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Old drugs, new tricks: leveraging known compounds to disrupt
coronavirus-induced cytokine storm
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A major complication in COVID-19 infection consists in the onset of acute respiratory distress fueled by a dysregulation of the host
immune network that leads to a run-away cytokine storm. Here, we present an in silico approach that captures the host immune
system’s complex regulatory dynamics, allowing us to identify and rank candidate drugs and drug pairs that engage with minimal
subsets of immune mediators such that their downstream interactions effectively disrupt the signaling cascades driving cytokine
storm. Drug-target regulatory interactions are extracted from peer-reviewed literature using automated text-mining for over 5000
compounds associated with COVID-induced cytokine storm and elements of the underlying biology. The targets and mode of
action of each compound, as well as combinations of compounds, were scored against their functional alignment with sets of
competing model-predicted optimal intervention strategies, as well as the availability of like-acting compounds and known off-
target effects. Top-ranking individual compounds identified included a number of known immune suppressors such as calcineurin
and mTOR inhibitors as well as compounds less frequently associated for their immune-modulatory effects, including
antimicrobials, statins, and cholinergic agonists. Pairwise combinations of drugs targeting distinct biological pathways tended to
perform significantly better than single drugs with dexamethasone emerging as a frequent high-ranking companion. While these
predicted drug combinations aim to disrupt COVID-induced acute respiratory distress syndrome, the approach itself can be applied
more broadly to other diseases and may provide a standard tool for drug discovery initiatives in evaluating alternative targets and

repurposing approved drugs.
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INTRODUCTION

Though statistics vary between sites and are dependent on a host
of comorbidities, between 20 and 60% of COVID-19 infected
patients admitted to hospital develop acute respiratory distress
syndrome (ARDS)'?, with complications being a primary con-
tributor to the mortality in up to 50% of these instances. Indeed,
early evidence has suggested that COVID-19-induced ARDS may
represent a specific variant thereof>*. ARDS arises from complex
interactions between components of the immune inflammatory
response>® including complement activation’. This underlying
inflammatory response appears especially aggressive in many
cases of COVID-19 infection, with the self-aggravating release of
increasing amounts of inflammatory cytokines fueling a run-away
cytokine storm®°, Though antiviral and immune-modulating
agents are undergoing clinical trial, the sudden emergence and
rapid global spread of COVID-19 has highlighted the quintessen-
tial value of rapidly identifying and redirecting tried and true
pharmaceutical agents to immediately mitigate illness severity.
This being said, the recent ad hoc use and subsequent failure of
the antimalarial hydroxychloroquine in formal clinical trials'®
suggests that important challenges remain if this is to be
accomplished safely, effectively, and reliably. Current efforts have
for the most part been focused on eliminating the root cause of
infection with significant resources being applied to the
characterization of SARS-CoV-2 molecular targets and the
identification of novel antiviral compounds using molecular
docking as the primary computational workhorse'"'2, While

conventional analyses of this type typically focus directly on
individual virally encoded proteins, recent efforts have attempted
to broaden their scope by mapping the pathogen-host inter-
actome to identify downstream targets in the viral replication
machinery that might be readily modulated using known
compounds'>', Though vital, these efforts are, by virtue of their
single molecule resolution, both experimentally and computa-
tionally resource-intensive and time-consuming. An alternative
and highly complementary means of reducing mortality in COVID-
induced ARDS consist in appropriately modulating host immune
response such that cytokine storm is averted. Unfortunately, while
the molecular affinity approaches mentioned above are well-
suited for identifying drugs binding with high specificity to a given
target they require prior knowledge of what the appropriate
target should be. Moreover, this time-independent analysis of
binding affinity is ill-suited to describe the complex dynamics of
immune cell signaling that lead to persistent cytokine storm
where regulatory kinetics play a vital role in the selection of
therapeutic targets.

Here, we propose a novel and expedient in silico approach for
the evaluation and selection of drug repurposing candidates
directed at model-predicted targets that formally account for the
regulatory dynamics of the network as a whole. Utilizing both
experimental and model-predicted affinities as well as literature-
mined drug-target interaction data, we assemble and score
multidrug therapies based on their expected regulatory actions on
sets of concurrent molecular targets that act synergistically to
disrupt cytokine storm in the context of coronavirus infection.
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Issues with data sparsity which are of special relevance in sudden
and rapidly evolving health crises such as the COVID-19 pandemic,
undermine the reliable use of data-driven approaches but can be
circumvented by maximally leveraging the extraction of currently
existing knowledge from the peer-reviewed literature. In previous
work by our group'®, we extracted prior knowledge from 2653
peer-reviewed publications to construct a network that included
18 host immune mediators documented to be of specific
relevance to coronavirus infection, the latter being annotated as
a disease entity in the Elsevier Knowledge Graph text-mining
database'®. These 18 immune mediators and the coronavirus
pathogen were linked by 112 documented regulatory actions to
create a network model that was capable of supporting
biologically plausible immune response dynamics that included
a persistent cytokine storm cascade!’. Often lethal once triggered,
this excessive and self-perpetuating host inflammatory response
may persist in the absence of a pathogen as demonstrated
recently in ref. °. The objective of the current work therefore is to
use the above-mentioned network model of host immune
response to coronavirus infection as a basis for predicting
intervention strategies capable of disrupting this run-away
inflammatory cascade. Toward this, we conduct simulations of
the host inflammatory response as part of an optimal search for
companion drugs that would optimally compliment the actions of
a concurrently administered antiviral, simulated here as an
idealized reduction in viral titer. We focus in this first analysis on
FDA-approved drugs as they might be more readily deployed but
more importantly because there exists a broader more established
base of clinical experience regarding their effects, compared to
that of experimental compounds.

Our simulations highlighted several drugs and drug combina-
tions that show promise in disrupting cytokine storm when
administered as companions to an effective antiviral. In addition
to recovering, known immunosuppressants like rapamycin and
cyclosporine, as well as the corticosteroid dexamethasone, model
predictions also correctly assigned a low score to hydroxychlor-
oquine and chloroquine, two early contenders later proven to be
much less effective than anticipated. Most importantly perhaps,
our analysis pointed to several highly novel opportunities for
significantly enhancing the actions of dexamethasone by pairing
the latter with a select list of drugs that include antimicrobials
such as ciprofloxacin or levofloxacin, and the statin simvastatin.
Though these remain predictions, we propose that this model-
based framework, because it is rooted in a broad body of prior

knowledge, can be highly useful in focusing attention to drug
candidates with significant potential and do so quickly with
minimal data.

RESULTS
Idealized interventions and suitability for repurposing

Of the 19 original network models'?, we focus here specifically on
model 18, which we believe supports the most biologically
plausible predicted immune response dynamics based on criteria
described in'”. Stating the search for idealized intervention sets as
a constraint satisfaction problem'®, we identified 30 intervention
solutions' that prompt immune signaling predicted by the
network model to migrate from a pattern of persistent immune
hyperactivation (cytokine storm) to one that more closely
resembles an idealized immune resting state. These solutions
were computed under conditions of low viral load to highlight
best case performance and because they would be used in
concert with an effective antiviral treatment. The exact combina-
tions of exogenous manipulations proposed in each of these
theoretically optimal solutions s; are listed in Supplementary Table
1 (Additional File 1) along with summary measures of optimality,
namely the number of exogenous manipulations, the outcome
residual distance from the target immune resting state, the
number of transitions required to achieve this outcome as well as
the overall pharmacologic actionability A(s) as it applies to the
repurposing of the 144 candidate drugs. The latter is reported
along with the significance of this value compared to that of a
random intervention set, adjusted for multiple comparisons (P,;).
These summary measures are also presented graphically in Fig. 1.
Results show that 16 of the 30 optimal intervention sets score as
significantly actionable (empirical null distribution P <0.05;
A>7.25) in the 144 candidate drugs compared to a random
intervention set. Interestingly these 16 significantly actionable
solutions involve only slightly fewer immune targets on average
(~6 targets) than their nonsignificant counterparts (~7 targets)
despite this being a component of the actionability score. This
similarity notwithstanding, the specific combinations of targets
selected in each of these 16 solutions effectively exploit the
regulatory network structure in a way that supports a much more
expedient or efficient migration (~7 versus ~14 transitions) to
outcome states where at least 85% of immune marker expression
is restored to the baseline healthy resting state (~4 versus ~9
activation increments from an initial separation of 27). Of the 18
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Fig. 1

Suitability of optimal target sets for drug repurposing. A quantitative ranking of 30 model-predicted idealized interventions of

various cardinality (green bars), length of response trajectory or efficiency (orange bars) and distance from optimal outcome (blue bars) as a
function of their actionability (red line) or potential for translation into clinic using repurposing of currently available drugs. Only 16 of the
initial 30 solution sets are significantly more accessible (empirical null distribution P < 0.05; A > A.yit, p—0.05 ~7.25) to repurposing than a random

MIS solution set (dashed blue line).

npj Systems Biology and Applications (2022) 38

Published in partnership with the Systems Biology Institute



npj

S. Richman et al.

Model-Relevant

COVID-19 Associated

548

144
2.7

226
618
\\
ARDS Pathogenesis / Progress}b\n Associated
\

\

\
AN
b

Phase 1|Phase 2

231 4,492

——_ FDA-Approved Consensus Drugs

4.8% Phase 2
Phase 3 EDAFE

23.2%

1.3%  Early Phase 1
0y

BEe Phase 1

8.3% 8.6%

Phase 2|Phase 3
Phase 4

24.2%

Not Applicable

C

retinRiflase inhibitor

nucleoside metabolic inhibitor
quinolone antimicrobial

2-3%.53/0

5.3%

2.3%
other 3.0%

60.2%

3.8%
3.0%

anthracycline topoisomerase inhibitor
nonsteroidal anti-inflammatory drug
beta-2-adrenergic agonist
vitamin D3 analog

antirheumatic
corticosteroid

peroxisome proliferator-activated receptor (PPAR) alpha agonist

HMG CoA-reductase inhibitor

tumor necrosis factor (TNF) blocker

general anesthetic

Fig. 2 A multi-pronged search for candidate compounds. a A total of 144 FDA-approved drugs were identified with consensus between
three independent search methodologies. b Breakdown of the status of the subset of 67 drugs currently registered to clinical trials (July 27,
2020). ¢ Breakdown of the 144 consensus drugs into the subset of 94 FDA Established Pharmacologic Classes (EPC) (of 540 EPC classes).
Classes with fewer than three instances were collapsed to the other category.

immune proteins in the network, TNF, IFNL1 (aka IL-29), and CSF3
are almost unanimously shared among the most actionable
solutions. Indeed, IFNL1 and TNF appear in almost twice as many
significantly actionable MIS solutions as they do in their
nonsignificant counterparts. The two most actionable idealized
interventions both consist of a joint inhibition of CSF3, CTSL,
CXCL2, IFNG, and TNF, with one also inhibiting IFNL1. Interestingly
recent work by® supports a central role for type Il interferon IFNG
and TNF synergy in COVID-related cytokine shock. However, much

Published in partnership with the Systems Biology Institute

less is known about a direct role of type Il IFNL1 in a cytokine
storm, though recent work proposes the latter as a major mediator
of thromboinflammation'?, an emerging clinical feature of COVID-
19 infection?®.

Ranking individual drugs
In order to identify drug repurposing strategies that might be
translatable into clinical practice, we computed for each drug and
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Fig.3 Ranking single drugs. Adjusted enrichment E,q; values obtained in each of the 16 significantly actionable MIS interventions (empirical
null distribution p(A(s)) < 0.05) computed for the individual drugs with the top ten highest overall weighted median adjusted enrichment (WM
E,qj). Drugs are ordered along the vertical axis by increasing weighted median E,4; and MIS solutions along the horizontal axis by increasing
residual Manhattan distance (bits) separating the treatment outcome from the target healthy resting state.

drug combination the adjusted enrichment E,q in each of the
16 significantly actionable intervention sets. Of the 144 FDA-
approved candidate drugs that were identified as illness and
model-relevant (Fig. 2a), no single drug scored a weighted
adjusted median enrichment (WM E, ) that significantly exceeded
that of a random selection from the background set of model
relevant drugs in even one idealized MIS solution (all P,q; (max
E.q) >0.10) (Additional File 1, Supplementary Table 2). Indeed,
only eight drugs scored above 0.30, with dexamethasone being
among these and rapamycin ranking highest with a WM E,q; of
0.37. The much-publicized hydroxychloroquine (CQ) and chlor-
oquine (CQ) aligned very poorly with model-predicted interven-
tion sets, delivering WM E,q; values of 0.13 and 0.05, respectively,
and at best a maximal E,q; of 0.34 and 35 in any single solution.
The highest adjusted enrichment produced in any single MIS (max
E.q) was delivered by the progestin medroxyprogesterone
acetate, typically associated with menopausal hormone therapy
but whose immune-modulatory actions have been highlighted
recently?'. Recall that the 16 significantly actionable interventions
called for 6 targets on average to be manipulated (Additional File
1, Supplementary Table 1), a number consistent with the broad
actions of drugs such as rapamycin, documented to inhibit eight
network targets, as well as medroxyprogesterone acetate and
dexamethasone, each known to inhibit six and nine network
targets, respectively. However, this broad coverage of targets
come at a price. Indeed, penalties applied to control for direct off-
target effects as well as drug actions contrary to those prescribed
by the MIS solutions were such that drugs like the antimicrobial
ciprofloxacin, which is documented to inhibit only three network
targets, may nonetheless produce enrichment scores similar to
that of dexamethasone. Though very different in their breadth of
coverage, both dexamethasone and ciprofloxacin were among the
least generalizable across MIS solutions with median absolute
deviations (0.16; 0.17, respectively) equivalent to half their
weighted median E,q performance (0.32; 0.34, respectively). In
contrast, medroxyprogesterone acetate would appear to target
network elements that are better conserved across intervention
solutions with a median absolute deviation of 0.05 for a weighted
median performance of 0.37, suggesting the latter more
effectively targets complementary intervention pathways and
may be more robust to model uncertainty. A similar argument
could be made for the use of the calcineurin inhibitor
cyclosporine.

npj Systems Biology and Applications (2022) 38

The variability in performance across individual intervention
solutions is further illustrated in Fig. 3. As expected, drugs at the
top of the heatmap like rapamycin offer more consistent
performance across those MIS solutions where treatment out-
comes deviate by only two or three bits from the desired full-
recovery profile. Indeed, even though drugs like raloxifene,
sevoflurane (e.g., solution 25) and fenofibrate (e.g., solution 22)
achieve higher adjusted enrichment scores in some isolated
instances, they also present with no or even negative enrichment
values in multiple other intervention solutions giving them a lower
overall ranking. While most intervention solutions were supported
reasonably well by at least one drug, this was not the case for
solution 18 where all top-ranking drugs performed very poorly,
presenting with uniformly negative enrichment scores. Interven-
tion 18 (Additional File 1, Supplementary Table 1) is the single-
most parsimonious of all significantly actionable intervention sets,
consisting of only two-target manipulations, namely a down-
regulation of CD86 conducted in unison with an upregulation of
TNF. As all other intervention sets involve four or more targets,
broader-acting drugs are being favored overall, leading to a large
overenrichment penalty for a two-target solution like that
proposed under MIS 18. Of note, the importance of introducing
drugs that more adequately align with solution 18 is undermined
further by the latter's poor outcome which is among the 3 worst
recovery profiles predicted (i.e, 9 bits separation from full
recovery).

Ranking drug combinations

Of the roughly 10,000 possible pairwise combinations of the 144
candidate drugs, only 9 such pairs were enriched in at least one
MIS solution at a significance of P,g(Max E,q) <0.05, with the
corresponding significance in weighted median adjusted enrich-
ment P,q(WM E,q) <0.10, both based on an empirical null
distribution (Additional File 1, Supplementary Table 3). With a
weighted median E,q; ranging from 0.46 to 0.52, all five significant
drug pairs consisted of combining the corticosteroid dexametha-
sone with one of several companion drugs, namely cholinergic
agonist acetylcholine, the progestin medroxyprogesterone acet-
ate, the antimicrobial ciprofloxacin, the mTOR inhibitor rapamycin
or the statin simvastatin. Offering a slightly lower weighted
median E,q; of 0.45 but with a much more consistent performance
across MIS solutions was the combination of immunosuppressant
cyclosporine with eltrombopag, a drug typically used to treat
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Fig. 4 Ranking drug combinations. Adjusted enrichment E,q; values obtained in each of the 16 significantly actionable MIS interventions
(empirical null distribution p(A(s)) < 0.05) computed for the drug pairs with the top ten highest overall weighted median adjusted enrichment
(WM E,q). Drug pairs are ordered along the vertical axis by increasing weighted median £E,4; and MIS solutions along the horizontal axis by
increasing residual Manhattan distance (bits) separating the treatment outcome from the target healthy resting state. Asterisks indicate an E,g;

value with an empirical null distribution p(E,q;) < 0.05 significance.

thrombocytopenia or abnormally low platelet count. Other high-
ranking drug pairs also include the antimicrobial levofloxacin, the
ACE inhibitor captopril, and the selective estrogen receptor
modulator (SERM) raloxifene. Here again, the performance of the
top ten drug pairs at the level of individual intervention solutions
is illustrated as a heatmap in Fig. 4. In contrast with the results
presented in Fig. 3, we find strictly positive-enrichment scores for
all drug pairs in intervention solutions with outcomes 2 to 3 bits
away from a full recovery profile. Indeed, we find broad swaths of
high positive-enrichment scores across the MIS solutions with the
best outcomes (i.e., two bits separation) in particular for the top
five drug pairs. Conversely, the added target coverage typically
achieved by a drug pair only further exacerbates the over-
enrichment of MIS solution 18 leading to even more negative
enrichment scores.

Ultimately, we would like a drug or drug pair to show the highest
possible enrichment E,q; in at least one intervention solution (Max
E.qj) and have it maintain this enrichment across as many of the best
performing MIS solutions as possible, i.e., also show a high weighted
median E,q;. Results presented in Fig. 5 show that most top-ranking
drug pairs typically deliver a maximum enrichment E,q; equivalent or
superior to that of single drugs. Moreover, all such pairs invariably
maintain this performance more readily across those alternative MIS
solutions producing more desirable outcomes. Indeed, while the
combination of dexamethasone and medroxyprogesterone acetate
offers only a slight improvement in maximum enrichment over
medroxyprogesterone acetate alone (max E,q; 0.63 over 0.62), this
improvement is much better sustained across those alternative
intervention solutions that correspond to more favorable outcomes
(WM E,q; of 0.52 over 0.36). Introducing simvastatin in combination
with dexamethasone or levofloxacin offers the potential for even
higher maximum enrichments of 0.67 and 0.70, respectively, albeit
with moderate reductions in general applicability across intervention
paths (WM E,q 046 and 0.44, respectively, from 0.52). In contrast,
combining simvastatin with the JAK1/2 kinase inhibitor ruxolitinib, a
combination currently in Phase 2 trials (NCT04348695), scored poorly
in both metrics and ranked 662nd among all combinations.
Generally, one can reason that combining drugs that offer highly
complementary drug actions will increase their target coverage and
more readily support a broader range of alternative intervention
solutions. Conversely, drug pairs that offer higher maximum
performance but do so on a narrower range of solutions might be
expected to perform more like single drugs as their actions overlap,
limiting their ability to support alternative treatment paths.

Published in partnership with the Systems Biology Institute

Combination therapies offer the potential of broader overall
drug action, however, they also carry the possibility for negative
drug-drug interactions. While severity rating categories differ from
one drug information resource to another??, recently proposed a
standardized severity scale that reconciled definitions across
multiple sources into three basic severity categories, namely
Major, Moderate and Mild severity. In this work, we extracted drug
interaction severities for our top-ranking drug pairs (Additional
File 1, Supplementary Table 3) as documented in the DrugBank?
Drug Interaction Checker (OMx Personal Health Analytics Inc.,
Edmonton, AB, Canada) which is based essentially on these same
three severity class definitions (https://dev.drugbank.com/guides/
terms/severity). Of these ten top-ranking drug pairs, only five were
assigned documented interactions in the DrugBank database. The
severity of these interactions was Moderate for all but one pair
consisting of dexamethasone and simvastatin. The latter was
assigned a Major interaction severity, whereby concurrent
administration of dexamethasone can increase elimination of
simvastatin, decreasing serum concentrations and compromising
its therapeutic effect’®. Likewise, co-administering simvastatin
with ruxolitinib (NCT04348695) can increase the latter's serum
concentration, affecting its tolerability and earning it a Major
interaction assignment.

Simulating proposed Interventions

It is important to recall that candidates from the initial set of 144
illness-relevant, pathway relevant, and model-relevant compounds
were ranked on the basis of their respective ability to align with and
support model-predicted and idealized sets of concurrent manipula-
tions to specific immune mediator targets. As real-world drugs or
combinations thereof may not necessarily align exactly with these
idealized interventions, we conducted simulations to verify the
suitability of the best-ranked candidates. Results presented in Figs. 6
and 7 show the gradual decrease in disparity (Manhattan distance)
between the predicted immune marker co-expression profile at each
iteration and the target signature at the desired immune resting state
imparted by the simulated drug therapy and its eventual
discontinuation. The initial state of the network is a persistent
cytokine storm located at a Manhattan distance of 13 bits away from
the immune resting state. Drugs actions are simulated in the context
of a concurrently applied idealized antiviral resulting in the absence
of a measurable viral load.

The simulated effects of administering dexamethasone in
combination with the 4 companion drugs that provided the highest
WM E,q; (Fig. 5), namely acetylcholine, medroxyprogesterone acetate,
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Fig. 5 Broad vs focused performance. Maximum adjusted enrichment (max E,q;) obtained for any single idealized intervention (MIS) versus
the aggregate performance expressed as the weighted median adjusted enrichment (WM E,q) across all 16 significantly actionable MIS
solutions for the top ten ranked single drugs (blue dots) and drug pairs (orange dots) (Additional File 1, Supplementary Tables 2 and 3).

ciprofloxacin and rapamycin, are illustrated in Fig. 6. While all these
drugs applied alone will eventually drive the immune network
response to a stable recovery state, pairing dexamethasone with
these companion drugs shows a noticeable positive synergy that in
all cases delivers a much more expedient reduction in immune
activation. Indeed, the predicted immune network response to all
four drug pairs shows an immediate disruption of the cytokine storm
state, rapidly achieving a residual distance from the immune resting
state of only 1 bit within the first 4 iterations. This expediency is
rivaled only by medroxyprogesterone acetate, with a repose time of
5 iterations, and is noticeably better than the responses of 8-12
iterations predicted for ciprofloxacin, acetylcholine and rapamycin.
Importantly, all combinations produce a recovery that persists even
after the intervention is discontinued. Different and more varied
behaviors can be observed in drug pairs with decreasing values of
WM E,; that approach values obtained with single drugs (Fig. 5). For
example, the pairing of cyclosporine with eltrombopag corresponds
to an important reduction in WM E,q; or a loss in general applicability
across multiple intervention paths that approaches that of a single
drug. Accordingly, the simulated responses shown in Fig. 7a show a
dominant effect of cyclosporine alone, with no additional benefit
being contributed by the concurrent use of eltrombopag. At roughly
the same reduction in WM E,q;, but with a much higher maximum
enrichment in individual intervention, the pairing of simvastatin with
levofloxacin provide an even greater emphasis on narrow perfor-
mance at the expense coverage across paths to favorable outcomes.
This even narrower focus not only eliminates any benefits of pairing
but leads to a negative synergy where the actions of simvastatin
alone dominate and where the latter is only hampered by the
addition of levofloxacin (Fig. 7b). These examples suggest that as WM
E.q decreases, any benefit of pairing two drugs also decreases with
the addition of a second companion drug having no effect or even
counteracting the actions of the dominant drug.

DISCUSSION

While computational approaches, many of which are rooted in
molecular docking methodology'’, have been proposed to accel-
erate the data-driven screening of compounds targeting the COVID-
19 pathogen or host proteins recruited during infection, little
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attention has been directed towards the in silico design of
pharmacologic strategies for mitigating excessive host immune
response, a key contributor to the severity of COVID-related ARDS
and associated morbidity?®. Moreover, while important resources like
the VirHostNet database document interactions between virus and
host proteins'®, the resulting interaction networks remain static
representations of molecular compatibility where drug targets are
inferred on the basis of network structure alone. Similar principles of
similarity have also been applied to transcriptomic profiles to
construct drug-disease networks though once again candidate
compounds are identified on the basis of network structure
alone?®?’, Here, we use a previously reported causal model of host
immune regulation constructed by our group from published prior
knowledge'> to implicitly account for and exploit the dynamic
propagation of such network effects, and the resulting regulatory
stability of the system, to identify subsets of dynamically coupled
drug targets'®. We then systematically apply a number of
quantitative criteria to rank a broad range of candidate FDA-
approved drugs based on their ability to jointly manipulate these
subsets of immune mediators such that their corresponding
downstream regulatory interactions are optimally leveraged to
effectively disrupt a persistent ARDS-induced cytokine storm. The
regulatory stability of this immune hyper-responsive state'® was such
that only by concurrently modulating at least four host immune
mediators would the host immune response be robustly directed to
stand down in the context of a reduced viral load. Indeed, a closer
examination of the 16 most pharmaceutically accessible intervention
strategies revealed that drugs offering a broader coverage, in
particular as it relates to the suppression of CSF3, IFNL1, TNF and to a
lesser extent that of IFNG and STAT1, typically ranked higher. For
these reasons many highly anticipated corticosteroids and antibody
drugs did now fare as well as expected. For example, the antibody
drug infliximab did rank among the top 20 drugs (ranked #14) with 7
documented targets. However, only two of these seven actions (TNF
and IFNG) involved the five highly represented targets mentioned
above, assigning it a lower rank. Similarly, prednisolone (ranked #31)
counted five documented targets that included three of the five
preferred targets. However, one of these three targets (CSF3) was
regulated in the opposite direction to the action prescribed by the
intervention sets leading to a penalty in rank.
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Fig. 6 Simulating synergistic companions to dexamethasone. Discrete event simulation using synchronous state transition update of host
immune network showing the overall Manhattan distance from the target immune resting state as a function of iteration. An idealized
antiviral is applied to an initial persistent state approximating cytokine storm along with a dexamethasone alone, acetylcholine alone and a
combination of both, b dexamethasone alone, medroxyprogesterone acetate alone and a combination of both, and ¢ dexamethasone alone,
ciprofloxacin alone and a combination of both, and d dexamethasone alone, rapamycin alone and a combination of both. In all cases, we see a

positive synergy indicative of complementary drug actions.

Out of 144 candidate drugs, even the 10 top-ranking candidates
when used alone offered no better than a P,y ~0.10 chance of
enrichment above that of any single random immune modulator
in directly harnessing at least one of the model-predicted optimal
treatment mechanisms active in COVID-induced ARDS (p(Max
E.qj=0) 2 0.11). Not surprisingly, the actions of these individual
drugs did not generalize well either. Indeed, the ability of any
single drug to simultaneously recruit multiple alternate treatment
pathways supporting the best outcomes was also highly variable,
with none achieving significance over a random immune
modulator (p,qj(WM E,q;) 2 0.14). Figuring prominently in this list
are several drugs currently under active clinical investigation.
Broadly studied in the general context of pulmonary distress,
dexamethasone is currently the subject of at least 2 active Phase 3
clinical trials in COVID-induced ARDS specifically (NCT04836780;
NCT04843761). Similarly, Phase 3 trials of the anesthetic sevo-
flurane, also studied in the broader context of ARDS,
(NCT04355962; NCT04415060), the PPAR alpha agonist fenofibrate
(NCT04661930), the calcineurin  inhibitor  cyclosporine
(NCT04979884) and mTOR inhibitor rapamycin (Sirolimus)

Published in partnership with the Systems Biology Institute

(NCT04948203) are currently active, with some recently com-
pleted. Also currently under active Phase 3 clinical study, we find
acetylcholine maintenance or release by compounds such as
nicotine (NCT04608201; NCT04598594) and pyridostigmine bro-
mide (NCT04343963) ranking among the top-10 treatment
strategies. In contrast, despite early interest in the antimalarials
hydroxychloroquine and chloroquine, these aligned very poorly
with our model-predicted intervention sets, ranking 66th and 96th
out of the 144 candidate drugs. Consistent with this, subsequent
data has not supported clinical effectiveness of the latter which
together with broad off-target effects in the lung has led the US
FDA to revoke Emergency Use Authorization (EUA) for CQ and
HCQ as the known risks outweigh potential benefits of their
USEZS'ZQ.

As might be expected, we find both cyclosporine and
rapamycin, known immune modulators commonly used to
manage transplant rejection, ranking among the top five drugs
in terms of their alignment with the best model-predicted
interventions. The immunomodulatory, antiviral and tissue-
protective properties of cyclosporine have recently been
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documented in the context of HIN1 and COVID-induced ARDS in
several preliminary studies*3'; however, concerns remain regard-
ing cyclosporine’s many side effects and the use of low-dose
regimens are encouraged>2. Similarly, though known to be an
effective suppressor of Th17-mediated airway inflammation®? and
T cell-driven lung injury®*, investigation of rapamycin’s effective-
ness and safety in treating COVID-induced ARDS remains in its
early stages®”. In sharp contrast with these well-known immune
modulators, we also find drugs typically associated with the
treatment of other conditions. For example, both simvastatin and
fenofibrate are commonly used to treat dyslipidemia. Upregula-
tion of the peroxisome proliferator-activated receptor-alpha (PPAR
alpha) with compounds such as fenofibrate has been reported to
also attenuate lung inflammation3® making it a candidate of
legitimate interest in the treatment of COVID-induced ARDS and
associated hypercoagulability®”. However, results from a recent
real-world observational study emphasize the need for rigorous
randomized control trials before a clear benefit in a COVID setting
can be confirmed?®. Similarly, the anesthetic sevoflurane remains
under active clinical study with limited evidence suggesting a
contribution to host defenses engaging cytoprotective pathways
around heme oxygenase-1 (HO-1) expression, a target of the
SARS-cov-2 virus**#°, In a twist of irony, while smoking confers
susceptibility to COVID-induced respiratory distress, there is
mounting evidence that cholinergic agonists like nicotine*'*?
and pyridostigmine bromide** that promote acetylcholine expres-
sion not only offer significant anti-inflammatory actions***> but
may also interfere with SARS-CoV-2 infection and viral replication.

Arguably, the best known of all these candidate drugs is the
anti-inflammatory dexamethasone, with robust evidence support-
ing its efficacy and safety in the treatment of ARDS*. Indeed,
recent molecular profiling has pointed to host immune response
mechanisms dysregulated in COVID-induced ARDS that dexa-
methasone may be well-suited to modulate®. This is consistent
with clinical observations of reduced all-cause mortality in cases of
severe and critically severe ARDS reviewed in ref. %7, though these
results appear to vary significantly based on subpopulation and
timing of therapy?'. However, evidence that its immunosuppres-
sive effects lead to accelerated viral replication has fueled
continued debate regarding its appropriate clinical use*®. Some
of these issues might be mitigated by combining dexamethasone
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with a companion drug in an effort to make it more transportable,
more consistently robust, and potentially more efficient. Indeed,
drug pairs were predicted in this work to perform substantially
better in promoting the most robust and direct disruption of
cytokine storm and to do so by concurrently harnessing multiple
alternative pathways. Interestingly, dexamethasone was unan-
imously recruited into the top five pairs where it was combined
with other high-ranking drugs. These imparted actions comple-
mentary to those of dexamethasone such as the downregulation
of the immune activator CSF3. Acetylcholine agonists, medrox-
yprogesterone acetate, and ciprofloxacin ranked highest as
companion drugs with identical intervention enrichment scores,
followed by rapamycin and simvastatin. While acetylcholine
agonists are under study, as noted above, this is less the case
for medroxyprogesterone acetate and ciprofloxacin. Used in
hormone replacement therapy and as a contraceptive, medrox-
yprogesterone acetate also exerts little-documented immune-
modulatory actions, with high doses inhibiting the expression of
inflammatory cytokines jointly affecting Th1, Th2, Th17, and Th22
immune signaling®', contributing to reductions in symptom
severity and corticosteroid use in asthmatic subjects*. Fluoroqui-
nolones such as the broad-spectrum antimicrobial ciprofloxacin,
have been shown to also exhibit antiviral properties as well as
significant immunomodaulatory effects, including downregulation
of IL-1 and TNF°° making these compounds of interest in the
treatment of COVID infection and subsequent respiratory compli-
cations®’. Similarly, clinical investigation of simvastatin in a COVID
setting remains in its early stages. While inhibition by a statin of 3-
hydroxy-3-methylglutarylcoenzyme A (HMG-CoA) reductase has
been shown to interfere with the development of ARDS in an
animal model®?, clinical outcomes were initially found to be
unchanged by simvastatin®3, However, subsequent analysis of
study data identified statin-responsive phenotypes®®, prompting
renewed interest in statins as modulators of thromboinflammatory
pathways in COVID-induced ARDS>>°¢,

Unfortunately, while several of these top-ranking companion
drugs are under independent study, none are yet being
investigated in the context of a combination therapy. A possible
exception to this would be the ongoing Phase 2 study pairing
ruxolitinib with simvastatin (NCT04348695) which did not rank
highly with the metrics used in this work. While this result in and
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of its own does not necessarily guarantee a poor outcome, it does
suggest that other combinations might offer stronger synergies in
leveraging multiple complementary drug-action pathways pre-
dicted to effectively disrupt ARDS cytokine storm. Indeed, the
analysis presented in this work was never meant to replace more
exhaustive simulation studies and experimental validation of drug
responses. Nonetheless, this approach offers a computationally
efficient quantitative framework for ranking individual drugs and
drug combinations in a way that implicitly accounts for and
exploits the network biology of interacting pathways using a
mechanistic dynamic representation of broad community-wide
peer-reviewed prior knowledge. While the metrics used here do
not explicitly favor drug pairs expected a priori to deliver positive
synergistic effects, it was interesting to observe that many such
positive synergies seemed to emerge as a natural consequence of
increased transportability across those multiple intervention paths
predicted to produce better outcomes.

In this iteration, the proposed framework does not yet formally
account for drug toxicity and known adverse events associated
with drug combinations. Ongoing work is directed at including
such penalties in the estimation of drug enrichment scores. In
addition, this initial analysis does not explicitly include or leverage
drug pharmacodynamic properties or drug dose-response data
e.g. ICso data, though such information is indirectly leveraged
through literature-interpreted drug actions®”. Where such data
exist, the current framework could potentially benefit from
concurrent use and validation against empirical drug data-driven
approaches such as the Drug Atlas®® with the proviso that
predictions made here include maximally synergistic drugs in
addition to those that are maximally complementary in their
actions. Similarly, recent digital repositories focused specifically on
consolidating clinical experience and putative targets of COVID-19
therapeutics®®%° might also be leveraged to further inform the
family of candidate drugs to be assessed in the context of host
immune response dynamics captured here by our regulatory
network model. Finally, in the current analysis, the selection of
drugs useful in disrupting cytokine storm was limited to
compounds having received FDA approval. The intention was to
provide a sound basis for establishing credibility of the proposed
drug selection method as more is typically known about the
effects of such compounds. Moreover, repurposing of the most
promising candidates might be facilitated by the fact that they are
already in clinical use. Certainly, in future iterations of this analysis,
experimental compounds would be included in the hope of
further optimizing efficacy of treatment. Similarly, the optimal
choice of targets and corresponding compounds might differ
depending on the severity and phase of illness. While simulations
of treatment response used here were conducted from an initial
iliness state corresponding to an established cytokine storm, this is
not a requirement. Indeed, future work involving a broader search
across a wider range of initial conditions might identify thresholds
in severity where some drugs should be discontinued in favor of
others.

Though opportunities exist for continued refinement of this
approach, we contend that the current framework offers a first
important step towards producing a reliable and computationally
efficient means for the rapid repurposing of well-known
compounds currently in clinical use and redirecting these towards
the effective management of potentially severe comorbidities
such as ARDS, thereby reducing fatalities from SARS-CoV-2
infection. This being said, it important to remember that the
current model was adjusted to reproduce and capture host
immune response to a SARS-CoV1 exposure, as this was the most
readily available data at the time. Of course, new data sets
continue to be shared that describe host responses to SARS-CoV2
specifically. Though we expect some degree of uniqueness in
ARDS induced by this more recent pathogen, we believe that
predictions presented here based on SARS-CoV1 would at the very
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least be relevant to the treatment of cytokine storm in SARS-CoV2
infection. This may be especially true given the coarser resolution
afforded at the level of drug assignment. With these limitations in
mind, we propose that the drugs and drug pairs identified

nonetheless constitute a potentially promising set of initial
candidates for further in silico, animal and clinical study.

METHODS
A model of immune signaling in cytokine storm

As previously reported by our group', a basic immune signaling
network model was constructed from 19 molecular markers
(nodes) with involvement in infectious pneumonia as documented
in the Elsevier Knowledge Graph database'® (Elsevier, Amsterdam)
using the Pathway Studio (Copyright © 2020 Elsevier Ltd. except
content provided by third parties. Pathway Studio is a trademark
of Elsevier Ltd.) suite of software tools®'. This same database
supported 112 regulatory interactions (edges) previously
extracted from 2653 abstracts and/or full text of peer-reviewed
journal publications using the MedScan natural language proces-
sing (NLP) engine®%%3, The dynamic behavior of the network is
governed by model parameter values that dictate the underlying
transition from one network state to the next®* using an extension
of discrete logic concepts put forward by Thomas and Thieffry5>6°
and applied specifically to cell signaling systems by®” and others.
More specifically, perception thresholds on incoming signals at
each network node are used to mimic the actions of high and low-
affinity receptors. Only those incoming signals that exceed their
respective perception thresholds will be considered as active
mediators of the target downstream node. Each possible
combination of these active signals is assigned a respective logic
weight that dictates the regulatory response at that node, ie.,
increase, decrease or maintain the same expression level in the
next iteration. In this way, each regulatory decision is context-
specific, weighing the actions strong activators against those of
weak inactivators and vice versa.

Acceptable sets of these perception thresholds and decisional
logic weights (K-values) were identified here using a constraint-
based optimization framework®® such that the network’s corre-
sponding dynamic behaviors encompassed data describing the
72-h in vitro time course response of human Calu-3 cells to SARS-
CoV infection®®. Given the still limited availability of molecular
data specific to COVID-19 infection and the similarity in clinical
presentation to SARS’®, we consider this an acceptable proxy for
this exercise. These data were retrieved from the Gene Expression
Omnibus (GEO accession number GSE33267) and normalized to
the mean of the mock infection samples (control) at each
timepoint and translated into discrete expression levels using
Variational Bayesian Gaussian clustering”’. As the complexity of
the model exceeds that of the available experimental data, the
parameter identification problem is said to be underdetermined.
In this case, 19 unique models were identified with <5% departure
from the experimental data, with 11 of these parameter sets
explaining the time course data exactly (0% error). Of these, 3
parameter sets (models 15, 17, and 18) supported steady-state
expression profiles that closely approximated an immune resting
state and one considered representative of the persistent cytokine
storm. In the case of one model in particular, the basin of
attraction surrounding the inactive immune resting state con-
ferred a sufficiently robust response to infection for cytokine
storm to occur at a clinically realistic rate® (~15%;) (26% predicted
by model 18). As such, this model was retained as the basis for all
simulated drug actions presented here. Additional details may be
found in a concurrent report by our group'’. These steps and the
proposed drug selection process are illustrated as a workflow in
Fig. 8.
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Fig. 8 A regulatory network informed process for ranking candidate drugs. The computational workflow for identifying and ranking drugs
available for repurposing to COVID-induced ARDS consists of several sequential steps, namely (1) a regulatory network is assembled that links
the biological mediators of interest through documented regulatory interactions extracted by text-mining of the peer-reviewed literature, (2)
sets of logical parameters capturing receptor affinity effects and context-specific regulatory responses are identified that support adherence
to available data using a Constraint Satisfaction approach, (3) the resulting sets of competing dynamic network models are used to identify
sets of target nodes that if manipulated concurrently would succeed in disrupting a persistent pathology like ARDS to restore normal immune
regulation, (4) candidate compounds are then ranked based on how well and how specifically they support one or several of these idealized
interventions. Finally, (5) the actions of top-ranking drugs and drug combinations are simulated to verify expected response dynamics.

Minimal intervention set identification

As mentioned in the previous section, we use a discrete
decisional logic to manage the flow of immune signals through
the host regulatory network and direct its evolution from one
immune state to the next. At any given iteration, each of the
network’s immune mediator nodes is assessed for incoming
signals expressed above their respective perception thresholds.
As mentioned above, based on the specific combination of
active upstream mediators and their mode of action (activator
or inactivator), the state of a corresponding downstream node
is predicted to either remained unchanged, increase or
decrease in the next time step. Applying this to all nodes, the
next state towards which the overall network should progress
given the current state, namely the network image, is
computed. According to the update scheme being used, this
predicted change in state is applied to a single random node
(asynchronous update) or to all eligible nodes simultaneously
(synchronous update). As we were primarily interested in stable
persistent behaviors like cytokine storm, simulations of immune
response were conducted here using a synchronous update of
all node states for reasons of computational efficiency. Using
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this framework, model predictions of host inflammatory
response under different conditions were conducted as part
of a multi-objective optimization problem directed at identify-
ing the smallest or minimal sets of molecular targets in the
immune network that when manipulated concurrently in a
specific manner (i.e., upregulated or downregulated) would
theoretically disrupt a fully established cytokine storm and
return immune activation to a normal resting state either fully
or partially. Here we describe a fully established cytokine storm
as the co-expression pattern of immune mediators measured
experimentally in the Calu-3 cell cultures 72-h after coronavirus
infection®® (GEO accession number GSE33267). In addition, the
baseline healthy resting state was specified as an idealized
immune quiescent state where all immune mediator entities are
expressed at a nominal activation level (e.g., inactive or 0 in the
discrete space).

These Minimal Intervention Sets (MIS) were identified by solving
a computationally efficient Constraint Satisfaction Problem (CSP)'®
where the idealized manipulations of at most nine molecular
targets at a time, or 50% of the network, were iteratively assessed.
As reported in previous work by our group'®, this optimization
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consisted of concurrently minimizing the number of immune
nodes being targeted, the final distance to the target state
achieved by the intervention (calculated using the L1-norm), and
the number of state transitions required (efficiency) to reach this
treatment stabilized state. This multi-objective optimization was
stated as a constraint satisfaction problem (CSP)’2 in MiniZinc”3
and solved with the greedy solver Chuffed”*.

Ranking intervention sets as candidates for repurposing

By design, solving a constraint satisfaction problem allows for the
recovery of all solutions which comply with the constraints stated.
As mentioned above, these constraint-compliant solutions can be
ranked further based on other performance metrics such as size or
cardinality of the intervention target set, as well as the predicted
expediency (efficiency) of response and reliability of outcome
(robustness) as reported previously by our group'®. However,
despite their optimality in achieving a desired outcome, such
idealized interventions (concurrent up or downregulation of
specific targets) may not translate readily into clinical care using
currently available drugs. Here, we propose a quantitative metric
to assess the actionability A of an idealized MIS solution as a ready
candidate for drug repurposing’®. The A metric is composed of
four component scores. The first of these, cardinality, is the
number of prescribed targets in the MIS vector m.

C(m) = [Imllo U

A second metric is the antagonist ratio. Because it is generally
more common for drugs to exhibit inhibitory actions against
molecular targets, MIS solutions with a higher ratio of antagonist-
to-agonist actions are prioritized.

pfp=Ylm=1]
V(’")‘E{q—z,ﬁ mi = 1] @

Where n is the number of targets in m, m; is the polarity of the
target at index i, —1 represents an inhibition of the target, and +1
represents activation of the target.

A third consideration is a broad accessibility to equivalent
pharmacotherapy, expressed here as the number of alternate
drugs available to perform the same actions specified in a given
MIS solution.

am) = (T1, )" 3)

Where n is the number of targets in m and m is the set of counts
of all drugs that act with correct polarity on each element of m.

Finally, we attempt to account for off-target effects of all drugs
applicable to an MIS, that is all drug actions inadvertently applied
outside of those dictated in the MIS. Accordingly, the actionability
of an MIS is penalized or discounted in proportion to the
minimum number of documented off-target interactions, affected
by all drugs at each target and cumulated across all component
targets in the MIS (Eq. (4)).

mm = ([T, min(k,-))”" ()

Where n is the number of targets in m and k is a vector of n
elements, each of which is itself a vector of length j. Each k;; is the
total number of interactions known for the drug at j. To be
included in k; j must interact with m; with the correct polarity.
These components are combined into a single aggregate score
as shown in Eqg. (5). Two tuning parameters, y and T, are used to
adjust the relative weight of solution cardinality and the
antagonist ratio, respectively. For this analysis, y and T were set
to 1.0 to assign equal weight to all component scores. Of note, any
MIS solution where the drug-action databases do not contain any
drug known to interact with one or more targets is considered an
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unactionable solution or one that is not suitable for repurposing.

T
a(m) — R V() -
C(m)"*T(m)

The statistical significance of an actionability score was
estimated empirically from a null distribution of actionability for
randomly generated mock MIS solutions. The null distribution was
generated by repeatedly sampling a discrete uniform distribution
along the integer interval [—1, 1], where each mock MIS solution
vector is equal in length to the maximum possible cardinality
allowed for in the current model (i.e, the number of allowable
targets <number of network nodes). The actionability scores
corresponding to these artificial solution sets form the null
distribution. Empirical P values for each real solution are then
estimated as the proportion of artificial actionability scores greater
than or equal to the actionability of each real solution. To account
for multiple tests, the Benjamini-Hochberg”® correction is applied.
. (r+1)

P=nr) ©

Where n is the number of simulated solutions and r is the
number of simulated solutions whose actionability is greater than
or equal to the actionability of the actual solution. All actionability
scores and null P values were computed using Python version
3.8.3 (2020-05-13) (https://www.python.org/).

Creating a pool of problem-relevant candidate drugs

A broad preliminary set of candidate drugs with broad
relevance to the problem of interest was assembled by applying
three complementary surveys of the Elsevier (Amsterdam, NL)
Knowledge Graph database'® (Fig. 2a). The first and perhaps
broadest of these consisted of searching for immune mod-
ulators associated with at least one node in the network model
developed by our group', yielding 5120 drugs. A second more
infection-focused survey included all FDA-regulated com-
pounds known to act as agonists or antagonists of human
proteins and protein families found characteristic of Corona-
virus infection, Severe Acute Respiratory Syndrome Coronavirus
1 (SARS-Cov-1) and 2, (SARS-Cov-2; COVID-19) as well as the
Middle East Respiratory Syndrome coronavirus (MERS-CoV),
producing a set of 1211 drugs. A third more clinically motivated
survey focused on drugs with targets implicated in the
pathogenesis and progression of coronavirus-induced ARDS.
This third set consisted of 1270 candidate drugs known as (a)
affecting autophagy, or (b) being the object of past or ongoing
clinical research for the treatment of SARS, MERS, or COVID-19.
The intersection of individual results from each of these three
complementary surveys, produced a consensus list of 144 FDA-
regulated compounds, drawn from 94 Established Pharmaco-
logic Classes (EPC), that were relevant to the pathogen, to the
progression of infection and to host immune response in ARDS-
induced cytokine storm. Of these, 67 are registered to
interventional clinical trials in the United States as of July 27,
2020 (Fig. 2b). This set of drugs includes monoclonal antibodies,
non-steroidal anti-inflammatories, antibiotics, statins, and other
immunomodulatory compounds but the most widely repre-
sented are kinase inhibitors and corticosteroids (Fig. 2c).

Of note, in estimating the statistical significance for the
enrichment of a drug E,y; with respect to a specific intervention
solution (MIS) we compare against enrichment EO,4; obtained in a
background set of drugs serving as a null distribution. In order to
avoid including an overwhelming majority of drugs for which no
targets exist in the model, introducing a bias of the null
distribution towards no enrichment, we define a background set
consisting of only those 1900 drugs which like the candidate
drugs (foreground) not only show affinity for at least one entity in
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the network but also modulate this target according to a well-
defined mode of action, namely a specific upregulation or
downregulation of the target by the drug. In the case of drug
pairs, we establish a similar null distribution by randomly
subsampling 50,000 instances from the over 1.8 million possible
combinations of two drugs selected from these same 1900
candidates. In both cases, these sets of model-relevant drugs
remain broad while also offering more conservative measures of
the significance threshold for enrichment EO,;.

Ranking drugs that optimally support an intervention

To facilitate the comparison of individual drugs or drug combinations
that might support a specific model-predicted intervention to a
greater or lesser extent, we propose as a quantitative ranking metric,
the Adjusted Intervention Enrichment Score (E,q). The E,q; score is a
weighted measure of the degree to which set of drug actions
enriches an MIS solution. First, a basic enrichment E is defined as the
percentage of prescribed targets in the MIS solution that are acted
upon by a given drug or combination of drugs. However, this basic
measure of coverage does not account for an “overenrichment”, in
which an entity unprescribed in the MIS solution is modulated by a
candidate drug, nor does it account for conflicting modes of drug
action, where a candidate drug acts on one or more targets in a
manner contrary to that prescribed in the MIS solution. To account
for such undesirable occurrences, two penalty scores, the over-
enrichment penalty, b, and the conflict penalty, ¢, are used to adjust
the raw E score. It is this adjusted E score, E,q;, that is used to
compare competing drugs and drug combinations.

Consider an MIS solution to be a vector, m, whose length is
equal to the number of entities or nodes in a model and whose
elements m; can hold one of three possible values'®, namely —1, 0,
or 1. A value of m;=0 indicates no action on the corresponding
model entity, a value of —1 indicates a required downregulation
or inhibition, and 1 indicates a required upregulation or activation
of that entity or node respectively. Similarly, the actions of a drug,
d, can be represented by a vector of the same length as m and
whose elements can hold the same value, but where those values
are determined by known interactions between the drug and the
elements of the corresponding model. The basic enrichment score
E(d,m) is therefore the number of elements in d whose values are
equal to their corresponding elements in m divided by the
number of nonzero elements in m. The following equations, use
Iverson Bracket Notation”” where statements in square brackets
evaluate to a Boolean state of 1 if true and 0 otherwise.

Enrichment E(d,m) is defined as:
>ial(d =m) A (m;=0)]

> l(mi=0)]

where n is the number of elements in m. To account for
overenrichment or direct off-target effects, a penalty, B is
subtracted from the raw E score.

B(d,m) — >l ¢m;7) Ami=0)] ®)
where b, is a user-defined penalty weight. Larger values of b,
penalize more greatly for overenrichment. Another penalty
accounting for contrary drug actions, C is also subtracted from
the raw E score to account for conflicting actions on a target.

_ 2al(di=my) A (mi=0)]

C(d,m) = p - Co )

E(d,m) = %

where ¢, is a user-defined penalty weight. Larger values of ¢,
penalize more greatly for conflicting actions. Subtracting B and C
from E yields the adjusted enrichment score, E,g;.

Eaqi(d,m) = E(d,m) — B(d,m) — C(d, m) (10)
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Here, we estimate the statistical significance of an adjusted
enrichment score E,q; for a given drug or combination of drugs
with respect to a specific MIS solution by comparing it against the
distribution of the enrichment scores EO,q; obtained by randomly
sampling drugs or combinations of drugs from a background set
of 1900 drugs that exert a well-defined action on at least one
network element, as described in the previous section. Empirical P
values are estimated as the proportion of EQ,q; scores greater than
or equal to each observed E,q; score. These raw P values are then
corrected for multiple comparisons across the subset of 144 drugs
of interest (both model and illness-relevant) using
Benjamini-Hochberg”®. This process is analogous in some ways
to gene set enrichment analysis (GSEA)”®, though the definition of
enrichment and exact statistical methods differ.

To provide a measure of overall performance, the weighted
percentile median enrichment’® is calculated for each drug or
drug combination across all idealized intervention sets found to
be significantly actionable (see the previous section “Ranking
intervention sets as candidates for repurposing”). Here, the weight
applied to each individual MIS solution is computed as the inverse
square of the Manhattan distance separating the simulated
treatment endpoint and the desired target state, such that MIS
solutions which achieve better proximity to recovery from ARDS
are weighted more heavily. This method produces the E,gq;
corresponding to the median rank MIS solution adjusted for
quality of outcome. The median absolute deviation of the E,q;
values about this weighted percentile median score is also
computed to describe variability in £,y across the MIS solutions.
The significance of this weighted median performance P,q(WM
E.qj), as well as for the maximum enrichment P,q;(Max E,q), both
adjusted for multiple comparisons, are obtained by comparing
against the same metrics computed for drugs and drug
combinations selected randomly from the background set.

Simulation of drug interventions

The response of the model immune signaling network'® to the
actions of a drug or drug combination can be simulated as a
sequence of expression profiles or network states that emerge as a
result of the direction and type of interactions acting at each node
as well as the parameters defining the underlying state transition
logic®®. These logic parameters mimic the effects of receptor
affinity as well as the context-specific nature of immune response.
Given its current state and a combination of incoming signals that
meet or exceed their individual thresholds of action, the state of a
given node at the next time step is set to the entry in that node’s
truth table that corresponds to a response that might be expected
under the same combination of upstream stimuli given the
available experimental data®®. As a synchronous update scheme
was used here, these corresponding next states are applied to all
nodes across the network simultaneously. However, this is not a
limitation of the method and other update schemes can be used,
including fully asynchronous update as well as a novel priority
class update with memory®*8°,

Accordingly, the dynamic response of the network to an
external perturbation, such as a drug, can be simulated if the
targeted network entities and the way in which they are
modulated by the drug are known (i.e., promoting or inhibiting).
When a drug targets an entity with a positive mode of action, the
state value of that entity will increase incrementally until the
maximum value for that entity is reached. The reverse holds true
for a drug that exerts a negative action on its targets. For example,
let A be an immune network entity with an allowable range of
activation between 0 and 4, and where its current activation level
is 2. When an agonist that directly targets A is applied, the
activation level of A will increase from 2 to 3 in one iteration, and
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then from 3 to 4 in the following iteration, and will remain at 4 as
long as the intervention is applied.
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