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• Reproducible and end-to-end analysis
pipeline for wastewater sequencing is
able to uncover SARS-CoV-2 lineages.

• We observe and recapitulate the surge of
Delta and Omicron SARS-CoV-2 variants
correctly in Berlin using wastewater
samples.

• We provide interactive reports with
geospatial trends of SARS-CoV-2 variants
and potentially unknown emerging muta-
tions.

• Our data analysis framework works with
data from variety of locations and se-
quencing methods.
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The use of RNA sequencing fromwastewater samples is a valuable way for estimating infection dynamics and circulat-
ing lineages of SARS-CoV-2. This approach is independent from testing individuals and can therefore become the key
tool tomonitor this and potentially other viruses. However, it is equally important to develop easily accessible and scal-
able tools which can highlight critical changes in infection rates and dynamics over time across different locations
given sequencing data from wastewater. Here, we provide an analysis of lineage dynamics in Berlin and New York
City using wastewater sequencing and present PiGx SARS-CoV-2, a highly reproducible computational analysis
pipeline with comprehensive reports. This end-to-end pipeline includes all steps from raw data to shareable reports,
additional taxonomic analysis, deconvolution and geospatial time series analyses. Using simulated datasets (in silico
generated and spiked-in samples) we could demonstrate the accuracy of our pipeline calculating proportions of
Variants of Concern (VOC) from environmental as well as pre-mixed samples (spiked-in). By applying our pipeline
on a dataset of wastewater samples from Berlin between February 2021 and January 2022, we could reconstruct
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the emergence of B.1.1.7(alpha) in February/March 2021 and the replacement dynamics from B.1.617.2 (delta) to
BA.1 and BA.2 (omicron) during thewinter of 2021/2022. Using data from very-short-reads generated in an industrial
scale setting, we could see even higher accuracy in our deconvolution. Lastly, using a targeted sequencing dataset from
New York City (receptor-binding-domain (RBD) only), we could reproduce the results recovering the proportions of
the so-called cryptic lineages shown in the original study. Overall our study provides an in-depth analysis
reconstructing virus lineage dynamics fromwastewater. While applying our tool on a wide range of different datasets
(from different types of wastewater sample locations and sequencedwith differentmethods), we show that PiGx SARS-
CoV-2 can be used to identify newmutations and detect any emerging new lineages in a highly automated and scalable
way. Our approach can support efforts to establish continuous monitoring and early-warning projects for detecting
SARS-CoV-2 or any other pathogen.
1. Introduction

The ongoing COVID-19 pandemic highlighted the need for monitoring
approaches to track emerging pathogens and pathogenic lineages.
Acknowledging the importance and potential impact of wastewater-borne
epidemiological analysis, the European Commission has recently recom-
mended to implement continuous monitoring on SARS-CoV-2 through
wastewater in all member states (European Comission . Commission Rec-
ommendation (EU), 2021). SARS-CoV-2 is a positive strand RNA virus
from the family Coronaviridae, genus Betacoronavirus (Fehr and Perlman,
2015; Zhou et al., 2020). As an alternative to individual patient tests that
are tedious and expensive, Wastewater Based Epidemiology (WBE) has, be-
fore this pandemic, been used for different enteric microorganisms such as
vaccine and wildtype polioviruses (Ranta et al., 2001), rotaviruses, hepati-
tis A, astroviruses, adenoviruses, and noroviruses (Petrinca et al., 2009). In
the past two years, wastewater monitoring has been shown to be an effec-
tive tool for monitoring incidence rates. Multiple studies showed that it is
possible to detect viral RNA even before widespread clinical reports (Wu
et al., 2020;Medema et al., 2020; Bar-Or et al., 2022; Xiao et al., 2021), sug-
gesting a potential as an early alert system.

Several WBE initiatives for SARS-CoV-2 monitoring were established
worldwide, and currently, the “COVIDpoops19” initiative (Naughton
et al., 2021) lists 128 dashboards from 276 universities monitoring 3364
sites. However, many of those studies are based on RT-qPCR analyses, lim-
ited to quantifying the viral titer and/or tracking a few known lineages, cor-
relating the results with the reported number of cases in the area. A few
studies have been using amplicon sequencing or metagenomics covering
the whole viral genome, allowing to track virus lineages through signature
mutations (Crits-Christoph et al., 2021; Izquierdo-Lara et al., 2021;
Landgraff et al., 2021). However, quantifying Variants of Concern (VOC)
by next generation sequencing (NGS) reads remains challenging due to
fragmented sequences. Moreover, sequencing and quantifying lineages
are just the first steps in understanding the dynamics of the outbreaks.
The sequencing results should be easily analyzed and combined with
geospatial time series analysis. Tracking of VOCs over time and space can
inform policy-making decisions in order to control new outbreaks. In this
study, we aimed to develop a reproducible, automatized, open-source pipe-
line for analyzing continuous sampling of wastewater treatment plants to
track signature mutations of SARS-CoV-2 lineages of interest and emerging
mutations via wastewater amplicon sequencing. Our main objectives were:

(i) To benchmarked the pipeline using simulated (in silico) data and
spiked-in samples (Karthikeyan et al., 2022).

(ii) To sequence and analyze samples from Berlin wastewater using the
ARTIC protocol (Pipelines R&amp et al., 2020) with 2 different sequencing
protocols of ~250 bp length (in the following called “dataset-Berlin250”)
and under industry conditions of ~35 bp length (in the following called
dataset-Berlin35) during the 3ed and 4th pandemic wave in Germany;

(iii) To analyze previously published dataset from New York City,
where the sequencing was restricted to the receptor binding domain
(RBD) region (Smyth et al., 2022) (in the following called “dataset-NYC
(RBD)”), showing the accuracy and usefulness of our methods for SARS-
2

CoV-2 monitoring with data generated from multiple sites and approaches
(iSeq and MiSeq).

2. Results

2.1. A reproducible computational pipeline for tracking SARS-CoV-2 in
wastewater

We developed a new pipeline - PiGx SARS-CoV-2 - in the framework of
our previously published set of pipelines called PiGx (Wurmus et al., 2018).
They are designedwith a special focus on usability and reproducibility. The
new pipeline was added to the PiGx collection of pipelines and it is distrib-
uted together, using GNU Guix (See Fig. 1 for a diagram of the workflow).
The pipeline comes with all the needed tools and their dependencies and
can thus be reproduced on different systems independent of any other
installed software. In comparison to other published tools like “Freyja”
(Karthikeyan et al., 2022) and some commonly used pipelines for variant
analysis like V-pipe (Posada-Céspedes et al., 2021) in combination with
“COJAC” (Jahn et al., 2022) or the “ARTIC bioinformatics pipeline”
(Pipelines R&amp et al., 2020), PiGx SARS-CoV-2 additional features (see
Table 1) improve 1) usability, 2) suitability for environmental samples
like wastewater and 3) the deployment for robustness and reproducibility.

In terms of usability, PiGx SARS-CoV-2 runs all steps end-to-end fully
automatic and provides a comprehensive HTML report at the end. It is suit-
able and tested for a variety of sequencing input formats (variation in read
length, paired- and single end format, primer sequence present or absent
and different Illumina protocols). Furthermore it allows customizable in-
puts i.e. the reference genome or tool-specific settings.

Next to monitoring and predicting known lineages, PiGx SARS-CoV-2
does not only allow for reporting a file with new mutations (as most of
the other mentioned tools do) but it automatically evaluates trends in all
new mutations and reports those with consistently increasing frequency.

In addition, the directly implemented geospatial tracking allows to com-
pare andmonitor infection dynamics from different locations (See example
reports in Data access section).

2.2. Benchmarking the pipeline using spiked-in and simulated samples

In order to check the accuracy of our pipeline, we analyzed two simu-
lated datasets.

First, we analyzed a spike-in mixture dataset from Karthikeyan et al.
(Karthikeyan et al., 2021). We obtained 384 BAM files with reads pre-
aligned to a SARS-CoV-2 reference genome (Supplementary Table S2.3,
with samples ranging from 1160 to 1,955,791 reads. Four samples did not
pass the 90 % reference genome coverage threshold and were discarded. In
total, we tracked 99 signature mutations from 5 lineages, which were in al-
most all samples covered with at least 100 reads per site (Supplementary
Table S2.3). Overall, we found 225 ± 54 mutations in this dataset.

Analyzing the predictions for each lineage with our deconvolution
method, we found that we were able to recall the expected proportions of
lineages with R2 above 0.9 (Fig. 2B).



Fig. 1. Flowchart of PiGx SARS-CoV-2 pipeline describing required input files, the analysis workflow and used tools and output files.
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Additionally, we tested the pipeline on a second simulation data set (see
Methods), generated in silico with known proportions of lineages. A total of
100,000 reads were generated. In this comparison, we used a set of 179 sig-
naturemutations from 6 lineages, of which 74were recovered (Supplemen-
tary Table 2.4). Overall, our methods were able to get the expected
proportions of lineages with R2 of 0.97 (Fig. 2C).

2.3. Wastewater SARS-CoV-2 sequencing and analysis with PiGx SARS-CoV-2

For this study, we sequenced a total of 988,025,456 reads from 171
samples from Berlin, using two different sequencing protocols. Firstly, for
dataset-Berlin250 we obtained 74,633,648 reads, from 62 samples col-
lected at four different wastewater treatment plants in Berlin operated by
the municipal water authority (“Berliner Wasserbetriebe”) from 09th of
February to 10th of June 2021 (Phase I) and from 16th of September
2021 to 19th of January 2022 (Phase II), using paired-end Miseq/Novaseq
protocol with 2 × 250 bp reads. Between the two phases, due to low inci-
dence rates, sequencing quality was insufficient. The average number of
read-covered signature mutation sites per sample was 105 (SD 33, from a
total of 154 tracked signature mutations, see mutation tables in the Supple-
mentary Table S1). Of those 62 samples, 16 samples did not pass the de-
fined quality control threshold (samples for which <90 % of the signature
mutation sites were covered).

Wewere able to align from11 to 99%of sequencing reads (1 outlier with
only 5%aligned reads) to theWuhan reference SARS-CoV-2 genome, and the
resulting alignments were used for variant calling. We were able to detect a
Table 1
Feature comparison between different available pipelines and analysis tools.

COJAC (+ V-pipe) Frey

Deployment Package available through conda, but
execution relies on separate jupyter notebooks

Pack
thro

Lineage prediction strategy Co-occurrence analysis using
Maximum-Likelihood-Estimation

Dec
cons

Detection/Identification of emerging
new/single mutations

+ −

End-to-end +
manual execution of multiple notebooks
needed

−

Variable reference ge-mes as Input + −
Output summary reports with
visualization, stats and data

−
(only separate outputs of each notebook)

−

Enables geospatial analysis − −
Single Mutation trend analysis
directly implemented

− −

Can take Input from different seq
strategies and different read length

Limited, performance may vary with read
length (Karthikeyan et al., 2022)

Star
files

Bit-by-bit reproducibility − −

3

total of 3210 mutations, of which 133 are signature mutations, across all
the samples (See methods for details on alignment and variant calling). The
overall frequency of mutations per sample is shown on Supplementary
Table S2.1-S2.4. The results of the time-series analysis for mutations and
deconvolution of lineages for this dataset is presented in the sections below.

Secondly, industry scale dataset-Berlin35 contains 109 samples from
one Berlin wastewater plant and three pumpstations (also operated by
“Berliner Wasserbetriebe”). We used a paired-end very-short-read protocol
(2 × 35 bp), for fast real time monitoring from 03.08.2021 to 20.01.2022.
This data was analyzed in order to test our pipeline in a real time data
monitoring system. We obtained a total of 913,391,808 35 bp reads. The
average reference genome coverage was 97 % (SD 5.7) with 9 samples
not passing the quality control (QC) criteria of >90 % reference genome
coverage. The average number of signature mutations found per sample
was 27 from the 154 tracked (SD 14.5) mutations and the mean of overall
mutations found was 288 per sample (SD 147.5). The results of time-
series mutation analysis and deconvolution of lineages for this dataset can
be found in Supplementary Table S3.

The third dataset - dataset-NYC(RBD) - originated from published deep
sequencing data of the receptor binding domain (RBD) of SARS-CoV-2 on
samples from January 31th to June 14th 2021 collected in New York City
(NYC) wastewater and published by Smyth et al. (Smyth et al., 2022). In
the 94 samples reanalyzed here, we found, on average, 8 of the 12mutation
sites within the RBD (mean number of signature mutations found was 3.5).
We did not apply a reference genome coverage cutoff because the sequenc-
ing was restricted to a small genomic region.
ja ARTIC
bioinformatics
pipeline

PiGx Sars-Cov-2

age available
ugh conda

Package available
through conda

Package available through GNU Guix,
workflow management using snakemake

onvolution using
trained minimization

None, ends at
variant calling
step

Deconvolution using robust regression

+ +

− +
fully automatic with options to start at
different steps

− +
− +

− +
− +

ts only from the BAM − +

− +



Fig. 2. A) Prediction verification results for the spike-in data simulation per lineage, the dotted line shows the expected trendline; B) Prediction verification results for the
spike-in data simulation across all lineages excluding lineage A; C) Prediction verification results in-silico simulation, single-end simulated 40 bp reads from GISAID, 100 k
reads.
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Smyth et al. described 3 cryptic lineages that were found in New York
City wastewater: WWTF #10 (7 mutations), WWTF #11 (8 mutations),
WWTF #3 (23 mutations) (see Supplementary Table S4). We tested our
pipeline's ability to highlight those “cryptic lineages” early on as well
from the purely computational analysis in contrast to the extensive wet
lab experiments that it took the authors to discover them. The results of
this analysis are shown in the section below.

2.4. Emerging mutations can be teased out from time-series analysis

The time-series nature of the data can not only be used to track SARS-
CoV-2 lineages, but also to identify trends for individual mutations. We ap-
plied a linear regressionmodel for eachmutation using the date of sampling
as the independent variable to identify mutations with strong increasing
trends over time (see Methods). We considered mutations significant if
the t-test p-value is below 0.05 . The full lists can be found in Supplementary
Table S5.

Overall, merging the two sample groups within dataset-Berlin250 from
Berlin Phase I and II for a single analysis, 105 mutations were significantly
changing over time from February 2021 until January 2022. The top 10
most significantly changed mutations are shown in Fig. 3A.

Here, six of the highlighted mutations M:I82T::T26767C, ORF3a:S26L::
C25469T, ORF1ab:V3689-::A11332G, ORF1ab:V2930L::G9053T, S:
D950N::G24410A, ORF1ab:P5401L::C16466T, are uniquely characteristic
for the lineage B.1.617.2 (delta). They show a similar pattern, emerging
mostly during the summer of 2021 and decreasing in January 2022.
Hereby, S:D950N::G24410A and M:I82T::T26767C already started to ap-
pear with increasing frequency in late April 2021, but inconsistently. The
mutation S:T478K::C22995A is a shared mutation between the lineages
B.1.617.2 (delta), BA.1 and BA.2 (omicron). It showed a consistent increase
from July 2021 and reached 100 % of presence until the end of our time-
4

series. However, N:P13L::C28311T and S:T95I::C21846T are unique muta-
tions for the BA.1 lineage where the latter already started to continuously
increase in frequency starting in October 2021 which is a month earlier
than the B.1.1.529 (omicron) lineage family was started to track by the
RKI (Fig. 4C).

Within the dataset-NYC(RBD) (Smyth et al., 2022), we found a total of
69 significantly changing genome variants. The highlighted mutations
with the 10 highest correlation values in Fig. 3B point out 8 of the 28
reported mutations of cryptic lineages (see Supplementary Table S4). Addi-
tionally S:N501Y::A23063T and S:A570D::C23271A were highlighted
which are characteristic mutations for B.1.1.7 (alpha). They show a con-
stant increase already up to 40% inMarch which is around 1month earlier
than the reported abundancy for B.1.1.7 (alpha) based on cases (Fig. 4D).

2.5. Deconvolution of mutation frequencies infers SARS-CoV-2 lineage frequencies

In our pipeline, we have implemented methods to deconvolute the fre-
quencies of VOCs from pooled sequencing reads. Briefly, the deconvolution
method uses signature mutations for each VOC and tries to discern the pro-
portions of these lineages making up the observed mutation frequencies in
the pooled (bulk) sequencing reads obtained from the wastewater. In this
study,we tracked 4 lineageswhichwere classified at the time of data collec-
tion as VOCs: B.1.1.7 (alpha), B.1.351 (beta), P1 (gamma) and B.1.1617.2
(delta) in both datasets from Berlin andNewYork City. For the latter we ad-
ditionally tracked the lineage B.1.526 (Iota). For the samples from Berlin
from Phase II we additionally tracked the BA.1 and BA.2 lineages, which
taxonomically are classified as sublineages of B.1.1.529 (omicron) and be-
came VOCs in November 2021. We decided to track them separately in
order to get a higher resolution on their dynamics. In the following, when
comparing to official reported lineage abundances we are adding up our
separate abundances for BA.1 and BA.2 to compare to reported values for



Fig. 3.A) Top 10 sequence variants that significantly increase over time in Berlin. Themutations were pooled over locations of four differentwastewater treatment plants and
daytime and sorted by decreasing coefficients from linear models. Statistical significance was evaluated by a t-test using p≤ 0.05 as cutoff. Only samples passing the sample
quality scoring (>90 % reference genome coverage) were used. There was no sampling between June 11 and September 19, 2021. B) Top 10 sequence variants that signif-
icantly increase over time in New York City (NYC) (2021). The mutations were pooled over locations of 14 different wastewater treatment plants in NYC and daytime and
sorted by decreasing coefficients from linear models. Statistical significance was evaluated by a t-test using p ≤ 0.05 as cutoff.
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B.1.1.529 (omicron). We characterized the lineages with a mutation table
(Supplementary Table S1) containing signature nucleotide mutations
from covidCG (Chen et al., 2021). We took a list of mutations with a se-
quence consensus threshold of 70 %. We included mutations that are
unique for each lineage, as well as mutations that are shared by two or
more lineages. Of note, the pipeline is flexible and can track any lineage
if the signature mutations are provided in nucleotide format.

We applied this deconvolution method (based on the frequencies of the
signature mutations) to infer the proportions of each lineage on each sam-
ple (Supplementary Table S3). The lineage frequencies are predicted
using a regressionmodel based on the observed frequencies of the signature
mutations for each lineage. In the course of the method development, we
found that for some datasets - especially those with sparse sampling rate -
an additional weighting step improves the prediction results. It is an
optional step that was applied to all datasets except those used for
benchmarking (see Methods).

Fig. 4A shows VOC proportion changes over time across 4 wastewater
treatment plants in Berlin (merged results of Phase I and Phase II). Overall,
we predict an increase in B.1.1.7 (alpha) that had 57 % on February 19th
(beginning of sampling of Phase I) and increased to 79 % on June 10th
5

(end of sampling of Phase I) with a peak of 99 % on May 25. Also B.1.351
(beta) increased from zero detection in February to 8 % in May with a pre-
dicted peak of 10 % on May 25. The B.1.617.2 (delta) lineage was barely
detected with 3 % over the sampling time of Phase I increasing to 11 %
on May 12. We predicted 16 % of B.1.617.2 (delta) as early as in February
2021 but this result is likely to be inaccurate. For P1 we could predict in
Phase I a decrease from 17 % on February 19 to zero in June. However in
sampling Phase II, P1 is predicted again with an abundance peak of 18 %
on October 28. During winter 2021 the predicted P1 abundance decreases
continuously down to 3% in January. The tracking of the lineages BA.1 and
BA.2 started with sampling Phase II in September 2021 where they were
initially predicted with a total abundance of 6 %. Their abundance rapidly
increased to ~90 % by January 19 with BA.1 at ~70 % and BA.2 with
~20 %. In the timeframe we sampled, the diversity and abundance of
lineages that are not VOCs was already very reduced. We only predicted
unspecified lineages (labeled as “Others”) with 8 % in February 2021 and
it fell below 1 % on March 11 and never increased again.

In order to see if the predicted results can reflect the abundances of
circulating lineages in Berlin, we compared the deconvolution results
with lineage analysis data published by the Robert Koch-Institute (RKI)



Fig. 4. A) Proportion of tracked lineages over time in Berlin wastewater. Only samples passing the sample quality scoring (≥ 90 % reference genome coverage) were
considered. Shaded area highlights the non-sampling Phase. B) Proportion of tracked lineages over time in New York City wastewater. The proportions were calculated
with a deconvolution model based on the signature mutation frequencies. “Others” denotes a set of reference mutations derived from the deconvolution matrix. Sample
results were pooled from four different wastewater treatment plants using weighted mean with read number as weights. In case of undistinguishable lineages the
proportion derived for the group was distributed equally for the affected lineages. C,D) Comparison of deconvolution results (dark color) with lineage frequency analysis
data from Robert-Koch-Institute (RKI) (C) or NYC Department of Health and Mental Hygiene (NYC) (D) (light color). Deconvolution results were pooled by weeks using
weighted mean using sample read numbers as weights. For the data from Berlin only samples passing the sample quality scoring (≥ 90 % reference genome coverage)
were used.
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for Germany (Fig. 4C). Hereby, lineage dynamics for Germany are very
comparable to the dynamics within the city of Berlin. We can see that our
predicted lineage frequencies are very similar to the reported lineage distri-
bution based patient testing. Only B.1.1.7 (alpha) showsmostly higher pre-
dicted values, but with very similar trends. Also the predictions of the
lineages BA.1 and BA.2, which are taken together comparable with the re-
ported B.1.1.529 (omicron) values are higher in the beginning (December
2021) than the RKI values, but become very similar in January 2022. This
is explainable with the continuous detection of the mutation ORF1ab:
T3255I::C10029T, which is listed as unique signature mutation for BA.1
and BA.2, but is also carried by the B.1.617.2 sublineage 21 J (nextstrain.
org, n.d.) (but not by the parent clade) that we did not actively track in
this analysis.

The analysis of the dataset-Berlin35 showed similar results as for the
dataset-Berlin250 as shown in Supplementary Fig. 1. Of note, the predic-
tion results for the abundances of B.1.617.2 (delta) and B.1.1.529/BA.1
+ BA.2 (omicron) are showing less divergence from the RKI values than
for the dataset-Berlin250.
6

The data from New York City (Fig. 4B) shows a more diverse mixture
throughout the sampling phase according to the predicted high proportion
of “Others”. This proportion was as high as 82 % in January 2021 decreas-
ing to 15%on April the 5th but then had a predicted increase again to 97%
in June. The most dominant lineages were B.1.1.7 (alpha) which increased
from 0% in January up to 44% in April and B.1.526 (Iota) which increased
from 4 % in January up to predicted 28 % in April. However, the compari-
son with the data reported fromNYCDepartment of Health andMental Hy-
giene (NYC health) (Fig. 4D) suggests that both lineages circulated with
similar abundances within the given timeframe and that the differences
in the predicted values are due to the expected inaccuracy of the pipeline.
The abundance of B.1.351 (beta) increased slightly from 4 % in January
to 5 % in April but was not present anymore after. For B.1.617.2 (delta),
we predicted a continued increase up to 10 % in April which is also in
contrast to the NYC health data where the abundance of delta only starts
to increase at the end of May. For P1 (gamma) we predicted an increase
from 3 % in January up to 17 % in May. This trend is also shown from
the NYC health data. However, we also predicted 70 % P1 in June. For
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this prediction only 4 signature mutations across all lineages were found
and 1 of them is S:K417T::A22812Cwith a frequency of 1 which is a unique
signature mutation of P1 (gamma). Besides both above-mentioned differ-
ences, our prediction results are consistent with the NYC health data as
shown in Fig. 4D. Unpooled results for single locations for both datasets
are attached as Supplemental material (Supplementary Table S3).

In Fig. 5, we combined the visualization of key mutation frequencies,
cases of COVID-19 in Berlin (from RKI), and deconvolution results for
B.1.617.2 (delta) and BA.1/BA.2 (omicron) lineages.

We can see that the mutations M:I82T and M:D63G showed a strong in-
crease together with RKI case numbers andwith B.1.617.2 (delta) proportions
from our deconvolution results. The same pattern is shown for N:P13L,
ORF1ab:P3395H and S:H655Y, raising together with omicron lineages. How-
ever, themutationORF1ab:T3255I (tracked as BA.1 and BA.2 signaturemuta-
tions in our deconvolution) was detected with frequency of 100 % already in
September 2021, while Omicron was not present yet. This mutation was in
high frequency when B.1.617.2 (delta) was predominant and stayed high
while omicron raised. This could have hinted that this mutation was already
present in a sub-clade of B.1.617.2 (delta) (nextstrain.org, n.d.) and in fact
this mutation is present in delta sub-clade 21J (covariants.org, n.d.).

2.6. RT-qPCR on wastewater samples reflect SARS-CoV-2 incidences

SARS-CoV-2 levels in wastewater have been repeatedly used tomonitor
and also predict incidence rates in the populations (Isaksson et al., 2022;
Lastra et al., 2022). In order to recapitulate this in our samples, we checked
if RT-qPCR results correlated with case numbers in the region. For RT-
qPCR, we used 4 pairs of primers for SARS-CoV-2 detection (RT-qPCR) on
the wastewater samples. Due to the very low amount of viral particles pres-
ent overall, we decided for a semi-quantitative approach, instead of using
the cycle threshold (Ct) values, calculating the number of positive
Fig. 5. A) Combination of lineage prediction results (deconvolution) for B.1.617.2 an
T26767C, N:D63G::A28461G, ORF1ab:T3255I::C10029T, ORF1ab:P3395H::C10449A, N
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detections divided by the number of total reactions carried, grouping all
the samples for each day (See Methods for details). The daily percentage
of positive qPCR reactions ranges from 0 to 7 out of 8 (Supplementary
Table S6). We also found positive, significant correlation with RT-qPCR re-
sults and incidence rates (adjusted R2 = 0.32, t-test p-value = 0.0004, see
Fig. 6A-B). In addition, we have also repeated the cross-correlation analysis
between incidence rate and RT-qPCR results with different time lags. In this
case, lag = −1 week also had positive correlation with the incidence rate
(adjusted R2 = 0.47, coefficient = 0.5, t-test p-value = 9.8e-06)
(Fig. 6C-D). Overall, this is in agreement with the predictive value of waste-
water monitoring detailed in previous studies (Wolfe et al., 2021).

3. Discussion

In many countries, epidemiological monitoring of SARS-CoV-2 is
largely dependent on PCR-based or antigen detection methods without se-
quencing which is applied on patient samples. These techniques can be
used for variant detection only after a concerning new lineage is detected
and an appropriate assay was developed. In order to discover new lineages,
we need to be able to call mutations of the SARS-CoV-2 genome which can
be done using sequencingmethods. However, sequencing-based techniques
are deployed on only a fraction of the patient population. Wastewater mon-
itoring emerged as a viable option to track the prevalence of COVID-19 and
also for the emergence of different lineages (Lin et al., 2021) at the popula-
tion level not only because it is faster and cheaper than sequencing of sam-
ples derived from patients, but it can also bemore representative due to less
bias through the choice of which samples are going to be sequenced. Fur-
thermore it can also be used to track early emerging mutations or lineages
of SARS-CoV-2. However, sequencing of SARS-CoV-2 material obtained
fromwastewater presents data analysis challenges as the samples are poten-
tially from numerous patients, and have lower quality than material
d BA.1/BA.2 (dataset-Berlin250), B,C,D) single key signature mutations M:I82T::
:P13L::C28311T, S:H655Y::C23525T and case numbers in Berlin (from RKI).



Fig. 6. A) 7 days average of COVID-19 cases in Berlin, data from Robert Koch-Institute (RKI) (light green, left axis) and proportion of samples positively determined SARS-
CoV-2 RNA by RT-qPCR (dark violet, right axis) over Feb - Jan 2022. B) Correlation of 7 days average of COVID-19 cases in Berlin and proportion of samples with positively
determined SARS-CoV-2 RNA by RT-qPCR. C) 7 days average of COVID-19 cases in Berlin, data from Robert Koch-Institute (RKI) (light green, left axis) and proportion of
samples positively determined SARS-CoV-2 RNA by RT-qPCR (dark violet, right axis) over Feb - Jan 2022 with one time point lag. D) Correlation of 7 days average of
COVID-19 cases in Berlin and proportion of samples with positively determined SARS-CoV-2 RNA by RT-qPCR with one time point lag.
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obtained directly from patients. In addition, the analytical workflows
should be able to deal with samples frommultiple locations and time points
and combine the information in an easily accessible manner.

In order to address these challenges, we have built a reproducible
analytics pipeline that takes in raw sequencing reads and provides sharable
interactive reports. It contains essential data, analysis results (summarized
and per-sample) in commonly used formats (for sharing and postprocessing)
and visualizations all in one. Furthermore it directly includes geospatial infor-
mation, andmutation and lineage tracking features over time. This provides a
more straightforward way for discovering lineage divergence and cryptic lin-
eages (as shown on the analysis of the dataset-NYC(RBD)). For monitoring
projects, it is important to provide a workflow that can handle both continu-
ous sampling and the need to make slight adjustments to the expected data.
Above that, maintaining proper documentation and reproducibility of the re-
sults at all times is also an essential feature. All of the tools mentioned in the
comparison come as packages deployed e.g. through conda, which is a first
step for ensuring this. However, having tomanually execute single notebooks
for single samples or single sample batches, or executing single commands is
onlymarginally scalable and prone to human error and insufficient documen-
tation behavior which can lead to a lack of reproducibility. PiGx SARS-CoV-2
offers state-of-the-art software bit-by-bit reproducibility thanks to GNU Guix
(Wurmus et al., 2018) and workflowmanagement using snakemake. By pro-
viding the flexibility to start the workflow at different steps but also keeping
as many steps as possible in an automatic way, many samples can be proc-
essed over time in a timely and error efficient way.
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The pipeline comeswith built-inflexible quality controlmetrics since sam-
ples from wastewater pipeline can have more frequent quality issues. In our
analysis, we applied a strict cutoff for reference genome coverage (≥ 90 %)
for whole-genome sequencing data to reduce noise in our predictions. Our
pipeline also allows the user to input their own reference genome and their
own set of signature mutations and lineages. As an additional step for QC,
we implemented a taxonomic classification of reads that did not align to the
SARS-CoV-2 reference genome. Since we used a PCR based protocol, we ex-
pect some degree of nonspecific amplifications, so it is of great help to have
an additional control bymeans of the taxonomic classification to assess poten-
tial biases. Also since Kraken2 is a k-mer classifier, this method can reveal
reads that match SARS-CoV-2 but are not aligned by stringent alignment
tools. This is important to know because it provides insights about potential
loss of newmutationsmissed on the alignment. This step allows the user to in-
vestigate potential issues and, if necessary, to adjust the alignment stringency.

Aiming to benchmark our pipeline, we tested it on two different simu-
lated datasets, allowing us to estimate the error rates from our methods.
For the dataset generated in silico,we were able to show that our predicted
results are in high agreement with the expected values. This shows that our
pipeline has potential to track accurately VOC from sequencing data. How-
ever, we are aware that real sequencing data can offer further challenges,
such as low quality sequencing, presence of many other microorganisms
and untracked lineages of SARS-CoV-2. In order to better benchmark our
tool, we also analyzed spiked-in samples generated by (Karthikeyan et al.,
2021). Our results overall outperformed those of the original publication.
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One of the primary features of our approach is built-in tracking of emerg-
ing mutations. This feature allowed, for example, early prediction of lineages
such as B.1.617.2 (delta) from a single signature mutation M:I82T::T26767C
(Fig. 5) in the dataset-Berlin250.Wewere able to detect the lineage character-
izing mutations before the lineage itself was detected in the population
(Fig. 5). This specific mutation was described to be associated with critically
increased viral fitness (Shen et al., 2021). The analysis and results are also vi-
sualizedwithout the need for any additional steps directly in the summarizing
report. We showed that our pipeline and its reports can be a valuable tool for
early warning predictions and to guide additional targeted analysis.

Another key feature of our approach is the deconvolution method that
helps us identify the proportion of lineages present in environmental samples
such as wastewater samples. Bymaking use of a weighted regressionmethod,
wewere able to provide accurate estimates of lineage proportions for our sam-
ples over time. For the VOCs that we tracked with signature mutations, we
show in Fig. 4 that our model can accurately predict the composition of line-
ageswhen comparingwith abundances of circulating lineages reported during
the same time frame, evenwith very low frequencies. Thismethodwas able to
predict the rapid increase of the lineages BA.1 and BA.2 in the winter (Fig. 4).

It is important to note that the mutations commonly used for tracking
B.1.1.7 in other studies, S:N501Y::A23063T and del69/70 (Sandoval
Torrientes et al., 2021; Vega-Magaña et al., 2021) were rare or not found
in our Berlin dataset, but they were detected in NYC dataset (Fig. 3B),
and this might be explained by PCR bias differences between the datasets,
because the NYC dataset only sequenced the RBD genomic region, having
a higher resolution on the mutations in this genomic region.

Additionally, with the dataset-Berlin35, we showed that our pipeline
can be used in an industrial production system for real-time monitoring.
The results obtained were comparable with the dataset-Berlin250 for the
same time frame (Phase 2). Interestingly, for the dataset-Berlin35, BA.1
+ BA.2 (omicron) predictions are followed by RKI incidence cases closer
in time than for the dataset-Berlin250, where we detect omicron and
delta one week in advance. For B.1.617.2 (delta), the dataset-Berlin35
showsmore similar proportions than for the dataset-Berlin250 (See Supple-
mentary Fig. 2). These results can suggest that the inaccuracies found in our
dataset-Berlin250 can be explained by differences in the data generation
(read length, internal sequencing validations or differences on sampling
sites) rather than in data processing with our pipeline.

As reported in previous studies in other cities around the globe (Ahmed
et al., 2020),we showed that also for Berlin, the quantification fromwastewa-
ter can reveal the prevalence of infections on a community scale earlier than it
is possible from clinical testing. Although RT-qPCR results are not fully quan-
titative, observing this expected trend was important and paved the way for
more robust lineage and mutation trend analysis using sequencing.

Regardless of the methods used on wastewater, as previously published
reports also indicate, wastewater monitoring may provide early warning
for future case numbers and emerging mutations even post-pandemic
when populations are not tested and monitored that thoroughly as during
the pandemic.

In conclusion, we present a reproducible and comprehensive workflow
with a strong emphasis on usability and reproducibility that has features for
tracking mutations and VOC over time and geographical locations. We
stress-tested the tool with simulated data and real world data fromdifferent
locations and with different methods, showing the usefulness of our tool
but also the importance of keeping lineage nomenclature and mutations
tracked consistent, for comparable results.

4. Methods

4.1. Experimental methods

4.1.1. Enrichment of viral particles from raw wastewater and RNA extraction
For the dataset-Berlin250, rawwastewater samples were collected from

four different wastewater treatment plants across Berlin, serving a popula-
tion of approximately 3.4 million people in total. They were collected as
composite 2 h samples (8–10 pm and 10–12 pm) at the primary influent
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collector at the indicated wastewater treatment plants. Typical characteris-
tics of Berlin wastewater treatment plant effluents are 500–1500 mg/L
chemical oxygen demand, 200–600 mg/L suspended solids, 40–80 mg/L
ammonium-N, 2–8 mg/L orthophosphate-P, 1500–2000 μS/cm electrical
conductivity.

Samples were stored and transported at four degrees, and processed
about 12 h after collection. The samples were enriched for viral RNA as
previously described (Jahn et al., 2021). About 100mL sample was filtered
through 2 glass fiber and 0.2 μM PVDF filters (Millipore, cat# AP2007500
and S2GVU02RE). Of this filtrate, 60 mL was transferred to a 10 kDa cutoff
centricon unit, that was previously pre-conditioned with 50 mL ultrapure
water and centrifuged with 3000 g for 15 min at 4 °C. After centrifugation
of the samples for 30 min at 4 °C and again 3000 g, the unit was inverted
and about 400 μL concentrate was collected by centrifugation for 1000 g
at 4 °C for 3 min. The concentrate was mixed with 3 volumes of Trizol LS
(ThermoFisher cat# 10296-010), and the RNA extracted using the Direct-
zol RNA miniprep kit (Zymo cat# R2052) including the DNase treatment
and elution with 50 μL ultrapure water according to the manufacturer's in-
struction. Absence of PCR inhibitors was confirmed by mixing the sample
1:1 with total RNA from human cells followed by amplification of a
human transcript. Not detectable in waste water alone by RT-qPCR.

4.1.2. Reverse transcription/quantitative polymerase chain reaction (RT-qPCR)
The extracted RNA was amplified using the LunaScript reverse tran-

scriptionmix (NEB cat# E3010L), with 16 μL RNA and 4 μL reactionmaster
mix according to the manufacturer's instructions, except for a 20 min incu-
bation at 55 °C instead of 10 min. Afterwards, the cDNA was diluted 1:10
with ultrapure water, and 3.75 μL diluted cDNA used per qPCR reaction,
using a SYBR green master mix (ThermoFisher cat# 43-643-46), and final
concentrations of 250 nM of the primers on Supplementary Table S7. The
presence of the proper amplicon was verified using a 2.5 % TAE agarose
gel. If the expected amplicon was not detected on the gel, the sample was
counted as negative even if a qPCR signal was observed.

4.1.3. ARTIC-seq of the SARS-CoV-2 genome
Amplicon sequencing libraries of the SARS-CoV-2 genome were gener-

ated using the ARTIC protocol v3 (phase I) and modified version of
ARTIC protocol v4 (Phase II) (Pipelines R&amp et al., 2020), using 6 μL
of the cDNA generated as described above as an input. The primer pools
were obtained from IDT. Amplicon libraries were sequenced on an Illumina
Miseq or Novaseq device with 2 × 250 paired-end sequencing and 20 %
phiX spike-in. The modified ARTIC v4 primer can be found in Supplemen-
tary Table S8.

4.2. Berlin wastewater samples processing for very-short-reads

In order to test if the pipeline would perform reliably under industry
conditions we also used it with so-called production data from the amedes
analytical company. The sequencing was performed as follows:

45 mL of raw wastewater was centrifuged for 10 min with 10,000 x g at
4 °C. Subsequently, the supernatant was prefiltered using Filtropur S
0.45 μm filter units (Sarstedt, Darmstadt, Germany), further transferred to
100 kDa cutoff Amicon Ultra-15 units (PLHK Ultracel-PL Membran, 100 kDa
Centrifugation units; Merck Sigma Aldrich Chemie GmbH, Taufkirchen,
Germany) and processed according to the manufacturer's manual.

Automated RNA isolation was accomplished using a Qia-Cube HT
Extractor using the QIAamp 96 DNA QIAcube HT Kit according to the
manufacturer's protocol (Qiagen, Hildesheim, Germany).

Library preparation for NGS sequencing was performed following the
complete Illumina SARS-CoV-2 sequencing workflow (Illumina COVIDSeq
Test, Illumina, San Diego, USA) including RNA-to-cDNA conversion and
SARS-CoV-2 targeted PCR using the ARTIC V3 primer set. The generated li-
braries were analyzed using NextSeq 550 and 550Dx sequencers with
NextSeq 500/550HighOutput Kits (v2.5; Illumina#20024906) generating
2 × 37 bp paired-end output.
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4.3. Computational methods

4.3.1. General pipeline description
The PiGx SARS-CoV-2 pipeline provides end-to-end data processing and

analysis for wastewater RNA sequencing.
The pipeline needs local databases (downloaded by the user) for some

of the annotation and alignment tools, while the tools themselves are auto-
matically installed. Furthermore, the user needs to provide: (i) a sample
sheet (CSV format) containing information about sampling date and loca-
tion; (ii) a settings file (YAML format) for specifying the experimental
setup and optional custom parameter adjustments, (iii) a mutation sheet
containing the lineages of interest and their signature mutations in nucleo-
tide notation and BED file containing their genomic coordinates; (iv) the
reference genome of the target species; (v) BED file containing the PCR
primer locations (provided with the pipeline for ARTIC protocol).

In the first step, primer trimming is done with iVAR (Grubaugh et al.,
2019), and fastp (Chen et al., 2018) is used for adapter trimming and filter-
ing. To ensure reliable variant calling and robust lineage abundance predic-
tion, the sample has to match stringent quality control measures. For this,
information about the sequencing primers, adapters, and also a BED file
containing the sites of the signature mutations is necessary. Specifically
the latter is important to ensure comparability of the called variants across
all processed samples.

In order to make the read quality process comprehensible, fastQC re-
ports are generated after each step and summarized with additional
MultiQC reports. The processed reads are aligned to the reference genome
by BWA Mem (Li, 2014) and various coverage statistics are taken by
SAMtools coverage/bedcov (Li et al., 2009). The alignment is used further
for single nucleotide variant (SNV) calling using LoFreq (Wilm et al.,
2012). For predicting the lineage abundances, a deconvolution matrix is
generatedbymatching the set ofmutations called by LoFreq against the pro-
vided mutation table. The SNVs are translated to protein mutations by En-
semble VEP (McLaren et al., 2016). Kraken2 (Wood et al., 2019) is used to
get taxonomic classification of the unaligned reads as an additional quality
measure and further insight in the samples. The mutations were filtered for
a minimum read coverage, then a deconvolutionmethod was used to calcu-
late the proportion of lineages representing Variants of Concern over time
(more details in the section Deconvolution analysis) for each sample. For
summarizing and visualizing the deconvolution results as a time series,
by default, samples with SARS-CoV-2 reference genome coverage below
90 % are discarded. For each mutation, linear regression models are used
(more details in the section Regression analysis for mutations) to detect if
any mutation is significantly increasing over time. Here discarded samples
were also not included.

For each sample a set of four reports (multiQC, general QC report, taxo-
nomic classification report, lineage report) is generated using Rmarkdown
and knitr. The R-package of plotly is used for generating interactive visuali-
zations. The relevant results across all provided samples are summarized by
an extra report that provides insightful visualizations and accessible naviga-
tion linking to all the single reports. The samples from different timepoints
are used to produce time-series reports that track trending mutations over
time. Furthermore, all per-sample results are summarized as tables and
also combined to visualize time-series and geo-location plots, making the
pipeline suitable for continuous sampling.

In this way the pipeline output provides an easily accessible overview
about lineage and mutation dynamics in a communicable format but also
enables extensive data exploration and access to sample-wise tables and
summaries without the need for running extra scripts. PiGx SARS-CoV-2
uses snakemake (Mölder et al., 2021) to define and run the workflow.

4.3.2. Deconvolution analysis

4.3.2.1. Model description. With m being a system of linear equations built
by using B being a signature matrix constructed from the signature muta-
tions provided as input and f being the proportions for the lineages the
deconvolution approach can be represented as m = f x B. Similar to what
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has been shown before for deconvolution of cell types from gene expression
profiles or methylation profiles (Newman et al., 2015), we follow the as-
sumption that the frequency of signature mutations corresponds with the
frequency of the actual lineage which is characterized by it. The difference
in our approach is that we use sequence mutations and apply weights to the
signature matrix in order to get more realistic prediction results.

4.3.2.2. Signature matrix construction. The signature matrix is obtained by
matching the set of mutations found in the sample against the set of signa-
turemutations provided as input. In case the mutation table contains muta-
tions that are shared between lineages, it is possible that multiple lineages
cannot be distinguished from each other. In this case, the signature matrix
will be deduplicated leaving only one column of the duplicated lineages
which will be renamed with the grouped names of all lineages showing
this duplicated signature mutation “pattern”.

To make the matrix more robust, additional “reference mutations” are
added as well as a reference column denoted as “Others”. Bulk frequencies
for the “reference mutations” are the difference between 1 and the value of
the related signature mutation.

We propose the assumption that the more signature mutations can be
found for a specific lineage the higher the probability that this lineage is
present with a higher proportion within the sample. We therefore weigh
the signature matrix (without the reference mutations) for each lineage
with the proportion of signature mutations that has been found for each
specific lineage from the total number of signature mutations that was
given to characterize it. For “Others” the weight was calculated proportion-
ally to the number of mutations of the mutation table that were found. Ap-
plying weights results in less variation and more accurate predictions for
the datasets obtained from actual wastewater. For the artificial datasets
however, applying the deconvolution without the additional weighting
step resulted in more accurate prediction. Such differences can result due
to the different composition of artificial data and real data. This weighting
step is therefore optional andwhether it is used or not should depend on the
dataset in question.

4.3.2.3. Regression. To deconvolute the lineage abundanceweperformed ro-
bust regression analysis on the signature matrix and the bulk frequency
values of the signature mutations using the “Robust Fitting of Linear
Models” - rlm() function from the R library MASS (Venables and Ripley,
2010) (default settings,maxit=100). Similar to the deconvolutionmethod
CIBERSORT (Newman et al., 2015), we set negative coefficients to 0 and
normalized all coefficients to add up to 1, which then form the output
value providing the predicted lineage frequency values for the provided lin-
eages and an additional “Others” estimation.

PCR bias as well as the number of detected signature mutations influ-
ence the robustness of the results. We therefore added the additional con-
straint to only perform the deconvolution analysis on samples matching a
minimum quality score.

4.3.2.4. Dealing with indistinguishable variants. After deconvolution, grouped
indistinguishable lineages have to be split again. There are three possible
outcomes for those groups:

Firstly, when no signature mutations for a lineage could be found, the
group includes the “Others” column and is in fact “Others” only. So the
grouped lineages are getting the proportion value 0, “Others” gets the
deconvoluted value. Secondly, the grouped lineages are deconvoluted to
0. In this case both lineages are assigned with the value 0. Thirdly, the
grouped lineages are not equal to “Others” and are getting a deconvolution
value above 0. In this case the assumption for normal distribution of the lin-
eage abundances is applied and the deconvolution value is divided by the
number of grouped lineages. Each lineage is assigned this adjusted value.

4.3.3. Regression analysis for mutations time-series
For the regression analysis on mutation frequencies we applied a linear

regression model using the “Fitting Linear Models” - lm - function of R base.
The test was only performed onmutations if N(x> 0)> 5 being the number



V.-F. Schumann et al. Science of the Total Environment 853 (2022) 158931
of frequency values x that are above 0 across all samples. To get only in-
creasing trends, the coefficient values were filtered for values x > 0 only.
P-values were calculated by the lm-function using t-test and were filtered
for p< 0.05.We report themutation trend analysis togetherwith and sorted
by the regression coefficient as a comparable value for unstandardized ef-
fect size.

4.3.4. Pooling of samples for time series analysis and plots
For summarizing across daytime and location, the lineage frequencies

are pooled by calculating the weighted average using the total number of
reads of each sample as weights. The mutation frequencies are pooled by
using the simple mean (without removing missing values). Figures and
deconvolution plots are done with ggplot2 (Wickham, 2016). For the
cross-correlation analysis samples were pooled by week and the pooled
unique set of non-signature mutations was counted.

4.3.5. Sample scoring for quality check
For reference genome coverage quality control, the pipeline uses the

BEDtools coverage (Quinlan and Hall, 2010), using a BED file with the
tracked signature mutation sites as input. For the regression analysis and
time series plots only samples are taken in account that cover >90 %
SARS-CoV-2 genome (except for the NYC dataset).

4.3.6. In silico data simulation
In order to qualify and test the accuracy of the pipeline under industrial

sequencing parameters, an artificial dataset containing only short single-
end sequencing was simulated. The simulated dataset was generated in-
silico using full genomes of 6 SARS-COV-2 lineages obtained from GISAID
(Shu and McCauley, 2017). The genomes were used to simulate Illumina
sequencing using InSilicoSeq (Gourlé et al., 2019) and Seqtk (github.com,
n.d.) was used to trim sequences down to 40 bp of length and subsample
reads. A total of 100.000 reads was generated using the following propor-
tions: 10 % P1 (gamma), 10 % B.1.1.7 (alpha), 10 % B.1.621 (mu), 50 %
C.37 (lambda), 15 % Delta (B.1.617.2) and 5 % B.1.1.529 (omicron).

The data was processed without primer trimming and without an addi-
tional filter for read coverage.

Accessions from the genomes used to simulate sequencing can be found
on Table 2.

4.3.7. Spike-in samples data acquisition
Spike-in sequencing bam files were generated by Karthikeyan et al.

(Karthikeyan et al., 2021) Data was downloaded from: https://console.
cloud.google.com/storage/browser/search-reference_data. The data was
processed without primer trimming and but the filter for minimal read cov-
erage was set to 100.

4.3.8. Processing of wastewater data from New York City
The datawas downloaded from the Sequence Read Archive SBIwith the

accession number # PRJNA715712. The MiSeq data was processed with
primer trimming, using the primer sequences published by the authors.
Table 2
SARS-CoV-2 genomes used for in silico simulations.

WHO
Lineage/Pango ID

GISAID accession

Gamma/P1 >hCoV-19/Brazil/AM-FIOCRUZ-21890579EMP/2021|
EPI_ISL_4520422|2021-07-14

Alpha/B.1.7.7 >hCoV-19/Kenya/KEM-CVR-3EL/2021|EPI_ISL_4506017|
2021-04-21

Lambda/C37 >hCoV-19/Denmark/DCGC-151255/2021|EPI_ISL_3450383|
2021-08-11

Delta/B.1.617.2 >hCoV-19/Poland/CovSeq215/2021|EPI_ISL_4551640|
2021-09-08

Mu/B.1.621 >hCoV-19/Colombia/ATL-UNIANDES-G029686/2021|
EPI_ISL_4566376|2021-08-20

Omicron/B.1.1.529 >hCoV-19/Belgium/rega-20,174/2021|EPI_ISL_6794907.2|
2021-11-24
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The iSeq data was processed without primer trimming. For both datasets
a minimal read coverage filter of 100 was applied. No genomic coverage
percent cutoff was used for those datasets.

4.3.9. Data/code availability
The pipeline can be installed with GNU Guix and is executed with the

command [pigx-sars-cov2-ww -s {sample_sheet} {settings_file}]. A cloud
version is also being developed. Information about other alternatives like
building from source or potentially a Docker image can be found on the re-
pository. We recommend installing the pipeline with GNU Guix for its re-
producibility guarantees (Courtès and Wurmus, 2015). For installation
advice, documentation and code please visit the pipeline's repository:
https://github.com/BIMSBbioinfo/pigx_sars-cov-2.

4.3.9.1. Reproducible environment. The presented results were produced
using PiGx SARS-CoV-2 version 0.0.5.

● dataset-Berlin250, dataset-NYC(RBD) (MiSeq data and all samples
merged) - commit 524ed4832a6972fd695c0eeec25264188710a143

● dataset-Berlin35, dataset-NYC(RBD) (iSeq data), insilico-simulation -
commit 0a150c4bec58a5a8296c870586e225e49ee2b6f8

● UCSD-spike in - commit bd87e7f2d83317e9d83f6fd81abb631af95476f6

The repository also contains the Guix manifest for this analysis (commit
4ded8c5bdc755391360e5695003d6d4085110d08). The detailed and up-
to-date information about reproducing the analysis in this manuscript is
available at: https://github.com/BIMSBbioinfo/pigx_sars-cov-2/blob/
main/README.md#reproducing-the-analysis.

4.3.9.2. Data access. The raw sequencing read data from Berlin wastewater
samples is deposited to the Sequence Read Archive (SRA) available using
the accession number #PRJNA827160.

The interactive reports that were used and produced for this pipeline
can be found here:

● dataset-Berlin250 - https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_
pathogenomics/sarscov2_ww_reports/220225_dataset_Berlin250/
index.html

● dataset-Berlin35 - https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_
pathogenomics/sarscov2_ww_reports/220310_dataset_Berlin35/index.
html

● dataset-NYC(RBD) - https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_
pathogenomics/sarscov2_ww_reports/220225_dataset_NYC_RBD/index.
html

● UCSD-spike in - https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_
pathogenomics/sarscov2_ww_reports/220309_ucsd_spikeIn/index.html

● Insilico-simulation- https://bimsbstatic.mdc-berlin.de/akalin/AAkalin_
pathogenomics/sarscov2_ww_reports/220310_insilico_simulation/
insilico_simulation.html

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.158931.
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experiments. MM, KL and TH conceptualized, developed and carried out
the production 35 bp sequencing strategy for Berlin wastewater. JG and
KL curated very short read data and helped with the calibration, analysis
and interpretation of the results, as well as producing in-silico sequencing
simulations. MF contributed to the pipeline by developing the taxonomic
analysis part. JD contributed to the pipeline by building the whole automa-
tion backbone with snakemake and the initial test dataset. JD and VS did
the initial exploration of the data and the available tools and pipelines
which lead to the set of tools used for this study. BU, AB, VF contributed
partially to the pipeline with the code backbone on which parts of the pipe-
line are built and also supported through discussions about the choice of
tools. BU additionally provided a critical review of methods, continuous
support in the development process and a critical review of the manuscript.
JF provided support on code development, method improvements and gen-
erated data used after review rounds. RW did the major work on the pipe-
line's backbone, its implementation and packaging. He also led the
development process bringing the partswritten by JD,MF, VS, RC together.
VS did most of the downstream analysis and additional pipeline develop-
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