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Abstract
Background: Previous studies found that Asians seemed to have higher risk of HT after 
thrombolysis than Caucasians due to its race differences in genetic polymorphism. Whether 
the model developed by Caucasians could predict risk of symptomatic intracerebral 
hemorrhage (sICH) in Asians was unknown.
Objectives: To develop a machine learning–based model for predicting sICH after stroke 
thrombolysis in Caucasians and externally validate it in an independent Han Chinese cohort.
Design: The derivation Caucasian sample included 1738 ischemic stroke (IS) patients from the 
Virtual International Stroke Trials Archive (VISTA) data set, and the external validation Han 
Chinese cohort included 296 IS patients who were treated with intravenous thrombolysis.
Methods: Twenty-eight variables were collected across both samples. According to their 
properties, we classified them into six distinct clusters (ie, demographic variables, medical 
history, previous medication, baseline blood biomarkers, neuroimaging markers on initial CT 
scan and clinical characteristics). A support vector machine (SVM) model, which consisted 
of data processing, model training, testing and a 10-fold cross-validation, was developed to 
predict the risk of sICH after stroke thrombolysis. The receiving operating characteristic (ROC) 
was used to assess the prediction performance of the SVM model. A domain contribution 
analysis was then performed to test which cluster had the highest influence on the 
performance of the model.
Results: In total, 85 (4.9%) patients developed sICH in the Caucasians, and 29 (9.8%) patients 
developed sICH in the Han Chinese cohort. Eight features including age, NIHSS score, SBP 
(systolic blood pressure), DBP (diastolic blood pressure), ALP (alkaline phosphatase), ALT 
(alanine transaminase), glucose, and creatine level were included in the final model, all 
of which were from demographic, clinical characteristics, and blood biomarkers clusters, 
respectively. The SVM model showed a good predictive performance in both Caucasians 
(AUC = 0.87) and Han Chinese patients (AUC = 0.74). Domain contribution analysis showed 
that inclusion/exclusion of clinical characteristic cluster (NIHSS score, SBP, and DBP), had the 
highest influence on the performance of predicting sICH in both Caucasian and Han Chinese 
cohorts.
Conclusion: The established SVM model is feasible for predicting the risk of sICH after 
thrombolysis quickly and efficiently in both Caucasian and Han Chinese cohort.
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Introduction
Symptomatic intracranial hemorrhage (sICH), 
which is the most feared complication after 
thrombolysis, leads to increased mortality and 
morbidity in patients with ischemic stroke.1 The 
risk of sICH after thrombolysis varies from 2% to 
7%, with higher rates in East Asia. In addition, in 
a pooled analysis of 6756 patients2 from multiple 
randomized trials comparing alteplase with pla-
cebo, the risk of fatal sICH after thrombolysis 
increased with National Institutes of Health 
Stroke Scale (NIHSS) score on admission, from 
1.6% with a baseline NIHSS score of 5–10 to 
6.8% with an NIHSS score >21. Therefore, it 
raised the question whether patients with severe 
stroke could benefit from lower doses of alteplase, 
especially in Asians with higher susceptibility to 
bleeding compared to Caucasians.3–5

One large randomized controlled trial5 investi-
gated whether a lower dose of intravenous alteplase 
improved the outcomes of ischemic stroke and 
reduce the risk of sICH compared to the standard 
dose, and the results did not show a benefit of 
reducing 3-month death/disability though it 
reduced the risk of sICH. Similar findings were 
reported in the secondary analysis according to 
age, ethnicity (Asian vs non-Asian), and neuro-
logical deficits.6 It is likely that only a small per-
centage of patients with high risk of sICH may 
benefit from low-dose alteplase. In this context, a 
reliable tool to identify these patients may be use-
ful for the design of future randomized trials.

Several risk models were developed to assess the 
risk of sICH after stroke thrombolysis,7,8 but the 
performance of these models is limited. Moreover, 
most prediction models were constructed using 
conventional a logistic regression method, the limi-
tation of which includes the collinearity of varia-
bles and overfitting of the model. Machine learning 
(ML) algorithms, which allow more accurate pre-
diction by modeling linear and nonlinear interac-
tions among many variables,9 have been applied in 
clinical neurosciences showing good performance 
for stroke diagnosis and prognosis.10

So far, few study11–15 developed models for predict-
ing stroke using ML approaches, of which only three 
studies11–13 investigated the prediction of sICH after 
thrombolysis. However, none of the above studies 
were externally validated in an independent sample 
with a different culture and ethnicity, which may 
make the models overfitting and reduce 

the generalizability of predictive models in diverse 
populations (eg, with cultural and ethnic differences). 
In addition, previous studies16,17 found that Asians 
seemed to have higher risk of hemorrhagic transfor-
mation (HT) after thrombolysis than Caucasians due 
to its race differences in genetic polymorphism. The 
GWTG-Stroke sICH risk (GRASPS) score even 
included Asian race as an independent predictor for 
sICH after thrombolysis.18 It raised the question 
whether the model developed by Caucasians could 
predict risk of sICH in populations with different cul-
ture and ethnicity, such as Asians.

Support vector machine (SVM), which is a super-
vised ML algorithm, can be used both for binary 
class label prediction and regression-based pre-
diction of property values.19 It is powerful at pre-
dicting the classification of unseen new data sets 
with higher accuracy and is the most common 
technique among data analysts due to high accu-
racy provided under low computational power.20 
Therefore, we aimed to develop an ML model 
using SVM method to predict sICH after throm-
bolysis in a Caucasian sample from the acute sec-
tion of the Virtual International Stroke Trials 
Archive (VISTA; vista.gla.ac.uk) data set. After 
that, we tested whether this ML model predicts 
sICH after thrombolysis when applied to an inde-
pendent Han Chinese cohort from the West 
China hospital, Sichuan University, China. 
Finally, we also performed a domain contribution 
analysis using the identified ML algorithm to test 
whether Caucasian and Han Chinese cohort have 
the similar pathogenesis of sICH after thromboly-
sis. In the domain contribution analysis, different 
clusters of the predictors we used were modeled 
separately to measure the prediction accuracy in 
the presence and absence of each domain-specific 
set of predictors.

Methods

Participants
Derivation sample. We used data from the acute 
section of the VISTA data set as a derivation 
cohort, and only included Caucasians in this 
study. Patients’ data used to derive any published 
score or model for predicting sICH was excluded 
in this study. VISTA is an anonymized data repos-
itory of completed stroke trials. All included trials 
were performed under appropriate institutional 
review board and regulatory approvals, and only 
fully anonymized data are held by VISTA.21
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Validation sample. We consecutively reviewed 
Han Chinese patients with ischemic stroke 
(⩾18 years old) treated with thrombolysis at the 
West China hospital, Sichuan University between 
1 January 2012 and 31 December 2020 as a deri-
vation cohort. Acute ischemic stroke was diag-
nosed based on the World Health Organization 
criteria,22 and further confirmed by a computed 
tomography (CT) or magnetic resonance imaging 
(MRI) scan. This study complied with the prin-
ciples of the Declaration of Helsinki and was 
approved by Biomedical Research Ethics Com-
mittee of our hospital [2016 (339)].

Predictors. The study included six distinct clusters 
of 28 predictors across both samples: (1) demo-
graphic variables (i.e. age and gender), (2) medical 
history [i.e. myocardial (MI), atrial (AF), hyperten-
sion, diabetes mellitus, previous stroke, previous 
TIA], (3) previous medication (i.e. previous antico-
agulation and previous antiplatelet), (4) baseline 
blood biomarkers [i.e. blood glucose, neutrophils, 
platelet counts, total bilirubin (TBIL), creatinine, 
alkaline (ALP), alanine (ALT), aspartate amino-
transferase (AST)], (5) neuroimaging markers on 
initial CT scan [i.e. Alberta Stroke Program Early 
(ASPECT) Score, visible hypodensity in middle 
cerebral artery (MCA) territory on CT; the extent 
of hypodensity in the MCA territory >1/3 of the 
MCA territory, and midline shift], and (6) clinical 
characteristics[i.e. onset to treatment (OTT), initial 
National Institutes of Health Stroke (NIHSS) 
score, systolic blood pressure, diastolic blood pres-
sure on admission, and cardioembolic stroke]. The 
midline shift was defined as midline shift of more 
than 5 mm at the septum pellucidum level.23

Outcomes. We defined sICH as any deterioration 
on the neurological exam with ICH on CT brain 
imaging within 36 hours after stroke onset based 
on the definition of the National Institute of Neu-
rological Disease and Stroke study (NINDS) cri-
teria,24 which is consistent with the definition 
used in Caucasians. In Han Chinese cohort, the 
presence of sICH was determined by two trained 
neurologists, and the inter-rater reliability 
(Kappa) for assessing the presence/absence of 
sICH in Han Chinese cohort was 0.87.

Data pre-processing and feature selection. The 
missing values were imputed by 5-nearest neigh-
bor model. And Caucasian was defined as train-
ing cohort, while Han’s cohort as testing cohort. 
Before the model training process, the imbalance 

between two classes in Caucasian cohort was 
resolved by synthetic minority oversampling tech-
nique (SMOTE) technique, which25 is an overs-
ampling approach that creates synthetic minority 
class samples. It potentially performs better than 
simple oversampling and it is widely used. Subse-
quently, a random forest model was built using all 
predictors we collected for the aims of sICH pre-
diction. Then based on mean decrease in GINI 
index of this model, the importance of the fea-
tures was ranked. We then included the top-8 fea-
tures from this list for the next step.

Model building and performance evaluation. An 
SVM algorithm with built-in recursive feature 
elimination was used for final predictive model 
building. With this build-in function, the algorithm 
would select optimal subset of feature combination 
from those eight features at the mean time of model 
tuning. The objective function for the model tun-
ing was the area under the curve (AUC). In order 
to get balance between the bias and variation of a 
model, the objective function was calculated based 
on averaged AUCs of internal 50 re-samples using 
five repeats 10-fold cross-validation. Then the 
SVM model with optimal features combination 
and tuning parameter of highest AUC was defined 
as the final predictive model. The performance of 
the models was evaluated by the AUC derived 
from receiver operating characteristics curves and 
other diagnostic statistics (sensitivity and specific-
ity). Calibration curve was also performed to visu-
ally assessed the agreement between model 
predictive and actual probability for original data 
set. Then decision curve analysis (DCA) was used 
to evaluate the clinical value of our model indepen-
dently on the basis of calculating the net benefit for 
patients at each threshold probability. To rule-out 
the possibility of over-fitting, the final model was 
externally validated in our Han Chinese people 
without re-calibration. Finally, we performed a 
domain contribution analysis using the SVM algo-
rithm. In this process, clusters of predictors were 
modeled separately to measure the prediction 
accuracy in the presence and absence of each 
domain-specific set of predictors.

Statistical analysis. Continuous data were 
expressed as mean ± standard deviation or 
median with interquartile range, while categorical 
data were reported as frequencies and percent-
ages. We used χ2 test or Fisher’s exact test to 
assess the differences in categorical data, while for 
continuous data, Student’s t-test, analysis of 
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variance (ANOVA) or the Mann–Whitney U-test 
were performed. A two-sided p < 0.05 was con-
sidered statistically significant. All statistical anal-
ysis was performed using the statistical software R 
version 3.4.1 (http://www.R-project.org).

Results

Patient characteristics
In the final analysis, 1738 Caucasians (age: 
68.37 ± 12.62; male: 1016 [58.5%]) from the 
VISTA data set were included as the derivation 
cohort, and 296 Han Chinese patients (age: 
69.39 ± 13.37; male: 165 [55.7%]) as the valida-
tion cohort (Figure 1). The detailed descriptive 
information of the Caucasian and Han Chinese 
cohort in terms of baseline predictors and the 
outcome of interest are presented in Table 1. 
Distributions of sex and age were comparable 
between the Caucasian and Han Chinese cohorts 
(p > 0.05). Among the 1738 Caucasians, 85 
(4.9%) patients developed sICH. In regard to the 
296 Han Chinese patients, a total of 29 (9.8%) 
patients developed sICH. In addition, the fre-
quency of missing data per variable is also shown 
in Table 1.

The SVM model construction and evaluation
The SVM model involved data processing, fea-
ture selection, model training, testing, and a 
10-fold cross-validation (Figure 2). The feature 
importance for predicting sICH using random 
forest algorithm is showed in Figure 3. In the 

feature-selection step, age, NIHSS score, SBP, 
DBP, ALP, ALT, glucose, and creatine level were 
selected into the final SVM model, all of which 
were from the demographic, clinical characteris-
tics, and blood biomarkers clusters, respectively. 
The model with the highest accuracy was selected 
as the final model for further evaluation. It showed 
a good performance for predicting sICH in the 
Caucasians, and the AUC was 0.87 [95% confi-
dence interval (CI): 0.83–0.91, sensitivity: 0.67, 
specificity: 0.87; Figure 4(a)]. The SVM model 
was then externally validated in the Han Chinese 
cohort, which also showed a good discrimination 
ability for sICH prediction [AUC = 0.74, 95% 
CI: 0.64 to 0.83, sensitivity: 0.50, specificity: 
0.87; Figure 4(b)].

In regard to clinical usability evaluation of the 
SVM model, we did calibration and DCA. Figure 
5(a) illustrates the corresponding calibration 
curve of the SVM model in the Caucasian cohort, 
which suggested a favorable predictive perfor-
mance satisfactorily consistent with the ideal 
curve. DCA was conducted to assess the clinical 
utility of the SVM model [Figure 5(b)]. According 
to the decision curve, it demonstrated that inter-
vention on ischemic stroke patients on the basis 
of the SVM model leads to higher benefit.

Domain contribution analysis
To investigate which domain has the highest 
influence on the performance of the SVM model, 
a domain contribution analysis was performed. In 
this process, to calculate the prediction accuracy 

Figure 1. The flow chart of included patients in the study.
sICH, symptomatic intracerebral hemorrhage.
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Table 1. Descriptive information of Caucasian and Han Chinese cohorts at baseline.

Caucasian samples
(n = 1738)

Missing 
data
(%)

Han Chinese 
samples
(n = 296)

Missing 
data
(%)

p

Demographic characteristics

Age, [mean (SD)] 68.37 (12.62) 0 (0) 69.39 (13.37) 0 (0) 0.2

Male, n (%) 1016 (58.5) 0 (0) 165 (55.7) 0 (0) 0.408

Medical history

Myocardial infarction, n (%) 255 (14.7) 0 (0) 4 (1.4) 0 (0) <0.001

Atrial fibrillation, n (%) 426 (24.5) 0 (0) 81 (27.4) 0 (0) 0.309

Hypertension, n (%) 1218 (70.1) 0 (0) 175 (59.1) 0 (0) <0.001

Diabetes mellitus, n (%) 316 (18.2) 0 (0) 70 (23.6) 0 (0) 0.03

Previous stroke, n (%) 238 (13.7) 0 (0) 36 (12.2) 0 (0) 0.52

Previous TIA, n (%) 142 (8.6) 89 (5.1) 2 (0.7) 0 (0) <0.001

Smoker, n (%) 852 (49.1) 4 (0.2) 109 (36.8) 0 (0) <0.001

Previous medication

Previous anticoagulation, n (%) 81 (4.7) 0 (0) 17 (5.7) 0 (0) 0.462

Previous antiplatelet, n (%) 647 (37.2) 0 (0) 29 (9.8) 0 (0) < 0.001

Clinical characteristics

Onset to treatment time, (median [IQR]) 3.42 [2.92, 3.88] 0 (0) 3.00 [2.00, 4.00] 0 (0) < 0.001

NIHSS score on admission, (median [IQR]) 14.00 [10.00, 18.00] 0 (0) 9.00 [4.75, 15.00] 0 (0) < 0.001

Systolic blood pressure on admission, [mean 
(SD)]

152.82 (24.47) 0 (0) 148.96 (24.95) 0 (0) 0.013

Diastolic blood pressure on admission, 
[mean (SD)]

81.32 (16.31) 22 (1.3) 84.35 (15.76) 0 (0) 0.003

Cardioembolic stroke, n(%) 820 (47.5) 13 (0.7) 82 (27.7) 0 (0) < 0.001

Baseline blood biomarkers

Blood glucose, [mean (SD)] 7.38 (2.82) 253 (14.6) 8.10 (2.96) 0 (0) < 0.001

Neutrophils, [mean (SD)] 7.43 (3.12) 489 (28.1) 6.25 (3.09) 0 (0) < 0.001

Platelet count, [mean (SD)] 234.88 (74.92) 372 (21.4) 184.04 (60.34) 0 (0) < 0.001

Total bilirubin, [mean (SD)] 7.87 (4.58) 171 (9.8) 11.52 (6.38) 0 (0) < 0.001

Creatinine, [mean (SD)] 83.91 (23.89) 86 (4.9) 84.15 (57.13) 0 (0) 0.906

Alkaline phosphatase, [mean (SD)] 78.76 (35.92) 129 (7.4) 81.48 (24.97) 0 (0) 0.212

Alanine aminotransferase, [mean (SD)] 24.07 (23.69) 258 (14.8) 23.05 (17.20) 0 (0) 0.482

(Continued)

https://journals.sagepub.com/home/tan


TherapeuTic advances in 
neurological disorders Volume 15

6 journals.sagepub.com/home/tan

Figure 2. The machine learning model process. The VISTA data set first went through data pre-processing 
which included missing data imputation using 5-nearest neighbor model, data cleansing and normalization. 
For the categorized variables, the one hot encoding was used to cover all the possibilities, and for the 
continuous type of features, Z score normalization was applied. Then, the VISTA set went through imbalanced 
processing by using synthetic minority oversampling technique (SMOTE) technique. The SMOTE technique 
is an oversampling approach that creates synthetic minority class samples. It potentially performs better 
than simple oversampling and it is widely used. This process generated parameters, and the training data 
set was used to evaluate the accuracy of the model. In the end, our model was also external validated in an 
independent Chinese cohort.
sICH, symptomatic intracerebral hemorrhage.

Caucasian samples
(n = 1738)

Missing 
data
(%)

Han Chinese 
samples
(n = 296)

Missing 
data
(%)

p

Aspartate aminotransferase, [mean (SD)] 25.13 (20.75) 375 (21.6) 25.02 (12.69) 0 (0) 0.928

Neuroimaging markers on initial CT scan

ASPECT Score, (median [IQR]) 10.00 [10.00, 10.00] 20 (1.2) 9.00 [8.00, 10.00] 0 (0) < 0.001

Hypodensity, n (%) 131 (7.6) 20 (1.2) 178 (60.1) 0 (0) < 0.001

>1/3 MCA territory, n (%) 3 (0.2) 20 (1.2) 71 (24.0) 0 (0) < 0.001

Midline shift, n (%) 1 (0.1) 20 (1.2) 3 (1.0) 0 (0) 0.011

sICH, n (%) 85 (4.9) 0 (0) 29 (9.8) 0 (0) 0.001

ASPECT Score, Alberta Stroke Program Early CT score; MCA, middle cerebral artery; sICH, symptomatic intracerebral hemorrhage; TIA, transient 
ischemic attack.

Table 1. (Continued)

for each set of features, models were evaluated 
including each cluster only (e.g. only the demo-
graphic cluster) and excluding that cluster (e.g. 
all features except for the demographic cluster). 

The domain contribution analysis is shown in 
Table 2. In both the Caucasian and Han Chinese 
samples, inclusion or exclusion of clinical charac-
teristic clusters had the highest influence on the 
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performance of predicting sICH. The models 
with each of these features only resulted in the 
highest AUC values and their absence in the 
model substantially decreased these measures.

Discussion
In this study, we developed a post-thrombolysis 
sICH prediction model using SVM algorithm in 
Caucasians, and the model was then externally 
validated in an independent Han Chinese cohort. 
To our knowledge, this is the first study to estab-
lish and validate a post-thrombolysis sICH pre-
diction model by using a SVM algorithm in two 
independent samples with different cultures and 
ethnicities. Based on the prediction measures, the 
SVM model showed a good performance for pre-
dicting post-thrombolysis sICH in both Caucasian 
and Han Chinese cohorts, which suggests the 
generalizability of our predictive model.

The eight features included in the model were 
age, NIHSS score, SBP, DBP, ALP, ALT, glu-
cose, and creatine level on admission, four of 
which are from the blood biomarkers domain. 
This approach to biomarker identification may be 
of particular benefit in intermediate risk groups of 
sICH where underlying subclinical risk is not 
apparent based on conventional risk factors. Age 
and NIHSS score are the two most commonly 
used variables employed in sICH prediction.7,8 In 
addition, Bonkhoff et al.26 also found that stroke 
severity (NIHSS score) was the overall most 
important predictor in their model for predicting 
severe complications after ischemic stroke includ-
ing secondary intracerebral hemorrhage. It is con-
sistent with our domain analysis, which showed 
clinical characteristics (NIHSS score, SBP and 
DBP) yielded the highest prediction measures in 
both the Caucasian and Han Chinese samples. In 
regard to our findings about blood pressure (eg, 
SBP and DBP), previous studies reported blood 
pressure to be a risk factor for sICH, sush as the 
Australian Streptokinase Trial,27 SITS-MOST 
registry study,28 and the NINDS trials.29 It raises 
question whether intensive blood pressure man-
agement in patients with high risk of sICH would 
prevent sICH and improve the outcomes. More 
studies are needed to confirm this.

Our model developed by the Caucasian data set 
was able to predict sICH in the Han Chinese data 
set, which suggests the generalization of our 
model. It may indicate that a shared mechanism 

of post-thrombolysis sICH between Caucasians 
and Han Chinese beyond the racial differences in 
genetic polymorphism reported before.16 It may 
also explain that why previous clinical trials found 
no significant ethnic variation in the differential 
treatment effects of low-dose and standard-dose 
alteplase on the disability outcomes or sICH.6 In 
the future, studies with genetic data are needed to 
investigate the effect of race differences on the 
presence of sICH.

One potential contribution of our study is the 
prospect of developing a versatile computerized 
test that enables early and quick screening of 
patients with a high risk for sICH in clinical prac-
tice. Another advantage of our model is the ability 
to recognize the best predictors within a domain 
(demographic, clinical characteristics, blood bio-
markers, etc), as well as their importance with 

Figure 3. The feature importance of in the Caucasian cohort. The color arcs 
represent six distinct clusters of the 28 predictors we collected in the study. 
Numbers in the inner rings represent the importance of each feature for 
predicting sICH in the model.
TIA, transient ischemic attack; TBiL, total bilirubin; ALP, alkaline phosphatase; 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; ASPECT score, 
Alberta Stroke Program Early CT Score; MCA, middle cerebral artery; OTT, onset to 
treatment time; NIHSS score, National Institutes of Health Stroke Scale score; SBP, 
systolic blood pressure; DBP, diastolic blood pressure.
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respect to predictors from other domains. When 
we are developing the model, we considered the 
computation complexity, easy of prediction and 
interpretability. And this is the reason we per-
formed feature selection rather than including all 
features in the model. Especially, in our case, this 
simpler model showed a good performance in 
both Caucasians and Chinese cohort. And 

apparently, our model is less costly, in translation, 
as less features required to measure for a good 
model performance.

Moreover, the predictors in our model are part of 
routine clinical assessment for patients with acute 
ischemic stroke, all of which can be easily and rap-
idly obtained on admission. Since the calculation 

Figure 4. The ROC curves of the support vector machine (SVM) model in Caucasian and Chinese cohort. The 
AUCs of the SVM model for predicting sICH in Caucasian and Chinese cohort were 0.87 and 0.74, respectively: 
(a) Caucasian cohort and (b) Chinese cohort.
ROC, receiver operating characteristics; sICH, symptomatic intracerebral hemorrhage.

Figure 5. Calibration curve and decision curve analysis of the support vector machine (SVM) model in 
Caucasian cohort: (a) Calibration curve of the SVM model and (b) decision curve analysis for the SVM model. 
The red line indicates the decision curve of the SVM model. The green line stands for the assumption that all 
patients developed hemorrhagic transformation, and the gray line represents the assumption that no patient 
had hemorrhagic transformation. The y axis measures the net benefit; the x-axis represents the predictive 
probability threshold.
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cannot be performed by humans, development of 
software is required before applying our ML 
model in clinical practice. After the development 
of automatic software, it may help a general intern-
ist to discuss thrombolysis with patients or fami-
lies, even if the stroke physician is not available.

In addition, our decision curve (Figure 5b) sug-
gests that intervention on ischemic stroke patients 
based on our model may lead to higher benefit. 
Although the thrombolysis is recommended by 
the current guidelines, informed consent is still 
required from the patient or family before throm-
bolysis in China. Whether applying our model 
would shorten the time and even affect the deci-
sion of thrombolysis need more study to further 
validation with a larger number of sICH cases. 
Another possible use of the model is that patients 
with a high risk of sICH after thrombolysis may 
most probably benefit from intensive monitoring 
(such as blood pressure management) or possibly 
a lower dose of intravenous alteplase. In addition, 
our SVM model may lead to lower sample sizes 
required to detect intervention effects with post-
thrombolysis sICH.

Our findings should be considered in light of the 
following limitations. First, the Caucasians were 
from the VISTA clinical trials data set, which are 
not representative samples of patient population. 
However, the good performance of our model in 
an external Han Chinese cohort, suggests the gen-
eralizability of the model in different cultures and 
ethnicities. Notably, we constrained our model 
building by the Caucasians and did not 

re-calibrate our model parameters to fit the 
Chinese cohort before evaluating the model by the 
datapoints in the set. Due to this, the result 
showed a subtle decrease in the model perfor-
mance but still in a range to be regarded as useful 
in clinical practice. And it suggests that our model 
is reproducible and representative. Second, the 
Han Chinese cohort is from single hospital and 
the sample size is quite small. In the future, valida-
tion data from a multi-center study with larger 
sample size in China is required. Finally, the miss-
ing data of the predictors may generate bias. 
Although, the rate of missing data was less than 
30% in the study, it still may be possible to affect 
the performance of the sICH prediction model. A 
large population with fewer missing data is needed.

Conclusion
In conclusion, we have shown that the SVM 
model can be powerful for prediction of sICH 
after stroke thrombolysis in both Caucasians and 
Han Chinese using readily available clinical data 
in a very short time. Our model has the potential 
for clinical research to identify subjects at high 
risk of sICH after thrombolysis and to evaluate 
therapeutic interventions for reducing post-
thrombolytic sICH.
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