL2 is up-regulated in the skin of patients with psoriasis
and participates in innate immune system when activated by
IL-17A.1,3 Correlation results showed that ARG1 and
CXCL2 were significantly positively correlated with NLR
signaling, suggesting that they may further contribute to the
pathology of psoriasis through NLR signaling.

Psoriasis is an autoimmune skin disease, so we also
identified the abnormalities of immune cells in psoriatic pa-
tients and detected them using flow cytometry. Among them,
the proportion of immune cells with higher correlation to
ARG1 and CXCL2 were all significantly increased in psoriatic

Figure 6. The protein expression of ARG1 and CXCL2 in psoriasis and healthy controls. The expression of ARG1 and CXCL2 detected by
IHC.
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patients. Many researchers have now shown that psoriatic
lesions contain more T cells.38 IL-17-producing CD4 and CD8
T cells have been found in psoriatic lesions.39,40 The in-
volvement of Th1 cells, Th17 cells and their cytokines in the
pathogenesis of psoriasis has been well established.41,42 In
addition, an increased Th1/Th2 ratio in psoriasis patients
stimulates keratinocyte proliferation and promotes
angiogenesis.43,44 Psoriatic neutrophils are recruited to the site
of inflammation following inflammatory signals, produce and
release large amounts of ROS, enhancing psoriatic
symptoms.45,46 NK cells are markedly increased in psoriatic
lesions and may be involved in the pathogenesis of psoriasis.47

Studies have shown that B cells are elevated in lesional skin of
patients with psoriasis compared with nonlesional skin
weight.48 B cells promote CD4 + Tcell activation and produce
IL-17 to promote inflammation in psoriasis [20974990]. These
results suggest a novel mechanism of immune cells in pso-
riasis, although whether ARG1 and CXCL2 regulate immune
dysfunction in psoriasis requires further investigation.

Conclusion

New and effective therapies need to be continuously developed
to eradicate psoriasis. Our study utilized a combination of
bioinformatics and molecular experiments to analyze potential
markers and therapeutic targets for psoriasis. These data
suggest that ARG1 and CXCL2 are significantly altered in
psoriatic patients and may play a key role in the pathogenesis
of psoriasis. This may be associatedwith activation of the NLR
pathway and increased immune responses. Further studies are
needed to elucidate whether significantly increased levels of
ARG1 and CXCL2 can predict the risk of psoriasis as well as
their clinical therapeutic value.
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