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Abstract

Hippocampal neurons encode physical variables1–7 such as space1 or auditory frequency6 in 

cognitive maps8. In addition, human fMRI studies have shown that the hippocampus can also 

encode more abstract, learned variables9–11. However, their integration into existing neural 

representations of physical variables12,13 is unknown. Using 2-photon calcium imaging, we show 

that individual dorsal CA1 neurons jointly encode accumulated evidence with spatial position 

in mice performing a decision-making task in virtual reality14–16. Nonlinear dimensionality 

reduction13 showed that population activity was well described by ~4–6 latent variables, 

suggesting that neural activity is constrained to a low-dimensional manifold. Within this low-

dimensional space, both physical and abstract variables were jointly mapped in an orderly 

fashion, creating a geometric representation that we demonstrate to be similar across animals. 

The existence of conjoined cognitive maps suggests that the hippocampus performs a general 

computation – to create geometric representations of learned knowledge instantiated by task-

specific low-dimensional manifolds.
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Introduction

Since the discovery of place cells in the CA1 of dorsal hippocampus that increased 

their firing rates when rats moved through specific locations in a given environment1, 

hippocampal neurons have also been shown to encode time17,18, auditory frequency6, 

odors4,7, and taste5. Together, these studies support the view that the hippocampus 

constructs task-dependent cognitive maps8,19, where hippocampal neurons not only encode 

spatial position, but whichever environmental variable is relevant to the task at hand. 

Furthermore, fMRI studies in humans have shown that the hippocampus can encode 

more cognitive variables, such as the sequential nature of a non-spatial task9 or social 

structures10,11. Cognitive variables can be characterized by geometric properties such as 

adjacency and distance20–22, suggesting the neural encoding of these variables at the cellular 

level may also be manifest with geometric structure.

Neural activity can be described as a point in a high-dimensional coordinate system, where 

each coordinate axis represents a single neuron’s activity. Underlying properties of the 

network and its inputs can confine neural trajectories to a subregion of this space, i.e. the 

neural manifold, which has been proposed to underlie motor movements23,24, head direction 

cells25, and hippocampal maps of physical variables13. The conceptual ideas in these studies 

suggest a general principle of hippocampal computation: the construction of organized maps 

of learned knowledge26,27 instantiated by neural manifolds. Here, we examine how neurons 

in the dorsal CA1 integrate neural representations of cognitive and physical variables and 

whether low-dimensional manifolds underlie these representations.

Evidence accumulation in virtual reality

We used transgenic GCaMP6f-expressing mice (n=7) performing an evidence accumulation 

task in virtual reality (VR; Supplementary Video 1)14,28–30 and 2-photon calcium imaging to 

record cellular resolution activity of neurons in dorsal CA1 (n=3144 total neurons, 449±64 

SEM simultaneously per session; Fig. 1a). The “accumulating towers task”14 combines 

navigation with decision-making, such that position, a physical variable, has to be integrated 

with accumulated evidence14–16,31,32 - a cognitive variable that is not innate and can only 

be inferred and calculated after learning the task rules. Mice learned to traverse the stem of 

an immersive VR T-maze, while visual cues were presented randomly on the left and right 

walls. Turning to the side with more cues at the end of the maze resulted in the delivery of 

a liquid reward, while turning to the opposite side resulted in a time-out. Consistent with 

previously published results14, the behavior showed characteristic psychometric curves (Fig. 

1b), and mice used evidence (integrated # right towers - # left towers) from throughout the 

cue period (Fig. 1c).

Figure 1d and 1e illustrate two possibilities for how CA1 neurons may behave in the task. 

If they behave like previously described place cells that respond differently depending on 

context2,3,33,34, e.g. “splitter cells” that encode turn direction, we would expect reliable 

place cell sequences specific to right or left turn trials (Fig. 1d). However, if individual CA1 

neurons can encode a cognitive variable, such as the amount of accumulated evidence, in 

addition to position in the maze, the cognitive map might comprise at least two independent 

axes - a position axis and an accumulated evidence axis35. If so, we would expect each right 
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choice trial to evoke different neural sequences, depending on the time courses of evidence 

that the animals encountered throughout the maze (Fig. 1e). Importantly, in this second 

scenario, firing fields evaluated in a single dimension, such as position, would exist, but 

would appear unreliable across trials with different amounts of accumulated evidence (Fig. 

1e bottom). Note that unreliability could appear as either missing activity in the cell’s place 

field or variability in the position at which the cell is active.

Joint encoding of position and evidence

To distinguish these two possibilities, we examined how neural activity depended upon 

known behavioral variables such as position, choice, and evidence. We first calculated 

ΔF/F for each identified hippocampal CA1 neuron following established methods15,36,37. 

We then measured mutual information between each cell’s neural activity and the animal’s 

position along the stem of the T-maze (0 to 300 cm) and compared it to a shuffled dataset 

where each cell’s activity within a trial was circularly shifted. CA1 neurons exhibited 

choice-specific place cell sequences when activity was sorted by the position of peak activity 

(Fig. 2a). However, the response of individual cells in these sequences was more variable 

and unreliable on a trial-by-trial basis in comparison to a simpler alternation task (Extended 

Data Fig. 1a, b). This is against the prediction of choice-specific cell maps (Fig. 1d), but 

consistent with maps where evidence and position are jointly encoded (Fig. 1e). We next 

measured the mutual information between accumulated evidence and each cell’s neural 

activity and found that CA1 neurons formed firing fields in evidence space that spanned 

small segments of evidence values (Fig. 2b, Extended Data Fig. 1c), consistent with Figure 

1e.

To directly test the hypothesis that CA1 neurons encode evidence and position jointly (Fig. 

1e), we measured the amount of mutual information between neural activity and occupancy 

in a 2D evidence-by-position (E×Y) space and compared this to the amount of mutual 

information if cells encoded position or evidence independently. The neural activity of an 

example neuron with significant mutual information between activity and occupancy in E×Y 

space is shown in Fig. 2c, and 25 of these neurons from a single imaging session are shown 

in Fig. 2d and Extended Data Fig. 2a. For these neurons jointly encoding position and 

evidence, mutual information in E×Y space was significantly greater than in 2D spaces in 

which either evidence or position values were shuffled (Fig. 2e, Extended Data Fig. 2b, c).

Geometric representation by a neural manifold

While the mutual information metric has been historically used to measure spatial 

information in single hippocampal neurons38, it relies on the manual selection of 

predetermined behavioral variables. We therefore turned to the unsupervised extraction 

of neural manifolds using a principled method: manifold inference from neural dynamics 

(MIND)13. While most nonlinear dimensionality reduction techniques focus on the 

geometric properties of the cloud of population state data, MIND constructs a set of latent 

variables with a specific emphasis on incorporating temporal dynamics. It is therefore 

particularly suited to find low-dimensional representations in data with sequential activity.
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We first used the distance metric in MIND to estimate the dimensionality of the neural 

manifold in the hippocampus during the accumulating towers task. We calculated distances 

from estimated transition probabilities between observed population activity states and 

counted the cumulative number of population states that fell within spheres of growing 

radii r, where r is an estimate for the inner distance12,39. If the manifold has d dimensions, 

we expect the number of states to grow as rd. We found that the number of states 

grows approximately as d=5.4 [4.8, 6.0], strongly indicating a low, approximately 4- to 6-

dimensional latent geometry (Fig. 3a). Importantly, the dimensionality estimate of a simpler 

task, where visual cues only appeared on one side of the maze, was significantly lower 

(Extended Data Fig. 3).

To validate this estimate, we next embedded the manifold into d-dimensional Euclidean 

spaces and assessed how well these embedded manifolds described neural data using cross-

validation on held-out trials (Extended Data Fig. 4). Figure 3b shows a small portion of 

the activity from 40 neurons (left) and the reconstruction of that same data from the five 

latent variables obtained after embedding the manifold into a 5-dimensional Euclidean 

space (right). We measured the average cross-validated correlation coefficient between the 

neural data and the reconstruction of the same data from manifolds embedded into 2- to 

7-dimensional Euclidean spaces. Consistent with the dimensionality estimate in Fig. 3a, we 

find that the reconstruction performance saturates at ~5–6 dimensions (Fig. 3c). Using a 

linear dimensionality reduction technique, principal component analysis (PCA), comparable 

decoding indices for embedding into 4, 5, and 6 dimensions are reached using 29, 40, and 

47 principal components, respectively. This reveals that hippocampal activity is constrained 

to an intricately shaped low-dimensional manifold that can only be identified with nonlinear 

dimensionality reduction techniques.

If the neural manifold accurately represents the cognitive map of the task that individual 

neurons encode, two key predictions should hold true. First, individual neurons should have 

firing fields that tile the latent space, and second, important variables in the task, such 

as position and evidence, should be organized in an orderly fashion. The activity of a 

representative neuron plotted as a heatmap on a 3-dimensional embedding of the manifold is 

shown in Fig. 3d, demonstrating a localized firing field on the manifold. Plotting the activity 

of multiple neurons on the same manifold reveals that the manifold is tiled with multiple 

firing fields (Fig. 3e, Supplementary Video 2). Furthermore, the manifold structure implies 

the coordinated activity of the entire neural population, such that activity of a single neuron 

can be well-predicted by activity from the rest of the population (Extended Data Fig. 4).

The second key prediction of our hypothesis is the orderly organization of important 

task variables on the manifold. Figure 3f reveals that both position (left) and evidence 

(right) appear organized as gradients in the latent space, in that the neural state trajectory 

typically progresses along a position direction in the course of a trial, while splitting along 

an independent, but integrated, evidence direction (Supplementary Video 3) - a structure 

fundamentally different from the visual inputs that the mouse experiences in the towers 

task (Extended Data Fig. 5). We then used gaussian process regression to decode position 

and evidence from the manifold and found that both variables can be decoded with similar 

accuracy as from neural data (Fig. 3g). In addition, other behavioral variables such as 
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velocity and view angle could also be decoded from the manifold, as well as binary task 

variables such as the choice on the previous trial and whether the previous trial was correct 

(Extended Data Fig. 6; Supplementary discussion).

If these geometric objects are task-specific, rather than animal-specific, there should be a 

high degree of similarity across animals performing the same task12. To test this hypothesis, 

we trained a model to predict position and evidence from manifold coordinates in one 

mouse and used the model to decode these variables in another mouse, after aligning their 

manifolds in the 5-dimensional embedding space (Fig. 3h, i). We found that the majority of 

the geometric structure was shared across brains (Fig. 3j).

Sequential neural activity encodes behavior

If the manifold is a good representation of hippocampal neural activity, then each trial in the 

accumulating towers task has a corresponding trajectory within the manifold, leading to the 

emergence of trial-specific sequences of active cells. To detect sequences, we identified pairs 

of cells that consistently fired one after the other without any restrictions on the time/place 

in the maze that each cell fired (Extended Data Fig. 7a) and termed a pair of cells as a 

“doublet” if one cell fired after the other significantly more often than in a shuffled dataset, 

where each neuron’s activity was circularly-shifted within each trial (Fig. 4a, Extended Data 

Fig. 7b). To test whether these doublets appear more often than could be expected from 

independently behaving choice and position selective cells, we shuffled the trial IDs of each 

cell independently within left and right choice trials to remove pairwise correlations while 

preserving the place/side structure seen in Fig. 2a (Extended Data Fig. 8). The number of 

trials in which doublets appeared was significantly greater than in the shuffled dataset (Fig. 

4b, Extended Data Fig. 9a). Furthermore, given the mostly unidirectional trajectories of the 

task in conceptual E×Y space (Extended Data Fig. 8a, b), we found that doublets were 

asymmetric (Fig. 4c, Extended Data Fig. 9b).

Next, we used the latent dimensions from the 5-dimensional embedding of the manifold to 

reconstruct the neural activity of all cells and extracted doublets from this reconstructed 

data. Even though doublets are very rare (on average, a given doublet is only active 

in 3.6±0.01% SEM of trials; n=16088 doublets), the manifold predicted the presence of 

doublets with a 0.87±0.02 SEM true positive rate and 0.14±0.01 SEM false positive rate 

(n=7 animals; Extended Data Fig. 9d). Furthermore, we found that the manifold could 

predict the precise timing of doublet events as well - the correlation between the timing 

of a doublet and the distance traversed on the manifold was significantly greater than the 

correlation in a shuffled dataset where manifold path lengths were taken from different trials 

with the same time interval (Fig. 4d, e; two-tailed Wilcoxon signed rank test, n=7 animals, 

*p=0.031).

Since the manifold encodes sequential activity well and given that behavioral variables 

are geometrically represented on the manifold (Fig. 3f, g), we would expect sequences to 

encode information about animal behavior, i.e. the animal’s upcoming choice. First, we 

identified doublets that were significantly choice-predictive by comparing the probability 

that the animal turns left or right in trials in which a doublet appears to the same probability 

in a shuffled dataset where choices in each trial were shuffled. Next, we found that these 
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choice-predictive doublets were significantly more predictive than the same doublets drawn 

from the shuffled dataset in which trial IDs were shuffled (Fig. 4f, Extended Data Fig. 

9c). Taken together, these sequences are informative beyond independently behaving cells, 

suggesting population activity that is consistent with movement along the low-dimensional 

manifold.

Discussion

By combining large-scale calcium imaging with a behavioral task where animals accumulate 

abstract evidence during navigation, we show how the coordinated activity of neurons in the 

dorsal CA1 region of the hippocampus gives rise to a task-specific geometric representation 

of a cognitive process. The neural population manifests this geometric representation by 

having firing fields within a low-dimensional nonlinear manifold, along which key task 

variables, both continuous and discrete, have an orderly arrangement. Previous rodent 

studies have shown the existence of low-dimensional manifolds in the hippocampus 

representing spatial position12,13, and fMRI studies in humans have shown that more 

abstract variables, such as social structures10,11, can be decoded from the hippocampus. 

One possibility was that different sets of hippocampal neurons could have encoded these 

variables separately, similar to the specialized coding of sensory, motor, and cognitive 

variables by VTA dopamine neurons in the same task16. However, we found that the 

majority of task-responsive neurons encoded position and evidence jointly (Fig. 2), leading 

to population dynamics that also reflect this joint neural code (Fig. 3 and 4).

The formation of a conjoined geometric representation of physical and abstract task 

variables, within neural manifolds in the hippocampus, could serve as a common organizing 

principle across two roles of the hippocampus, i.e. storing declarative memory and 

generating spatial/cognitive maps, that have historically been studied separately21,26,40. 

Low-dimensional manifolds could serve as the substrate on which relational networks for 

both declarative and spatial memories are stored27. In addition, our work suggests that the 

fast replay sequences seen in human nonspatial tasks9 could be organized by the geometric 

structure of the neural manifold, analogous to the process by which neural sequences during 

ongoing behavior are evoked from trajectories through the manifold (Fig. 4). Finally, recent 

computational work has focused on how representations of knowledge in a reinforcement 

learning40 or predictive coding27 context can be used to guide behavior. There are intriguing 

parallels between the latent structure identified in these models and the latent variable 

structure we have uncovered in our studies. However, future work is required to provide a 

quantitative understanding of how our experimental results relate to these learning models.

Methods

Animals and stereotaxic surgery.

All procedures performed in this study were approved by the Institutional Animal Care and 

Use Committee at Princeton University and were performed in accordance with the Guide 

for the Care and Use of Laboratory Animals (National Research Council, 2011). Male and 

female mice aged 2 – 18 months expressing GCaMP6f were used for chronic expression of 

the calcium indicator.
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• n=5 triple transgenic crosses expressing GCaMP6f under the CaMK11α 
promoter from Ai93-D;CaMKIIα-tTA [Igs7tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-

tTA)1Mmay/J, Jackson Laboratories, stock# 024108] and Emx1-IRES-Cre 

[B6.129S2-Emx1tm1(cre)Krj/J, Jackson Laboratories, stock# 005628], also 

referred to as Ai93xEMX1

• n=10 Thy1-GCaMP6f [C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J, Jackson 

Laboratories, stock# 028280], also referred to as GP5.3

Behaviorally, no differences have been observed in Ai93xEMX1 and GP5.3 animals14. In 

terms of calcium imaging, Ai93xEMX1 animals have higher expression levels of GCaMP6f 

than GP5.3 animals and therefore higher signal-to-noise ratios (SNR), resulting in different 

activity thresholds used to identify calcium events (described below). Some mice were 

used in multiple behavioral experiments that we analyzed, i.e. the one-side cues task is a 

training stage in the shaping procedure for the accumulating towers task. For all analyses 

and statistics other than those in Figure 1b, c (described below), one imaging session for 

each animal was selected based on the animal’s performance in the task, the number of cells 

identified by the automated cell-finding algorithm, the amount of noise in the ΔF/F signal, 

and the quality of motion correction.

Mice underwent surgical procedures as previously described29,41 in order to acquire optical 

access to the hippocampus. Surgery was performed on mice under aseptic conditions, and 

body temperature was maintained with a heating pad (Harvard Apparatus). Mice were 

anesthetized with isoflurane (2.5% for induction, 1–1.5% for maintenance) and given a 

preoperative dose of meloxicam subcutaneously for analgesia (1mg/kg) and a postoperative 

dose 24 hours later. After asepsis, the skull was exposed, and the periosteum was removed.

A custom lightweight titanium headplate was attached to the skull with adhesive cement 

(C&B Metabond; Parkell). A craniotomy in the left hemisphere centered over the cornu 

ammonis 1 (CA1) (mediolateral (ML): −1.8 mm from the midline, anteroposterior (AP): 2.0 

mm posterior from bregma) was made using a pneumatic drill. A small volume of overlying 

cortical tissue was aspirated to expose the external capsule; superficial fibers were then 

removed until the alveus became visible. A thin layer of Kwik-Sil (WPI) was injected into 

the resected area, and a metal cannula (316 S/S Hypo Tub 12T GA. 0.1080/0.1100” OD 

x 0.0890/.0930” ID x 0.060” long; cut and deburred) with a coverglass (2.5mm diameter, 

Erie Scientific) attached to the bottom (NOA81 adhesive, Norland) was implanted on top 

of the Kwik-Sil, so that the Kwik-Sil served as a stabilizing medium between the glass and 

brain tissue. Another layer of adhesive cement was added to hold the cannula to the skull 

and the headplate. Mice were allowed to recover for at least five days before starting water 

restriction for behavioral training. Mice were extensively handled during the restriction 

process to familiarize them to experimenters. Mice were allotted daily volumes of 1–2 mL 

of liquid per day, delivered either during behavioral sessions or supplemented after sessions. 

Animals were examined daily to ensure that there were no signs of dehydration and that 

body mass of at least 80% of the initial value was maintained.
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Behavioral training.

The mice were trained to perform the accumulating towers task in a virtual reality (VR) 

environment, as previously described14–16,42. In short, mice were headfixed so that they 

could run comfortably on an 8-inch Styrofoam® ball suspended by compressed air. Ball 

movements were measured with optical flow sensors (ADNS3080) via an Arduino Due, 

and the VR environment was projected onto a coated Styrofoam® screen (~270° horizontal 

and ~80° vertical visual field) using a DLP projector (Mitsubishi). The virtual environment 

was generated using ViRMEn software28. Rewards were delivered by a solenoid valve 

(NResearch Inc.), controlled by a NI-DAQ card (PCI-6229, National Instruments). This VR 

system has been used previously14–16,42 and was designed, by choice of material and size of 

the spherical treadmill, to minimize the amount of effort to turn the floating ball, such that 

the moment of inertia of a mouse pushing back the ball (2.78×10−4 kg*m2) is comparable to 

the moment of inertia of a mouse pushing itself (2.68×10−4 kg*m2).

Mice were trained to run down a 330 cm virtual T-maze (30 cm start region, 200 cm cue 

region, and 100 cm delay region). As mice ran through the cue region, tall, high-contrast 

visual cues (towers, 6 cm tall and 2 cm wide) were shown along either wall. After the delay 

period, mice were rewarded with a liquid reward for turning into the arm on the side where 

more towers were presented (4–8 μL of 10% v/v sweet condensed milk or 10% w/v sucrose). 

Rewarded trials were followed by a 3 s ITI, and error trials were followed by an audio error 

cue and a 12 s ITI. When rewards or error cues were delivered, the visual display froze for 

the first second after which the display was then blacked-out. Average trial length for the 

seven experimental mice was 6.3±0.8s SEM (cue: 2.4±0.4s SEM; delay: 1.9±0.2s SEM).

Tower positions were drawn randomly from spatial Poisson processes with means of 7.7 and 

2.3 towers/m on the rewarded and non-rewarded sides, respectively. Towers were transient, 

appearing when animals were 10 cm away from their locations and disappeared after 200 

ms. Each session started with at least 10 trials of a visually-guided version of the task 

as warm-up before proceeding to the main task. Behavioral sessions lasted 48:16±03:44 

SEM (mm:ss; n=7 animals). For analyses, trials in which animals turned around 180° or 

backtracked to before halfway in the delay region were not included. Detailed methods for 

the shaping procedures involved in training mice to perform the task, as well as performance 

and behavioral analyses have been previously published14.

A different set of mice learned a simplified version of this task (“alternation task”), where no 

towers were presented in the T-maze. In one version of the alternation task (n=2; Extended 

Data Fig. 1), the walls were textured differently along the long stem, and large distal cues 

were added, as previously described41. The maze itself was also slightly longer (340 cm 

instead of 300 cm). In a second version (n=7; Extended Data Fig. 6), the maze was identical 

to the accumulating towers task, except no towers were ever shown. In both cases, animals 

simply needed to alternate between left and right turns to be rewarded. Visual guides were 

also present in the arm where the reward would be located.
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Two-photon cellular resolution calcium imaging.

The 2-photon calcium imaging setup was identical to a previously published design15. 

Two-photon illumination was achieved with a Ti:Sapphire laser (Chameleon Vision II, 

Coherent) operating at 920nm. Fluorescence was acquired using a 40× 0.8 NA objective 

(LUMPLFLN40X/W, Olympus) and GaAsP PMTs (H10770PA-40, Hamamatsu) after 

passing through a dichroic (FF670-SDi01, Semrock), an IR filter (FF01–720sp, Semrock), 

reflected by a second dichroic (FF562-Di03, Semrock) and passing through a final bandpass 

filter (FF01–520/60, Semrock). The PMT output signal was amplified (Variable High Speed 

Current Amplifier; #59–179, Edmund Optics) and digitized (PXIe-7961R FlexRIO, National 

Instrument). The microscope was controlled by ScanImage (Vidrio Technologies) software 

using additional analog output units (PXIe-6341, National Instruments) for the laser power 

control and the scanners control. Double-distilled water was used as the immersion medium 

for the objective. Average beam power measured at the front of the objective was 60–160 

mW. The region between the objective and imaging site was shielded from external sources 

of light using a black rubber tube. Horizontal scans of the laser were achieved using a 

resonant galvanometer (Thorlabs). Typical fields of view measured approximately 500×500 

μm, and data was acquired at 30Hz.

Data processing and cell identification.

All imaging data was corrected for nonrigid brain motion via custom Matlab code based on 

a technique similar to NoRMCorre, where the image is divided into multiple overlapping 

patches and a rigid translation is estimated for each patch and frame by aligning against a 

template37. The set of transitions are then upsampled to create a smooth motion field that 

is applied to a set of smaller overlapping patches, and the registered frame is then used to 

update the template by calculating a running mean of past registered frames.

After correcting for motion, fluorescence traces (downsampled to 15 Hz) corresponding 

to individual cells were extracted using a constrained non-negative matrix factorization 

algorithm (CNMF)36. Initialization of the spatial components for CNMF was done as 

previously published, as was classification of identified components into cell-like and non-

cell-like categories15. Automated classification was followed by manual re-classification 

of a subset of components and artifact rejection. ΔF/F for each cell was calculated using 

the modal value of fluorescence in 3-minute long windows as baseline fluorescence. An 

important note is that CNMF can only identify cells with calcium activity during the 

imaging session, hence total cell numbers reported are for active cells. Cells that were silent 

for the entire imaging session are not included here.

Psychometric curves.

Psychometric curves (Fig. 1b) were plotted using methods described previously14. 

In brief, psychometric curves were fit using a 4-parameter sigmoid, 

pR Δ = p0 + B 1 + e− Δ − Δ0 /λ −1
, where Δ is the difference between the number of right 

and left towers. The binomial confidence interval was calculated using Jeffrey’s method14,15.
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Logistic regression analysis.

regression (Fig. 1c) was performed using methods described previously14. In brief, we 

modeled the animals’ choices in each trial with logistic regression where the factors are the 

evidence (# right towers - # left towers) in five equally-sized regions in the cue period.

For both the psychometric curves (Fig. 1b) and the logistic regression analysis (Fig. 1c), 

all sessions in which animals (n=7 animals) performed above 60% correct were included 

(n=109 total sessions).

Mutual information analysis.

For each cell, we evaluated a mutual information metric defined previously38, 

I = ∫
x

λ x log2
λ x

λ p x dx, where I is the mutual information rate of the cell in bits per second, 

x is the mouse’s spatial location, λ(x) is the cell’s mean ΔF/F at location x, p(x) is the 

mouse’s probability density of occupying location x, and λ = ∫
x

λ x p x dx is the overall 

mean ΔF/F of the cell.

To obtain λ(x), we first denoised ΔF/F by smoothing with a Gaussian filter with a length of 

5 bins and thresholded the result so that values less than 2 robust standard deviations across 

the time series were set to 0. λ(x) was then calculated bin-wise by collecting all smoothed 

and thresholded ΔF/F values in their respective bins across the entire session and taking the 

mean. λ(x) was then smoothed by convolution with a Gaussian filter with a length of 5 bins 

and a standard deviation of 1 bin. p(x) was calculated similarly by counting the number of 

frames that the animal spent in each bin across trials and normalized to have a sum of 1.

For position data, 10 cm bins from 0 cm to 300 cm were used. For evidence data, 31 bins 

(−15 to 15 #R - #L towers) were used. For multidimensional spaces where we randomized 

one of the dimensions (i.e. RE×Y and E×RY in Fig. 2e), the randomized variables (RE or 

RY) were created by uniform random sampling with replacement from the joint distribution 

of discrete evidence (E) and position (Y) values. More specifically, for the RE×Y space, 

where Y is the non-randomized dimension, we first found the distribution of E values 

present in the data for each Y value. This created 30 separate E distributions with respect 

to Y. The RE value for each frame was generated by randomly sampling from the sole E 

distribution that corresponded to the non-randomized Y value for that frame. This procedure 

was performed to control for the non-uniformity of the joint E×Y distribution in which 

specific combinations of E and Y values can have greatly different probabilities. A similar 

procedure was followed for the E×RY analysis.

To determine significance, each cell’s mutual information value was compared against the 

mean mutual information value of a shuffled dataset (100 shuffles), where each cell’s ΔF/F 

was circularly shifted by a random interval within each trial - disrupting the relationship 

between position and neural activity, while maintaining neural activity patterns. Only cells 

that had mutual information values greater than 2 standard deviations above the average 

mutual information of the shuffle distribution were considered statistically significant. Cells 

with statistically significant mutual information between neural activity and position in left 
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choice trials, but not right choice trials were categorized as left-choice preferring, while cells 

with statistically significant mutual information between neural activity and position in right 

choice trials, but not left choice trials were categorized as right-choice preferring. Those 

that were significant for both left and right choice trials were categorized as non-preferring. 

Similar tests were done for mutual information between neural activity and evidence, with 

the addition that cells where training and testing sets were not correlated (described below) 

were rejected.

For one-dimensional sequence plots (Fig. 2a, b, Extended Data Fig. 1c, and Extended Data 

Fig. 3), λ(x) were sorted and normalized based on their peak mean ΔF/F values. For the 

cross-validation procedure for evidence fields (Extended Data Fig. 1c), trials were ranked 

based on the cell’s maximum ΔF/F value in a given trial. Odd-ranked and even-ranked trials 

were assigned to the training and testing sets, respectively. λ(x) was recalculated on the 

training and testing sets and smoothed as described above. Only cells with significantly 

correlated λ(x) between the training and testing sets (p < 0.05) were used in the sequence 

plots. The training set was sorted based on peak mean ΔF/F values and plotted. This same 

sorting index was then applied to plotting the testing set.

For Extended Data Fig. 2d, cells were considered to encode both evidence and position if 

they had significant mutual information in E×Y space, as described above. Of the remaining 

cells, cells were considered to encode only position if they were significant in RE×Y space 

(16%) and only evidence if they were significant in E×RY space (6%). For Extended Data 

Fig. 2e, distributions of mutual information in RE×Y and E×RY space were calculated from 

50 different shuffles, where either E or Y were shuffled. Of the E×Y cells described above, 

89.9% had mutual information values in E×Y space greater than 2 standard deviations above 

both shuffled distributions. 9.8% had mutual information values that were greater than only 

the E×RY distribution, and 0.3% had mutual information values that were greater than only 

the RE×Y distribution.

Counting the number of place fields.

To estimate the number of place fields in E×Y space, we followed a heuristic to count peaks 

derived from previous studies43,44. Using the neural activity maps for each neuron in E×Y 

space (Fig. 2c, d and Extended Data Fig. 2a) obtained from methods described above (see 

Mutual information analysis), we considered all bins that surpassed 2 standard deviations 

above the shuffled mean as candidate place fields in the E×Y space. We then joined all 

bins with adjacent significant bins, and if a connected component exceeded 3*3=9 bins, we 

counted the connected component as a place field. The distribution of the place field counts 

is shown in Extended Data Fig. 2g. Note that a very small number of cells (3%, n=31/917 

cells) had significant firing fields above the shuffled control that were smaller than 9 bins. 

These appear in the histogram as “0”. Cells had approximately 1.7±0.3 SEM firing fields, 

with 53% (n=490/917) of cells having more than one firing field.

Manifold inference from neural dynamics.

To infer latent dimensions from neural dynamics, we adopted the procedure developed 

by Low, Lewallen and colleagues13 for calcium imaging data. We first smoothed the raw 

Nieh et al. Page 11

Nature. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ΔF/F traces with an 11-bin gaussian filter and thresholded at 4σ, where we estimated the 

robust standard deviation (σ) across the entire time series, but individually for every neuron. 

We restricted our analysis to cells that had at least one transient in the recording session, 

and imaging frames that had at least one active cell, as well as the portion of the maze 

represented by 0–300 cm (cue and delay periods). We then followed the procedure by Low, 

Lewallen, et al. to calculate distances between pairs of population activity vectors, extracting 

a set of latent variables from these distances with multidimensional scaling, and learning a 

map between latent space and network activity with local linear embedding (LLE).

Briefly, we first learn a generative model of transition probabilities from population activity 

in the training dataset s(t) = [s1(t), …, sN(t)] of N neurons at time 0 < t < T, to the 

activity s(t + Δt) using the random forest method developed by Low, Lewallen, et al. with 

a few modifications. First, when splitting the neural state-space into regions using a set of 

hyperplanes organized in a decision tree, we assessed 20 random hyperplane orientations at 

every node of the tree and selected the orientation which best split the data. This improved 

performance with the large numbers of neurons typically encountered in calcium imaging. 

Second, we set the minimum number of leaves in each random tree to 500. Third, to 

define transitions, we considered all states Δt=67 ms apart (one frame at a 15 Hz frame 

rate). Fourth, we fit manifolds to all data points, not only a subset of landmarks. All 

other hyperparameters were chosen as in Low, Lewallen, et al.13. The random forest model 

provides us with a set of transition probabilities p(s(t + Δt) | s(t)) that can be translated 

into a local distance δ(s(t + Δt), s(t)) under a Diffusion approximation, where the transition 

probability p decreases with distance δ as p ~ exp(−δ2). Similar to isomap45, we then 

calculated the global distance between two states as the length of the shortest path from 

one to the other via any intermediate, connected states. The pairwise geodesic distances of 

l points ρ(i,j), where 0<i, j<=l, then yields a matrix of size l×l that was embedded using 

multidimensional scaling with Sammon’s nonlinear mapping. This yielded latent variables 

to describe population data. The mapping from latent space to neural activity and back was 

then achieved with local-linear embedding13.

Manifold inference on video files.

To construct a low-dimensional representation of the task itself, we applied the algorithm 

described above to the visual input that the mice received in a typical experimental session, 

more specifically to the blue channel across all rgb pixels in each frame of the video 

files displaying the animals’ field of view. This corresponds to a vectorized time series of 

1792×1088 = 1,949,696 pixels as a function of time. To make this analysis computationally 

viable, we first downsampled the videos 17× from the original 1792×1088, restricted our 

analysis to trials shorter than 30 s and frames with positions between 0 and 350 cm, and 

simplified the hyperparameters, in comparison to the analysis of neural data, by using 

only two random hyperplane orientations and 1000 landmarks. All other parameters were 

identical to the analysis of neural data. The results are shown in Extended Data Fig. 5, where 

Extended Data Fig. 5a shows the mean luminance of the blue channel, after averaging across 

all pixels.
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Dimensionality estimation.

To estimate the dimensionality of the latent manifold, we analyzed the geometric properties 

of the geodesic distance matrix ρ(i,j). We specifically studied the statistics of nearest 

neighbor distances. Suppose that the neural states were confined to a two-dimensional sheet 

in high-dimensional neural state space. Within the sheet, counting the cumulative number of 

points N within distance r will increase quadratically with distance r, as more points on the 

sheet will fall within the neighborhood, thus recovering the two-dimensional sheet structure. 

Using this variation of the correlation dimension that can also be used for complex attractor 

geometries12,39, we found a wide range of values where the number of points scaled like a 

power law.

We fit this power law by minimizing the quadratic error to the model function N(r) = crd, 

where N is the total number of neighbors, r is the distance, and c and d are fit parameters. 

We fit this function over three orders of magnitude, from 103 < N < 106. The average 

across the seven mice yielded d=5.4 [4.8, 6.0] (95% bootstrapped confidence intervals). 

These numbers are consistent with a d ~ 4- to 6- dimensional manifold, embedded in a 

~450-dimensional neural state space (Fig. 3a). For the illustrations in Fig. 3a and Extended 

Data Fig. 3a, we normalized the distance by the average length of a trial along the manifold 

for each animal.

Reconstructing neural data from embedded manifolds.

To assess the quality of the dimensionality reduction performed with MIND, we measured 

how well the neural data can be reconstructed from the d latent variables after embedding 

the manifold into d dimensions (Extended Data Fig. 4). This provides us with an estimate 

of the minimum number of dimensions required for the reconstruction quality to saturate. 

This number should be comparable to the intrinsic dimensionality of the manifold, and thus 

provided us with a separate measurement of the manifolds’ dimensionality.

Measuring how well the coordinated activity of neurons is predicted by the manifold.

To this end, we held out a random trial, fit a manifold to the remaining data, and embedded 

this manifold into two to seven dimensions using the methods described above. After fitting 

the manifold on the training data, we first projected the held-out trial onto the manifold to 

obtain d coordinates for every time point and then reconstructed neural activity from these 

d numbers in the test dataset using LLE13. We then thresholded the LLE estimate in order 

to capture the thresholding nonlinearity of calcium imaging. The thresholding cutoff was 

estimated from the training data for best reconstruction. To assess the similarity between the 

raw data and the reconstruction, we then measured the correlation coefficient between the 

reconstructed neural data and the real data. Note that these data are a vectorized time-series 

of the form neurons × time. To perform an element-wise comparison, we concatenate all 

columns into a single vector and calculate the correlation coefficient. This number was 

averaged across the 10 held-out trials, i.e. the decoding index, and the process was repeated 

for all seven animals (Extended Data Fig. 4a, b). The data shown in Fig. 3c is the mean 

±SEM for the seven animals. In Fig. 3b, raw ΔF/F and reconstructed ΔF/F traces have 

been smoothed with an 11-bin gaussian filter and thresholded at 4σ. For the reconstructed 
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ΔF/F traces, baseline subtraction prior to smoothing and thresholding was accomplished by 

subtracting the mean of the reconstructed activity of each cell from the activity of each cell.

Measuring how well the activity of individual neurons is predicted by the manifold.

This analysis is similar to the one above but tailored to quantify the predictive power 

of the manifold on a single-cell level (Extended Data Fig. 4c). To this end, we removed 

1 test-neuron from all the N cells in the data and used MIND to fit a manifold to the 

remaining N-1 training-neurons46. We then used gaussian process regression to learn a map 

g(x) from manifold coordinates x to the test neuron’s activity in 80% of trials. We used a 

squared exponential kernel function to specify the covariance, making these fits smooth and 

differentiable, as expected for a response similar to a firing field. In the remaining 20% of 

trials, we evaluated g(x) and measured the correlation coefficient between the predicted and 

observed data of the test-neuron. This was repeated 4 more times for 5-fold cross-validation 

and the correlation coefficient over the five folds was averaged. This value was calculated 

for 10 randomly chosen neurons from the 25 most active neurons in each animal and 

averaged, i.e. the decoding index (Extended Data Fig. 4e). In Extended Data Fig. 4d, 

reconstructed ΔF/F traces were baseline-subtracted, smoothed, and thresholded identically to 

the procedure mentioned above for Fig. 3b.

Comparing MIND with PCA.

To compare this nonlinear dimensionality reduction technique with a linear method, we also 

calculated the decoding index (cross-validated correlation coefficient between predicted and 

observed data in a held-out trial) using principal component analysis (PCA). To this end, 

we removed a held-out trial from the data, calculated the principal components (PCs) of 

the remaining data and identified the d PCs with greatest coefficients in the training data. 

We then projected the held-out trial onto these d PCs and used the obtained coefficients 

to project back into neural state space. The similarity of the observed held-out trial and 

the reconstruction from PCA was assessed with the correlation coefficient and averaged 

across 10 random held-out trials. To reach the same mean cross-validated decoding index as 

MIND for manifolds embedded in d=4, 5 and 6 dimensions, PCA required d=29, 40, and 47 

principal components, respectively.

Decoding position and evidence from the manifold and neural activity.

We used gaussian process regression to learn a function from latent space or neural activity 

(selecting only the top 10% of cells with highest mutual information for position or evidence 

to limit overfitting) to position and evidence. Other nonlinear regression methods like LLE 

yielded similar results, while linear decoding methods generally failed. Fig. 3g shows 

the correlation coefficients between the position and evidence values in each animal’s 

behavioral session predicted from the learned regression model (trained on 80% of trials, 

applied to the test dataset of 20% of trials, and repeated for 5-folds) and true position 

and evidence values (averaged over the 5-folds), i.e. the decoding index. For visualizing 

evidence and position (Fig. 3f), as well as luminance (Extended Data Fig. 5b) and view 

angle (Extended Data Fig. 6a), we smoothed across the 20 nearest neighbors in latent space.
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Similar methods were used in analyses shown in Extended Data Fig. 6. To assess whether 

knowledge of variable X adds to how well variable Y predicts the manifold, we decoded 

manifold dimensions (as described above) using both X and Y as inputs or X and shuffled-Y. 

To assess whether correlated and orthogonal components of X and Y could both be decoded, 

i.e. linearly regressing out Y from X, we used PCA on variables X and Y and decoded both 

PC1 and PC2 from the manifold dimensions. For evaluating the accuracy of the decoding 

for binary variables, such as the upcoming choice, the choice in the previous trial, and 

whether the previous trial was correct, we averaged the prediction from the gaussian process 

regression across the trial to come up with a single value, which was binarized as a single 

prediction, i.e. left or right choice, and compared it to the true value, i.e. whether the animal 

makes a left or right choice in the trial.

Hyperalignment procedure.

Hyperalignment across two animals was performed as follows. We first fit the neural data 

of subject A with MIND, to obtain a set of T d-dimensional latents xA
t. We then perform 

GPR to learn a map from the d-dimensional latents to a behavioral variable eA
t = GPR(xA

t). 

This is the same analysis as earlier in Fig. 3. Next, we perform MIND on the data of 

subject B. This yields a different set of d-dimensional latent vectors xB
t. From these 

latents, we predict the behavior of subject B using the GPR trained on mouse A and a 

5-dimensional rotation matrix R with eB
t = GPR(RxB

t). The rotation matrix was calculated 

from a five-dimensional representation of the special orthogonal group of degree 5 [SO(5)] 

so that R = ∏i = 1
10 expm gi ci . Here, expm() indicates the matrix-exponential of gi, the ten 

generators of SO(5), multiplied with a scalar angular parameter ci. These parameters were 

cross-validated by optimizing on the first half of the data and decoding of position and 

evidence assessed on the second half. For each animal, we decoded position and evidence 

using the hyperaligned 5-dimensional manifolds of the six other manifolds. In Fig. 3i, 

we show the maximum decoding that can be done across the six other animals for each 

animal, compared to the cross-validated GPR (Fig. 3g) for 5-dimensional embeddings of 

the manifold in the same animal. Means were then calculated across the seven animals. 

We estimated the contribution of shared geometry for each animal in terms of fractional 

variance explained by dividing the r2 of position and evidence decoding obtained with 

hyperalignment by the r2 of the best decoding that could be done with either method.

Task trajectories.

To visualize the sequential patterns of the task (Extended Data Fig. 8), we first extracted 

“task trajectories”, i.e. smooth spline interpolations of the specific trajectory through E×Y 

space experienced over trials. The task trajectories for single trials in a behavioral session 

are plotted as thin lines in Extended Data Fig. 8a, together with fits across all left or right 

trials (thick lines). In addition, we also visualized task trajectories as a flow field, where we 

binned E×Y space into 10 cm and 1 tower bins and calculated the trial-averaged gradient in 

the position and evidence directions for every bin. The resulting gradient-matrices were then 

individually smoothed by convolution with a Gaussian filter with a length of 5 bins and a 

standard deviation of 1 bin. Every other bin was plotted as arrows centered on the respective 

bin and pointing to the average direction of the gradient (Extended Data Fig. 8b).

Nieh et al. Page 15

Nature. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identification and analysis of sequences (“doublets” and “triplets”).

A pair of cells was classified as a doublet if the number of trials in which the first cell had a 

transient event before the second cell was greater than 2 standard deviations above the mean 

of the same value obtained from a shuffled dataset (100 times) where neural activity was 

circularly shifted in each trial. Doublets that appeared in fewer than 3 trials were removed. 

A transient event was defined as any time ΔF/F (smoothed with a gaussian filter with a 

length of 5 bins) for that cell was greater than a threshold equal to 11 (Ai93xEMX1) or 

5 (GP5.3) times the robust standard deviation across the entire imaging session. Different 

thresholds for event detection were used for the two animal strains due to the difference 

in signal-to-noise ratios. Triplets were constructed by simply combining doublets without 

allowing the same cell to appear twice, i.e. a cell cannot be the first cell and the third cell in 

the triplet, and tested using the same significance test as was used for doublets.

Even if two place cells had activity that was completely independent, we would still expect, 

by chance, that they fire in the same trials for a subset of trials, i.e. two place cells with 

fields at 100 cm and 200 cm that are each active in 100 random trials in a session with 200 

trials would, on average, show up together in 50 random trials. However, if these two cells 

appeared in all 100 trials together, it would be unlikely that their activity was independent. 

To test whether doublets appeared more often than chance, trial IDs of each cell were 

independently shuffled, so that relationships between cells were disrupted without affecting 

the neural activity of each cell (Extended Data Fig. 8), and then we searched this shuffled 

dataset for the doublets again to determine the number of instances a doublet would show up 

if the activity of the two cells were independent (n=100 shuffles).

A doublet was determined to be choice-predictive if the probability that the animal was 

going to turn right in trials in which the given doublet occurred was greater than 2 standard 

deviations above or below the mean probability of a right turn after shuffling the choices 

for each trial (n=1000 shuffles). The same assessment was made to determine choice-

predictiveness in triplets. Once choice-predictive doublets and triplets were identified, we 

compared the predictiveness of real doublet events to events obtained from datasets in which 

trial IDs were shuffled (n=100 shuffles).

Comparison of sequences and the predictions from the manifold.

To show the manifold’s predictive power for sequences, we used the manifold to reconstruct 

ΔF/F of each cell in each imaging session with LLE (described above). We then detected 

doublet events from this reconstructed data and compared the trials in which doublet events 

were found against the real data to generate the true positive rate (TPR) and false positive 

rate (FPR) for doublet events in each animal.

More specifically, we constructed a boolean array Bdata of size Ncells × Ncells × Ntrials 

indicating the presence or absence of a doublet in a specific trial. We populated this array 

with the doublet-finding algorithm described above and the observed calcium data. This 

constitutes ground truth. We then reconstructed all neural activity from the latent dimensions 

of the 5-dimensional embedding of the manifold. This activity was then thresholded at an 

activity level θ, and we considered only transients that exceed this threshold. By definition, 
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this data is the manifold prediction. We identified doublet events in this surrogate data with 

the same algorithm to construct a boolean array Bprediction. Comparing this prediction with 

the ground truth, we can count the number of true positives (“1” in both the ground truth and 

the surrogate array), false positives (“1” in the surrogate array, “0” in the ground truth), false 

negatives (“0” in the surrogate array, “1” in the ground truth) and true negatives (“0” in both 

the ground truth and the surrogate arrays). True positive rate (TPR) was defined as TP / (TP 
+ FN), where TP is the number of true positives, and FN is the number of false negatives. 

False positive rate (FPR) was defined as FP / (FP + TN), where FP is the number of false 

positives, and TN is the number of true negatives. We then scanned across θ (1 to 100, in 

intervals of 5) to construct a receiver operating characteristic (ROC) curve (Extended Data 

Fig. 9d) and calculated the distance d between the point (0, 1) on the upper left-hand corner 

of ROC space and any point on the ROC curve d2= (1-TPR)2+ FPR2. We chose the threshold 

θ such that this distance was minimal to identify a point of best discriminant capacity. The 

values of TPR and FPR reported in the main text are averages across these points for all 

seven animals.

We next calculated the predictive power of the manifold for the exact timing of a doublet. 

For all doublets, we measured the length of the trajectory between the first cell’s firing 

and the second cell’s firing on the manifold in each trial when the doublet was active. 

This length, plotted against the time between the sequentially active cells, is shown in Fig. 

4e. To test whether the observed correlation of time elapsed and distance on the manifold 

was significantly greater than the correlation between time elapsed and any distance on 

the manifold, we compared the observed correlation to the correlation coefficients obtained 

from comparing time elapsed in a trial with manifold distances over the same time interval 

obtained from a different trial. We averaged the correlations across 100 random trajectories 

obtained from other trials and over all doublets for each animal and performed a two-tailed 

Wilcoxon signed rank test on the average real and random correlation values of the mice 

(n=7) to test if real correlation values were significantly greater than the random correlation 

values.

Statistical Tests.

All statistical tests were performed with Matlab (2015b, 2018a, 2018b, and 2020a; 

Mathworks Inc). Bonferroni correction of p-values was performed by multiplying the 

unadjusted p-value by the number of multiple comparisons made. In cases where the 

corrected p-value exceeded 1.0, we reported the value as 1.0.
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Extended Data

Extended Data Figure 1. Characterization of CA1 neural variability in the accumulating towers 
task.
a, Each heatmap represents one neuron and the trial-by-trial activity of that neuron in the 

towers task for left-choice trials. Each row in each heatmap is the ΔF/F (normalized within 

each session) of the neuron in that trial. b, Same as in a, but for the alternation task. Note 

that the single trial activity appears more variable in the towers task and more reliable in 

the alternation task, consistent with the results that evidence is also being represented by 

neurons in the towers task. c, Neural activity (ΔF/F normalized within each neuron) of cells 

significantly encoding evidence, sorted by activity in half the trials (left), and plotted using 

the same sorting in the other half of the trials (right).
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Extended Data Figure 2. Place fields in evidence-by-position (E×Y) space.
a, Each heatmap shows the mean ΔF/F of a neuron with significant mutual information 

in E×Y space. b, Scatterplot of the mutual information in RE×Y space vs E×Y space for 

each cell with significant information in E×Y space (n=917 neurons). RE is randomized 

evidence. c, Same as in b, but for E×RY space vs E×Y space. RY is randomized position. 

d, 29% of imaged neurons had significant mutual information in E×Y space, while 16% had 

significant mutual information for position only and 6% had significant mutual information 

for evidence only. e, Of the cells with significant mutual information in E×Y space, 89.9% 
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had significantly more information in E×Y space than just place or evidence information 

alone, while 9.8% could not be differentiated from place cells, and 0.3% could not 

be differentiated from evidence cells (see Methods). f, The probability of a cell having 

significant mutual information in E×Y space is significantly greater than the joint probability 

of a cell being a place cell and a cell being an evidence cell (two-tailed Wilcoxon signed 

rank test, n=7 animals, *p=0.016; error bars: mean±SEM). g, Cells with significant mutual 

information in E×Y space had 1.7±0.03 SEM firing fields (n=917 cells).

Extended Data Figure 3. Dimensionality of an earlier training stage.
During the training of the towers task, animals proceed through various stages of training. 

In one of these training stages, animals perform a task virtually identical to the towers task, 

except that visual cues only show up on one side of the maze. a, The intrinsic dimensionality 

of the one-side cues task is ~4.2 [4.0, 4.5] (n=4 animals, bracket values represent 95% 

bootstrapped confidence interval; error bars: mean±95% bootstrapped confidence intervals 

for each animal). b, Intrinsic dimensionality of the one-side cues task is significantly lower 

than the dimensionality of the towers task (two-tailed Wilcoxon rank sum test, n=7 towers 

task animals and n=4 one-side cues task animals, *p=0.042; error bars: mean±SEM). c, 
Choice-specific place cell sequences in the one-side cues task, similar to Fig. 2a. Sequences 

are divided into left-choice (top row), right-choice (middle row) and non- (bottom row) 

preferring cells. Data is split between left-choice trials (left column) and right-choice trials 

(right column). Cells are shown in the same order within each row group. ΔF/F was 

normalized within each neuron.
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Extended Data Figure 4. Cross-validation methods and results demonstrating how neural 
activity from single neurons is captured by coordinated population activity.
a, Illustration of the cross-validation method to calculate the decoding index in Fig. 3c. Data 

is split for training (solid colors) and testing (shaded colors). With the training data, a map 

is obtained from ΔF/F to latent dimensions and back. This map is evaluated on the test data. 

b, To assess the performance of the map, we concatenate the neuron x time data in the test 

block and reconstructed test block into two vectors and calculate the correlation coefficient 

from the elementwise pairwise comparison of the vectors. The correlation coefficient was 

Nieh et al. Page 21

Nature. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



averaged across 10 individually held-out trials to yield the decoding index. c, Illustration of a 

similar analysis where the activity of a single cell is decoded from a manifold fit to the rest 

of the neural population. One neuron (red) is removed before using MIND to obtain a set of 

latents. Next, in the training data (solid green), a map is calculated from the manifold to the 

held-out neuron’s activity. The map is then used to predict the test data (shaded green). The 

correlation coefficient is calculated as in b and averaged over 5-folds as the decoding index. 

d, Example of neural activity from 40 individually reconstructed neurons, where activity of 

each neuron was decoded from the 5-dimensional manifold fit to the other cells following 

procedures in c (comparable to Fig. 3b, where the method in panels a and b was used). ΔF/F 

is normalized to the maximum ΔF/F in the window shown. e, Cross-validated correlation 

coefficients between activity of individual neurons in the real and reconstructed data, where 

reconstruction was accomplished with d-dimensional embeddings of the neural manifold. 

Decoding index is the correlation coefficient between the predicted and real ΔF/F of the 

held-out ROIs (n=7 animals; error bars: mean±SEM).

Extended Data Figure 5. Task manifold and neural manifold encode different variables.
a, The visual space of the accumulating towers task across a representative session. Shown is 

the mean luminance of the virtual reality visual field as a function of position in the T-maze. 

Four example frames are shown below. Note the high variability of luminance during the 

cue period, where bright towers are randomly presented on the left and right walls. b, 
Performing dimensionality reduction on the pixels’ time series in the raw video stream 

using MIND reveals a low-dimensional manifold, reflecting the visual sensory structure 

of the accumulating towers task. Plotting luminance (top) and evidence (bottom) on the 

manifold reveals that luminance is represented as a smooth gradient, whereas evidence 

requires memory and is thus absent on the task manifold. c, same as in b, but showing the 

neural manifold obtained from the animal that ran this session (Fig. 3f). Notice the absence 

of a luminance representation, but the emergence of evidence.
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Extended Data Figure 6. Decoding other variables from the neural manifold.
a, Similar to Fig. 3f, view angle is plotted as color on the 3-dimensional embedding of 

the manifold. b, The 5 latent variables of the neural manifold embedded in 5-dimensional 

space are better predicted by gaussian process regression from view angle and evidence 

values than from view angle and shuffled evidence values (two-tailed Wilcoxon signed rank 

test, n=7 animals, *p=0.016; error bars: mean±SEM). Decoding index is the correlation 

coefficient between the predicted manifold values and true manifold values, averaged over 

the 5 dimensions of the manifold. c, Same as in b, but for decoding manifold values using 

position and velocity. The addition of velocity to position information significantly improves 

the decoding of manifold values (two-tailed Wilcoxon signed rank test, n=7 animals, 

*p=0.016; error bars: mean±SEM). d, Same as in b, but for decoding using position and 

time. The addition of time information does not significantly increase how well manifold 

values are decoded (two-tailed Wilcoxon signed rank test, n=7 animals, nsp=0.30; error bars: 

mean±SEM). e, We used PCA to separate the correlated and orthogonal dimensions between 

evidence and view angle and decoded both PC1 (correlated) and PC2 (orthogonal) from the 

neural manifold embedded in 5-dimensional space (n=7 animals; error bars: mean±SEM). 

Decoding index is the correlation coefficient between the predicted PC and true PC values. 

f, View angle is better decoded from the neural manifold (5-dimensional embedding) in 

the towers task (“Tow”), when evidence is also present, than in the alternation task (“Alt”) 

when evidence is not present (two-tailed Wilcoxon rank sum test, n=7 towers task animals 

and n=7 alternation task animals, p=0.07; error bars: mean±SEM). Decoding index is the 

correlation coefficient between the predicted and true view angle values. g, Average view 

angle trajectories, separated between left- and right-choice trials, for the towers task (n=7; 

blue/thin) and the alternation task (n=7; red/thin) animals. Thick lines represent averages 

across animals. h, Average view angle values in the towers task (n=7; blue/thin) and the 

alternation task (n=7; red/thin) over all trials. Thick lines and shaded area: mean±95% 
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bootstrapped confidence interval. i, Accuracy in predicting the upcoming choice (left), the 

animal’s choice in the previous trial (center), and whether the previous trial was rewarded 

(right) from d-dimensional embeddings of the neural manifold (n=7 animals; error bars: 

mean±SEM).

Extended Data Figure 7. Examples of sequences in CA1 neural activity.
a, Schematic to describe how “doublets” were defined. Orange and green are calcium traces 

of the cells under consideration. Grey is the calcium trace of a third cell. b, 25 examples of 
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doublets in a single session from one animal. Each panel shows traces for trials in which the 

doublet was present. Orange traces are the neural activity from the first cell in the doublet, 

while green traces are the neural activity from the second cell in the doublet. Heatmaps 

represent the normalized neural activity of each cell across all trials in the session.

Extended Data Figure 8. Neural activity generated by trajectories through the task.
a, Trajectories through evidence and position in one session of the task. Each thin line 

represents a fit with a cubic spline to a single trial, while thick lines represent fits over 

all trials in which the animal was supposed to turn left or right. b, Shown is the average 

change of position and evidence over time across trials in a single session for a set of 

representative states in evidence and position space. c, Conceptual diagram showing four 

trajectories through the neural manifold in right choice trials. Two different doublets are 

activated because the trajectories pass through their firing fields. d, Shuffling trial IDs within 

right choice trials will disrupt doublet activity while maintaining trial-averaged place and 

choice preferences of each cell.
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Extended Data Figure 9. Choice-predictive sequences in CA1 neural activity.
a, Distribution of the values in Fig. 4b. b, Distribution of the values in Fig. 4c. c, 
Distribution of the values in Fig. 4f. d, Receiver operating characteristic (ROC) curves for 

sequential activity predicted from the 5-dimensional embedding of the manifold compared 

to sequential activity in real data (n=7 animals). e, Similar to a, but for triplets. Inset shows 

that triplets are significantly more likely to appear in the real data than in the shuffled dataset 

where trial IDs were shuffled (two-tailed paired t-test, n=34737 triplets, ****p<0.0001). f, 
Similar to c, but for triplets, showing that left- and right-choice predictive triplets from real 

data are more predictive than triplets obtained from the shuffled dataset where trial IDs were 

shuffled (left inset: left-predictive, two-tailed paired t-test, n=1135 triplets, real vs shuffle: 

****p<0.0001; right inset: right-predictive, two-tailed paired t-test, n=1755 triplets, real vs 

shuffle: ****p<0.0001). g, Left-choice predictive triplets are significantly more predictive 

than instances where the first two cells in the triplet fire, but the third does not, or when 

the third cell fires alone (two-tailed paired t-tests, Bonferroni corrected, n=1135 triplets, 

1→2→3 vs 1→2→not 3: ****p<0.0001; 1→2→3 vs not 1→not 2→3: ****p<0.0001; 
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1→2→not 3 vs not 1→not 2→3: nsp=0.78). h, Importantly, for left-choice predictive 

triplets, in trials where cells 1 and 2 fire, but cell 3 does not, significantly more trials 

end with the animal turning right than the same instances in the shuffled dataset (right 

panel: two-tailed paired t-test, n=1135 triplets, real vs shuffle: ****p<0.0001). i, Same as 

g, but for right-choice predictive triplets (two-tailed paired t-tests, Bonferroni corrected, 

n=1755 triplets, 1→2→3 vs 1→2→not 3: ****p<0.0001; 1→2→3 vs not 1→not 2→3: 

****p<0.0001; 1→2→not 3 vs not 1→not 2→3: nsp=1.0). j, Same as in h, but for 

right-choice predictive triplets (right panel: two-tailed paired t-test, n=1755 triplets, real vs 

shuffle: ****p<0.0001). For boxplots, boundaries: 25th/75th percentiles, midline: median, 

whiskers: min/max.
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Figure 1. Imaging CA1 neural activity in mice performing the accumulating towers task.
a, Schematic of the task in which head-fixed mice navigate in a virtual reality evidence 

accumulation T-maze task. Insets show example views from the animals’ perspective (top). 

While animals (n=7) perform the task, 2-photon calcium imaging records hippocampal 

CA1 neural activity (bottom). b, Psychometric curves of mice performing the towers task 

(grey lines: n=7 animals, black line: metamouse combining data across animals; error bars: 

mean±binomial confidence interval). c, Logistic regression showing that mice use evidence 

throughout the cue period (grey lines: n=7 animals, black line: metamouse combining data 

across animals; error bars: mean±SEM). d, Firing fields of right-choice selective place cells 

would not depend on evidence and would thus divide a joint Evidence-by-Position (E×Y) 

space into two halves (top). Two right choice trials would generate the same neural sequence 

(bottom). e, Alternatively, if hippocampal neurons encoded evidence jointly with position, 

smaller firing fields dividing up evidence would appear in E×Y space (top), and two right 
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choice sequences could have different neural sequences depending on the evidence values 

traversed (bottom).
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Figure 2. CA1 neurons jointly encode position and evidence in an evidence accumulation task.
a, Choice-specific place cell sequences, divided into left-choice (top row), right-choice 

(middle row) and non- (bottom row) preferring cells. Cells are shown in the same order 

within each row group. ΔF/F was normalized within each neuron. b, CA1 neurons have 

firing fields in accumulated evidence space (# right towers - # left towers). c, Example of 

the average neural activity of a single neuron in joint evidence-by-position (E×Y) space. d, 
Twenty-five neurons with significant information in E×Y space. Each color represents one 

cell, and surfaces represent neural activity that exceeds 2 standard deviations (SD) above 

the shuffled means (Extended Data Fig. 2a). e, Mutual information of cells found to have 

significant information in E×Y space is significantly greater than mutual information in 

2D spaces where either evidence (RE) or position (RY) has been randomized (two-tailed 

paired t-tests, Bonferroni corrected, n=917 neurons, E×Y vs RE×Y: ****p<0.0001; E×Y vs 

E×RY: ****p<0.0001; RE×Y vs E×RY: ****p<0.0001). For boxplots, boundaries: 25th/75th 

percentiles, midline: median, whiskers: min/max.

Nieh et al. Page 32

Nature. Author manuscript; available in PMC 2022 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Geometric representation of task variables on low-dimensional neural manifolds.
a, The average cumulative number of neighboring neural states as a function of the 

geodesic distance, plotted on a log-log axis, revealing a ~5.4 [4.8, 6.0] dimensional manifold 

(n=7 animals, bracket values represent 95% bootstrapped confidence interval; error bars: 

mean±95% bootstrapped confidence intervals for each animal). b, Example of neural 

activity from 40 neurons (left) and the activity of those same 40 neurons reconstructed 

from the five latent variables obtained from embedding the manifold in a 5-dimensional 

Euclidean space (right). ΔF/F is normalized to the maximum ΔF/F in the window shown. 
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c, Reconstruction of held-out neural data from d-dimensional embeddings of the neural 

manifold. Decoding index is the correlation coefficient between the predicted and real 

ΔF/F data in held-out trials. d, Each point in this plot is a location in the 3-dimensional 

embedding of the manifold at one time point in an imaging session. Colored points represent 

ΔF/F values that are 3 standard deviations above the mean activity for one example cell. 

e, Firing field of five cells, each in a different color, plotted on the manifold. f, Position 

(left) and evidence (right) plotted as color on the 3-dimensional embedding of the manifold. 

Black arrows represent two hypothetical trajectories through manifold space that would 

traverse through position space and increasing left or right evidence values. g, Decoding 

position (left) and evidence (right) from d-dimensional embeddings of the manifold using 

gaussian process regression (GPR). Decoding index is the correlation coefficient between 

the predicted and true position or evidence values. The shaded area and line represent the 

mean decoding index ±SEM using GPR on the top 10% of neurons with the highest mutual 

information for position or evidence as inputs. h, Schematic of the hyperalignment method 

for aligning two manifolds (see Methods). i, Decoding index of position and evidence for 

the hyperalignment, i.e. the best decoding that can be done using one of the six other 

manifolds, vs. decoding with GPR in the same animal for the 5-dimensional embedding 

of the manifolds (two-tailed Wilcoxon signed rank test, n=7 animals, position: *p=0.016; 

evidence: nsp=0.81). j, Percent of geometry shared across animals. The majority of manifold 

geometry (n=7 animals, position: 69%±9% SEM; evidence: 75%±10% SEM) is shared 

between the best pairs of animals. In panels c, g, i, and j, error bars: mean±SEM (n=7 

animals).
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Figure 4. Sequential activity of CA1 neurons in single trials is predictive of behavior and 
explained by the manifold.
a, Two examples of doublets, where two neurons consistently fire one after the other. 

In example 1, activity does not appear to be tied to time (left) or position (right). 

Highlighted trials in cyan and purple are the same trials plotted in d. In example 2, activity 

in both neurons appears to be related to time/position in the trial. b, Doublets appear 

more frequently in real data than in a shuffled dataset (two-tailed paired t-test, n=16088 

doublets, real vs shuffle: ****p<0.0001). c, Doublets are asymmetric (two-tailed paired 

t-test, n=16088 doublets, real vs shuffle: ****p<0.0001). Directionality index is defined as 

the number of times cell 1 fires before cell 2 in a trial minus the number of times cell 2 

fires before cell 1 in a trial. d, Example showing how events from cell 1 (orange) and cell 2 

(green) of a doublet are separated in manifold space. Cyan and purple lines each represent 

a trial trajectory between when cell 1 and cell 2 fire. e, Amount of time between when 

cell 1 and cell 2 fire plotted against distance in manifold space. f, Left- and right-choice 

predictive doublets (left and right panels, respectively) are significantly more predictive of 

upcoming choice than doublets generated from shuffled data where trial IDs were shuffled 

(left-predictive, two-tailed paired t-test, n=922 doublets, real vs shuffle: ****p<0.0001; 

right-predictive, two-tailed paired t-test, n=1227 doublets, real vs shuffle: ****p<0.0001). 

For boxplots, boundaries: 25th/75th percentiles, midline: median, whiskers: min/max.
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