DNAM-1 通过IL-2/STAT-5 通路调节I型调节性T细胞的增殖和 功能

王 宁¹,王一晗²,姜朋涛¹,吕明华¹,胡志芳¹,徐 曦¹ 西安医学院¹基础医学部基础医学研究所,²全科医学院临床全科医师班,陕西 西安 710021

摘要:目的 探讨DNAM-1对I型调节性T细胞(Tr1细胞)活化、增殖和功能的影响及相关分子机制。方法 利用anti-CD3/CD28 激活小鼠T细胞,采用流式细胞术分别检测静息和激活状态下CD4⁺T细胞和Tr1细胞DNAM-1分子表达变化;分离DNAM-1 基因敲除小鼠(KO小鼠)脾脏初始CD4⁺T细胞并体外诱导Tr1细胞,流式细胞术检测CD25和CD69活化分子表达水平,CFSE 标记后检测增殖能力,IL-2刺激前后检测KO小鼠 Tr1细胞分泌IL-10和转录激活蛋白(p-STAT5)水平变化。结果 流式细胞术 结果显示:与静息状态下相比较,激活状态的CD4⁺T细胞和Tr1细胞表达DNAM-1分子均增高(P<0.05);敲除DNAM-1不影响 小鼠脾脏 Tr1细胞的数量和比例,但KO小鼠 Tr1细胞表达细胞激活分子CD25和CD69均降低,差异有统计学意义(P<0.05);与WT小鼠比较,KO小鼠诱导型Tr1细胞体外增殖能力降低(P<0.05);与WT组Tr1细胞比较,KO小鼠Tr1细胞分泌抑制性细胞因子IL-10水平降低(P<0.05),给予IL-2刺激后仍无法逆转,表达II-10mRNA和GzmbmRNA水平降低(P<0.05);给予不同剂量 IL-2刺激Tr1细胞后,KO小鼠Tr1细胞表达p-STAT5水平相比较WT组均降低(P<0.05)。结论 DNAM-1参与Tr1细胞的活化 和增殖,并通过IL-2/STAT5信号通路影响Tr1细胞抑制功能。

关键词:DNAM-1;I型调节性T细胞;IL-2;转录激活蛋白-5;IL-10

DNAM-1 regulates the proliferation and function of T regulatory type 1 cells *via* the IL-2/ STAT5 pathway

WANG Ning¹, WANG Yihan², JIANG Pengtao¹, LÜ Minghua¹, HU Zhifang¹, XU Xi¹ ¹Institute of Basic Medicine, ²Department of General Practitioners, Xi'an Medical University, Xi'an 710021, China

Abstract: Objective To explore the role of DNAM-1 in the activation, proliferation and function of type I regulatory T cells (Tr1 cells). **Methods** Anti-CD3/CD28 antibodies were used to stimulate mouse T cells derived from the spleen of wild-type (WT) mice, and the expression level of DNAM-1 in resting and activated Tr1 cells was evaluated with flow cytometry. Naïve CD4⁺ T cells isolated by magnetic cell sorting from the spleens of WT mice and DNAM-1 knockout (KO) mice were cultured in Tr1 polarizing conditions for 3 days, after which CD25 and CD69 expressions were measured using flow cytometry. The induced Tr1 cells were labelled with CFSE and cultured in the presence of anti-CD/CD28 antibodies for 3 days, and their proliferative activity was analyzed. The expression of IL-10 and p-STAT5 in DNAM-1-deficient Tr1 cells were detected before and after IL-2 stimulation. **Results** The expression level of DNAM-1 was significantly upregulated in CD4⁺ T cells and Tr1 cells after stimulation with anti-CD3/CD28 antibodies (*P*<0.05). DNAM-1 knockout did not cause significant changes in the number or proportion of Tr1 cells, but but significantly increased the expression levels of the activation markers CD69 and CD25 (*P*<0.05). Compared with WT Tr1 cells, DNAM-1-deficient Tr1 cells exhibited reduced proliferative activity *in vitro* (*P*<0.05) with downregulated IL-10 production (*P*<0.05) and decreased expressions of II-10 and Gzmb mRNA (*P*<0.05). In DNAM-1-deficient Tr1 cells, IL-2 stimulation significantly reduced IL-10 secretion level and the expression of p-STAT5 as compared with WT Tr1 cells. **Conclusion** DNAM-1 participate in the activation and proliferation of Tr1 cells and affect the biological functions of Tr1 cells through the IL-2/STAT5 pathway.

Keywords: DNAM-1; type I regulatory T cells; interleukin-2; STAT5; interleukin-10

I型调节性T细胞(Tr1 cell)在免疫应答负调控和 维持机体免疫耐受中发挥重要作用,是CD4⁺T细胞的 一类特殊细胞亚群^[1],此类细胞诱导形成于外周免疫器 官^[2],以共表达CD49b和LAG-3、高水平分泌抑制性细 胞因子白细胞介素(IL)-10^[3]、不表达调节性T细胞 (Treg)特异性转录因子叉头盒蛋白3转录因子P3

收稿日期:2022-01-07

基金项目:陝西省自然科学基础研究项目(2021JQ-778);陕西省科技厅自 然科学基础研究计划重点项目(2019JZ-38);西安医学院博士科研启动项 目(2022DOC20);陕西省教育厅重点实验室项目(22JS037) 作者简介:王 宁,博士,副教授,E-mail:wangning@xiyi.edu.cn 通信作者:徐 曦,博士,教授,硕士生导师,E-mail: 360308636@qq.com (Foxp3)为主要特点^[4],此外,Tr1细胞免疫抑制功能也 与颗粒酶B(GZMB)和转化生长因子-β1(TGF-β1)的分 泌相关,其数量降低或功能异常与肿瘤、自身免疫性疾 病、感染和移植排斥反应等多种疾病发生密切相关^[5,6]。

黏附分子DNAM-1分子(CD226)组成性表达于多 种免疫细胞表面,为Tr1细胞重要表面标记分子之一, DNAM-1与配体CD155和CD112相互作用介导T细胞 的分化和活化、NK细胞的杀伤、血小板的活化聚集、单 核巨噬细胞与内皮细胞的粘附等多种免疫活动^[7]。研 究表明DNAM-1可通过活化自身反应性T淋巴细胞、 抑制Treg的活化增殖参与多种自身免疫性疾病发生发 展^[8],且证实了阻断DNAM-1对于移植后免疫耐受重建 和治疗自身免疫性疾病具有重要意义。有研究证实 DNAM-1高表达于人Tr1细胞上,Tr1细胞杀伤活性依 赖于DNAM-1分子的参与,表达于Tr1细胞的DNAM-1 与表达于骨髓细胞上的配体 CD155 的特异性结合介导 了 Tr1 细胞激活和脱颗粒^[10],可见DNAM-1对于Tr1 细 胞细胞毒性靶标特异性是十分必要的,但DNAM-1是 否参与Trl细胞的分化、增殖和抑制功能却未见报道。 本课题组前期实验发现应用单克隆抗体阻断DNAM-1 或敲除小鼠DNAM-1后,CD4⁺T细胞分泌IL-10明显升 高^[11],推测DNAM-1影响Tr1细胞生物学功能。IL-2/信 号传导及转录激活蛋白(STAT)-5是控制CD4⁺T细胞亚 群分化和增殖的重要信号通路^[12],DNAM-1是否通过影 响 IL-2/STAT-5 通路参与 Tr1 细胞分化和增殖尚不明 确。因此,本研究利用DNAM-1基因敲除小鼠(KO小 鼠),通过Trl细胞分离技术或体外诱导技术,探讨 DNAM-1分子对Tr1细胞分化、增殖和功能的影响及其 相关分子机制。

1 材料和方法

1.1 实验动物

SPF级野生型(WT)C57BL/6小鼠(第四军医大学 实验动物中心),6~8周龄,体质量18~22g。SPF级纯合 子DNAM-1 KO小鼠(背景为C57BL/6,南京大学), SPF级动物房内饲养并将WT小鼠与纯合子DNAM-1 KO小鼠合笼从而获得Dnam-1⁺⁺F1代杂合子小鼠,随 后继续在F1代小鼠间合笼以获得F2代小鼠,通过鼠尾 DNA 基因鉴定筛选出DNAM-1 KO小鼠为本实验所 用,所有动物实验操作均已通过本校动物实验伦理审批 (审批编号:NO.XJYYLL-20144433)。

1.2 主要试剂

小鼠淋巴细胞分离液(达科为),LEAFTM Purified anti-mouse CD28 (Biolegend), LEAF[™] Purified antimouse CD3ε(Biolegend), Mojosort[™] Mouse CD4⁺ T 绯 胞磁珠分离试剂盒(Biolegend),新生牛血清(Gibco), 红细胞裂解液(Sigma), Cell Activation Cocktail(with Brefeldin A) (Biolegend) RPMI 1640 培养基 (HyClone), Percp anti-mouse CD4 (Biolegend), APC anti- mouse DNAM-1 (Biolegend), FITC anti- mouse CD49b, DNA Marker (Takara), 琼脂糖 (Biowest), PE anti-mouse LAG-3(Biolegend), APC anti-mouse CD25 (Biolegend), PE anti-mouse p-STAT5 (eBioscience), PE anti-mouse IL-10 (Biolegend), Fixation/Permeabilization Dilulent(Biolegend), Permeabilization Buffer (Biolegend), CFSE cell division tracker kit(Biolegend), Recombinant TGF-B1 (PeproTech), Recombinant IL-2 (Biolegend), Recombinant IL-27(Biolegend), RNAiso Plus (TaKaRa), MACS separation buffer (Miltenyi Biotec),反转录试剂盒(Takara),qRT-PCR反应试剂盒(Takara)。

1.3 研究方法

1.3.1 分离小鼠脾脏单个核细胞 脱颈处死小鼠,无菌 条件下取出脾脏置于200目筛网上并剪碎,加入小鼠淋 巴细胞分离液进行研磨,收集研磨液并在液面上缓慢加 入0.5~1 mL RPMI 1640培养基,800×g离心30 min,吸 取白膜层细胞,加入红细胞裂解液裂解5 min,重悬、 300×g离心5 min、弃除上清,重复操作充分洗涤细胞; 细胞计数后待用。

1.3.2 体外诱导Tr1 细胞 PBS稀释 anti-mouse CD3抗体至3 μ g/mL,按照100 μ L/孔加入到96孔U型细胞培养板中,4 °C过夜。分离脾脏单个核细胞悬液并计数, 300×g离心5 min 后弃上清,使用 Mojosort[™] Mouse CD4 Naïve T Cell Isolation Kit 分离小鼠脾脏初始 CD4⁺T细胞(naïve CD4⁺T cell, Tn)并计数,使用流术细胞术鉴定细胞纯度,本实验所用Tn细胞纯度≥95%。在Tn细胞中加入含有10%胎牛血清的RPMI 1640 培养基培养,依次加入 anti-mouse CD28(5 μ g/mL)、TGF- β 1 (5 ng/mL)、IL-27(30 ng/mL)和 IL-2(2 ng/mL)刺激培养^[6];培养1 d后可观察到培养板底出现细胞克隆团,培养3 d后收集细胞待用。

1.3.3 流式细胞术检测胞膜分子和检测胞内细胞因子 根据实验需要,收集脾脏单个核细胞或体外诱导获得的 Tr1细胞,将每管细胞数调整为(1.0~1.2)×10°,150 μL PBS重悬细胞;按照说明书推荐剂量加入相应的细胞膜 分子流式抗体:Percp anti-mouse CD4、FITC anti-mouse CD49b、PE anti-mouse LAG-3、APC antimouse DNAM-1,4 ℃放置30 min;加入流式细胞术缓冲 液重悬后离心洗剂两次,加入固定液重悬细胞,流式细 胞仪(ACEA NovoCyte 3130)检测。

胞内细胞因子检测按以下流程操作:收集待检测细胞,加入Cell Activation Cocktail(with Brefeldin A)(1×10⁶细胞加入1µL)刺激6h,按照实验需要在刺激过程中选择加入或不加IL-2(5 ng/mL),刺激完成后PBS重悬后离心、弃上清、胞膜分子染色,每管加入500µL Fixation缓冲液固定细胞25 min,加入Permeabilization洗涤缓冲液2 mL重悬细胞破膜,在细胞中加入荧光标记抗体PE anti-mouse IL-10进行胞内细胞因子染色,室温避光孵育20 min后Permeabilization洗涤缓冲液重悬细胞并离心,加入固定液以重悬细胞上机检测。

1.3.4 流式细胞术检测胞内分子 检测Tr1细胞胞内磷酸化的信号传导及转录激活蛋白(p-STAT5)表达水平,首先将收集的Tr1细胞培养于含10%FBS的RPMI1640培养液中,在37℃细胞培养箱中静置1h后,按照实验需求给予IL-2刺激(5 ng/mL或10 ng/mL)30 min,收集细胞,按照1.3.1方法完成胞膜分子染色后

进行固定和破膜,加入荧光标记抗体PE anti-mouse p-STAT5进行胞内分子染色,室温避光孵育20 min后洗涤悬浮,流式细胞术上机检测后应用FlowJo软件进行分析。

1.3.5 CFSE标记法检测 Tr1 细胞增殖能力 使用 antimouse CD3(3 μg/mL)包被 96孔 U型细胞培养板,4℃ 冰箱中放置过夜;制备 CFSE 工作液(5 μmol/L)并重悬 Tr1细胞,使细胞密度大于1×10⁷/mL,置于37℃细胞培 养箱中8 min 后取出,加入等体积含20%胎牛血清的 RPMI 1640培养液冰浴5 min 以终止染色,在离心管中 加入2倍体积以上的PBS充分洗涤染液,离心后加入含 有10% 胎牛血清的细胞培养基悬浮细胞,将细胞浓度 调整至1×10⁶/mL,加入 anti-mouse CD28抗体(5 μg/mL) 并加入到已包被的96孔细胞培养板中培养;培养1 d后 即可观察到细胞培养板底有克隆团出现,3~5 d收集细 胞,流式细胞术检测 FITC 通道的激发光信号,FlowJo软 件分析细胞增殖能力。

1.3.6 qRT-PCR检测 Trizol法提取RNA,吸出RNA溶

表1 PCR引物序列

液 1 μL,使用微量核酸蛋白浓度测定仪(NanoDrop)检测RNA溶液浓度,保证实验所用RNA A_{260}/A_{280} 比值在 1.8~2.0。按照Takara反转录试剂盒操作进行操作,反转录条件:37 °C 15 min,85 °C 5 s,4 °C不限时,cDNA产物保存于-20 °C。使用Primer Premier 5.0软件进行引物设计,引物委托上海生工生物公司合成,引物序列见表 1。按照Takara qRT-PCR反应试剂盒操作说明进行 qRT-PCR操作,cDNA 1 μL,Forward Primer 0.5 μL, Reverse Primer 0.5 μL,SYBR Premix Ex Taq II 5 μL, ddH₂O 3 μL,总量10 μL,设置3个复孔,使用实时定量PCR 仪(Bio-Rad CFX96)进行扩增反应,条件为:95 °C预变性5 min,95 °C变性10 s,60 °C退火30 s,共35个循环;以Gapdh作为内参照,使用GraphPad Prism统计软件进行数据分析并绘制统计图表。

1.4 统计学分析

应用GraphPad Prism 6.0软件进行数据统计学分析,定量资料以均数±标准差表示,组间比较采用独立样本t检验,P<0.05为差异具有统计学意义。

Tab.1 Sequences of the primers for qRT-PCR

Gene	Sequences of primers (5'-3')	
	Forward	Reverse
Gzmb	CCACTCTCGACCCTACATGG	GGCCCCCAAAGTGACATTTATT
IL-10	CTTACTGACTGGCATGAGGATCA	GCAGCTCTAGGAGCATGTGG
Gapdh	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA

2 结果

2.1 激活状态CD4⁺T细胞和Tr1细胞高表达DNAM-1 流式细胞术分别检测脾脏总CD4⁺T细胞和Tr1细

胞(CD4⁺CD49b⁺LAG-3⁺)刺激前和刺激后DNAM-1分子表达水平,结果显示静息状态CD4⁺T细胞表达DNAM-1比例为28.90%±1.10%;激活状态表达比例为43.03%±4.90%,激活状态的CD4⁺T细胞表达DNAM-1水平升高(P<0.05,图1A)。静息状态Tr1细胞表达DNAM-1比例为35.25%±2.75%;激活状态表达比例为43.43%±1.16%,激活状态的Tr1细胞表达DNAM-1水平明显升高(P<0.05,图1B)。

2.2 敲除DNAM-1不影响小鼠Tr1细胞数量和比例

流式细胞术鉴定KO小鼠脾脏CD4⁺T细胞和Tr1 细胞表达DNAM-1情况结果显示:KO小鼠基本不表达 DNAM-1分子(图2A),基因敲除小鼠构建成功。以 CD4⁺CD49b⁺LAG-3⁺为Tr1细胞鉴定表型,检测KO小 鼠和同窝WT小鼠脾脏Tr1细胞比例和数量,结果显 示KO小鼠Tr1细胞比例和数量无明显改变(P>0.05, 图2B)。

2.3 敲除DNAM-1后Tr1细胞活化和增殖能力降低

分离WT小鼠和KO小鼠脾脏初始CD4+T细胞 (纯度≥95%,图3),在体外环境下诱导Tr1细胞(纯度 ≥90%,图4),使用CFSE工作液(5 µmol/L)标记诱导型 Tr1细胞,活化增殖3d后流式细胞术检测其增殖能力。 FlowJo软件分析Tr1细胞增殖结果显示:与WT小鼠相 比,KO小鼠Trl细胞增殖比例明显降低(41.16%± 3.08% vs 76.21%±5.12%, P<0.01, 图 5A)。为明确 DNAM-1分子敲除之后是否影响Tr1细胞的活化功能, 我们检测了两组小鼠 Trl 细胞 CD25 和 CD69 表达水 平。结果显示WT小鼠Tr1细胞CD25分子MFI值为 2057±185.1, KO小鼠Tr1细胞表达量降低,为1566± 71.7,差异具有统计学意义(P<0.01);WT小鼠 Tr1细胞 CD69分子MFI值为4656±28.27,KO小鼠Tr1细胞表达 量降低(4234±69.34),差异具有统计学意义(P<0.01)。 2.4 敲除DNAM-1降低小鼠Tr1细胞抑制性免疫分子 分泌水平

图1 CD4⁺T细胞和Tr1细胞激活后表达DNAM-1升高

Fig.1 Upregulation of DNAM-1 expression level in activated CD4⁺ T cells and activated Tr1 cells. Splenocytes from WT mice were not stimulated or stimulated with anti-CD3 (5 μ g/mL) and anti-CD28 (5 μ g/mL) for 24 h. Expression of DNAM-1 in splenic CD4⁺ T cells gated on CD4⁺ cells (**A**) and Tr1 cells gated on CD4⁺CD49b⁺LAG-3⁺ cells (**B**) from WT mice was detected by flow cytometry. Numbers indicate the expression level of DNAM-1. Grey histograms depict isotype control of each antibody. The percentages of DNAM-1-positive cells are shown on the right. **P*<0.05 (*n*=6).

Fig.2 Identification of DNAM-1 KO mice and detection of Tr1 cell numbers. **A**: Total CD4⁺ T cells, Tr1 cells (CD4⁺CD49b⁺ LAG-3⁺) gated from the splenocytes of WT and KO mice, and expression levels of DNAM-1 detected by flow cytometry. **B**: Percentages of Tr1 cells in CD4⁺ T cells and number of Tr1 cells in each 105 splenocytes (*n*=8).

检测佛波酯(PMA)和离子霉素混合物在加入或不加IL-2刺激前后,Tr1细胞分泌IL-10水平(图6A)。相比较静息状态,两组Tr1细胞在接受PMA/离子霉素刺激后,IL-10分泌水平升高(P<0.0001);WT组在PMA/离子霉素和IL-2共同刺激后,IL-10分泌水平明显高于

单纯 PMA/离子霉素刺激(P<0.01),而 KO 组在接受 PMA/离子霉素和IL-2共同刺激后,IL-10分泌水平与单 纯 PMA/离子霉素刺激相比无明显差异(P>0.05)。分 离两组小鼠 Tr1 细胞,提取 RNA 后检测发现 KO 小鼠 Tr1 细胞 Il-10 mRNA 和 Gzmb mRNA 表达水平均低于

图3 磁珠分选脾脏CD4⁺Tn细胞纯度鉴定

Fig.3 Identification of the purity of sorted CD4⁺ T cells. $CD4^+$ Tn cells were magnetically sorted from the spleens of WT and KO mice, and the expression level of CD4 was detected by flow cytometry.

图4 诱导型Tr1细胞纯度鉴定

Fig.4 Analysis of the purity of induced Tr1 cells. Magnetically sorted CD4⁺ Tn cells from the spleens of WT and KO mice were cultured under Tr1 polarizing conditions for 3 days. The percentage of Tr1 cells (CD49b⁺ LAG-3⁺) in CD4⁺T cells was detected by flow cytometry.

图 5 DNAM-1 KO小鼠 Tr1 细胞增殖能力和活化水平降低

Fig.5 DNAM-1-deficient Tr1 cells have low proliferative activity with a low activation level *in vitro*. **A**: Naïve CD4⁺ T cells from WT and KO mouse spleens were magnetically sorted and cultured in Tr1 cell polarizing conditions plate-coated anti-CD3 (3 μ g/mL), soluble anti-CD28 (5 μ g/mL), IL-2 (2 ng/mL), recombinant TGF- β (5 ng/mL), and IL-27 (30 ng/mL). Tr1 cells were labelled with CFSE and cultured in the presence of anti-CD3 (5 μ g/mL) and anti-CD28 (5 μ g/mL), and the proliferative capacity was detected 3 days later by FCM. Percentages of CD25⁺ cells (**B**) or CD69⁺ cells (**C**) in Tr1 cells after culture with anti-CD3 (5 μ g/mL)/anti-CD28 (5 μ g/mL) from splenocytes of KO mice and WT mice are determined with flow cytometry. Numbers indicated the MFI. **P*<0.05; ***P*<0.01 (*n*=6).

WT小鼠(图6B、C)。

2.5 敲除 DNAM-1 分子通过抑制 IL-2/STAT-5 通路影 响 Trl 细胞功能

分别用5 ng/mL和10 ng/mLIL-2刺激WT小鼠和 KO小鼠Tr1细胞30 min,流式细胞术检测p-STAT5表 达水平,结果显示5 ng/mLIL-2刺激后,WT小鼠Tr1细 胞p-STAT5表达水平(6.42±0.53)%高于KO小鼠Tr1细胞表达水平(3.63±0.65)%,差异有统计学意义(P<0.05);10 ng/mL IL-2 刺激后,WT 小鼠Tr1 细胞 p-STAT5表达水平(7.36±0.30)%高于KO小鼠Tr1 细胞表达水平(4.46±0.59)%,差异有统计学意义(P<0.05,图7)。

图6 DNAM-1 KO 小鼠 Tr1 细胞分泌抑制性免疫分子能力降低

Fig.6 DNAM-1-deficient Tr1 cells show reduced release of suppressive molecules. **A**: Splenocytes from WT and KO mice were stimulated with cell stimulation cocktail (containing PMA and ionomycin) with or without IL-2 (5 ng/mL) for 6 h. The proportion of IL-10 + Tr1 cells were determined by intracellular cytokine staining. The numbers in the gates indicate the percentage of IL-10. **B**: Relative expressions of Il-10 and Gzmb mRNA in induced Tr1 cells from WT and KO mice. **P < 0.01(n=4).

3 讨论

Tr1细胞是一类具有免疫抑制功能的CD4⁺T细胞 亚群,在维持自身免疫耐受和抑制病理性免疫应答反应 中发挥的重要作用^[19,20],多种跨膜免疫分子参与Tr1细 胞活化和增殖过程。DNAM-1为T细胞活化共刺激分 子,其与LFA-1交联参与T细胞激活免疫突触形成和活 化信号转导^[21],研究表明DNAM-1高表达于Tr1细胞上 并被视为Tr1细胞标志性分子^[13,22],本研究旨在探明 DNAM-1是否参与Tr1细胞分化、增殖和抑制功能。

DNAM-1分子高表达于激活状态的CD4⁺T细胞, 并参与Th细胞亚群的分化和增殖过程^[23,24]。研究表明 DNAM-1与淋巴细胞功能相关抗原(LFA)-1共同参与 T细胞活化信号转导过程,并在T活化状态的淋巴细胞 中表达上调^[13]。本课题组在前期发现激活状态CD4⁺T 细胞和Tr1细胞DNAM-1分子MFI值升高^[14],DNAM-1 分子参与调节性T细胞分化增殖过程^[25]。本研究发现 DNAM-1分子在激活状态的CD4⁺T细胞和Tr1细胞中 表达升高,此结果与文献报道的DNAM-1高表达于激 活状态的效应性T细胞并促进T细胞的活化过程相一 致^[26]。CD25为IL-2受体(IL-2R)α亚单位,主要表达于 激活状态的T细胞和调节性T细胞^[15];细胞活化标记分 子CD69是T细胞激活后最早表达的膜表面分子之 一^[16]。我们发现缺少DNAM-1的Tr1细胞体外增殖能 力降低,细胞活化标记分子CD96和CD25表达降低,此 结果说明DNAM-1参与了Tr1细胞的活化和增殖过程, 文献报道DNAM-1参与CD4⁺初始T细胞的发育和 分化过程,并促进Th1细胞的极化而抑制Th2细胞极 化^[24],本结果为补充DNAM-1参与Tr1细胞这一特殊 CD4+T细胞亚群活化和增殖过程提供依据。为明确 DNAM-1是否参与Tr1细胞的免疫功能,我们检测了

图7 KO小鼠Tr1细胞IL-2/STAT5信号通路抑制

Fig.7 IL-2/STAT5 pathway is inhibited in DNAM-1-deficient Tr1 cells. Tr1 cells from WT and KO mice were either not stimulated or stimulated with IL-2 (5 or 10 ng/mL) for 30 min, and the expression level of p-STAT5 was detected by flow cytometry and quantitatively analyzed. The numbers in gates indicate the percentage of p-STAT5+ cells. *P<0.05 vs KO (n=4).

KO小鼠Tr1细胞分泌IL-10和表达Gzmb情况,结果表明Tr1细胞DNAM-1分子缺如后,其抑制性细胞因子IL-10分泌水平和与细胞毒作用效应分子Gzmb表达均降低,这些结果虽为明确DNAM-1分子参与Tr1细胞功能提供了重要依据,但相关分子机制并不清楚。

Tr1细胞分化、发育和抑制功能与细胞因子信号密 切相关^[3,27]。研究表明IL-2在促进T细胞活化和调控T 细胞亚群分化中发挥重要作用,其可通过调控细胞因子 受体、转录因子、染色质调节因子和效应性细胞因子影 响T细胞转录命运和代谢过程^[28]。在IL-2信号刺激下, IL-2R与JAK 酪氨酸激酶偶联继而激活 STAT5 等转录 因子,以调节CD4⁺T细胞的分化,参与CD4⁺T细胞的激 活、分化增殖和功能发挥^[12,29]。近年有研究结果表明IL-2 促进Tr1细胞的分化与增殖过程^[18,27,30],考虑到本实验中 使用IL-2刺激后,KO小鼠Tr1细胞IL-10低分泌水平并 未逆转,分析敲除DNAM-1可能影响了Tr1细胞的IL-2 通路的下游胞内信号转导。为证实此推测,本研究进一 步检测了IL-2刺激后Tr1细胞内p-STAT5变化,发现 KO小鼠Tr1细胞p-STAT5表达水平低于WT小鼠Tr1 细胞。由上述结果分析可知DNAM-1通过调控IL-2/ STAT5通路参与Tr1细胞分化和功能,但其分子水平调 控机制和交互作用尚需进一步研究和明确。

综上所述,DNAM-1分子参与Tr1细胞的活化、增 殖和抑制功能,敲除DNAM-1分子影响Tr1细胞的活化 水平、抑制体外增殖能力和分泌效应性免疫分子的能 力,此调控作用可能是通过参与IL-2/STAT-5信号通路 来实现的。在后期实验中,我们将继续探明DNAM-1 分子参与Tr1细胞增殖和功能相关分子机制,为靶向 DNAM-1分子治疗自身免疫性疾病等临床疾病提供理 论与实验依据。

参考文献:

- Roncarolo MG, Gregori S, Bacchetta R, et al. The biology of T regulatory type 1 cells and their therapeutic application in immunemediated diseases[J]. Immunity, 2018, 49(6): 1004-19.
- [2] Vasanthakumar A, Kallies A. IL-27 paves different roads to Tr1[J].
 Eur J Immunol, 2013, 43(4): 882-5.
- Brockmann L, Gagliani N, Steglich B, et al. IL-10 receptor signaling is essential for TR1 cell function *in vivo*[J]. J Immunol, 2017, 198 (3): 1130-41.
- [4] Yao Y, Vent-Schmidt J, McGeough MD, et al. Tr1 cells, but not Foxp3 + regulatory T cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism[J]. J Immunol, 2015, 195(2): 488-97.
- [5] Vitales-Noyola M, Serrano-Somavilla A, Martínez-Hernández R, et al. Patients with autoimmune thyroiditis show diminished levels and defective suppressive function of Tr1 regulatory lymphocytes[J]. J Clin Endocrinol Metab, 2018, 103(9): 3359-67.
- [6] Mayo L, Cunha AP, Madi A, et al. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation[J]. Brain, 2016, 139(Pt 7): 1939-57.
- [7] Sanchez-Correa B, Valhondo I, Hassouneh F, et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy[J]. Cancers, 2019, 11 (6): 877-85.
- [8] Yamashita-Kanemaru Y, Oh-Oka K, Abe F, et al. Suppression of Th1 and Th17 proinflammatory cytokines and upregulation of FOXP3 expression by a humanized anti-DNAM-1 monoclonal antibody[J].

Monoclon Antib Immunodiagn Immunother, 2021, 40(2): 52-9.

- [9] Sato K, Yamashita-Kanemaru Y, Abe F, et al. DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions [J]. PNAS, 2021, 118(21): e2021309118-26.
- [10] Magnani CF, Alberigo G, Bacchetta R, et al. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells[J]. Eur J Immunol, 2011, 41(6): 1652-62.
- [11] Wang N, Liang S, Jin JY, et al. CD226 attenuates treg suppressive capacity via CTLA-4 and TIGIT during EAE [J]. Immunol Res, 2019, 67(6): 486-96.
- [12] Ross SH, Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes[J]. Annu Rev Immunol, 2018, 36: 411-33.
- [13] Ralston KJ, Hird SL, Zhang XH, et al. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large[J]. J Biol Chem, 2004, 279(32): 33816-28.
- [14] Wang N, Chen P, Song Y, et al. CD226 deficiency attenuates the homeostasis and suppressive capacity of Tr1 cells[J]. Mol Immunol, 2021, 132: 192-8.
- [15] Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target[J]? Cancer Sci, 2019, 110(7): 2080-9.
- [16] Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper[J]. Eur J Immunol, 2017, 47(6): 946-53.
- [17] Roncarolo MG, Gregori S, Bacchetta R, et al. Tr1 Cells and the Counter-Regulation of Immunity: Natural Mechanisms and Therapeutic ApplicationsInterleukin 10 Heal Dis, 2014, 380: 39-58.
- [18] Ehrlich AK, Pennington JM, Tilton S, et al. AhR activation increases IL-2 production by alloreactive CD4⁺ T cells initiating the differentiation of mucosal-homing Tim3 + Lag3 + Tr1 cells [J]. Eur J Immunol, 2017, 47(11): 1989-2001.
- [19] Gagliani N, Jofra T, Stabilini A, et al. Antigen-specific dependence of Tr1-cell therapy in preclinical models of islet transplant [J]. Diabetes, 2010, 59(2): 433-9.
- [20] Gregori S, Roncarolo MG. Engineered T regulatory type 1 cells for

clinical application[J]. Front Immunol, 2018, 9: 233-8.

- [21] Manes TD, Pober JS. Identification of endothelial cell junctional proteins and lymphocyte receptors involved in transendothelial migration of human effector memory CD4⁺ T cells[J]. J Immunol, 2011, 186(3): 1763-8.
- [22] Sutavani RV, Bradley RG, Ramage JM, et al. CD55 costimulation induces differentiation of a discrete T regulatory type 1 cell population with a stable phenotype [J]. J Immunol, 2013, 191(12): 5895-903.
- [23] Gaud G, Roncagalli R, Chaoui K, et al. The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL- 17 production by CD4⁺ T cells [J]. Sci Signal, 2018, 11(538): eaar3083-90.
- [24] Lozano E, Joller N, Cao YH, et al. The CD226/CD155 interaction regulates the proinflammatory (Th1/Th17)/anti-inflammatory (Th2) balance in humans[J]. J Immunol, 2013, 191(7): 3673-80.
- [25] Wang N, Yi HY, Fang L, et al. CD226 attenuates treg proliferation via Akt and erk signaling in an EAE model [J]. Front Immunol, 2020, 11: 1883-9.
- [26] Lozano E, Dominguez-Villar M, Kuchroo V, et al. The TIGIT/ CD226 axis regulates human T cell function [J]. J Immunol, 2012, 188(8): 3869-75.
- [27] Huang WS, Solouki S, Koylass N, et al. ITK signalling via the Ras/ IRF₄ pathway regulates the development and function of Tr1 cells [J]. Nat Commun, 2017, 8: 15871-8.
- [28] Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy [J]. Immunity, 2013, 38(1): 13-25.
- [29] Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy [J]. Nat Rev Immunol, 2018, 18(10): 648-59.
- [30] Raverdeau M, Christofi M, Malara A, et al. Retinoic acid- induced autoantigen-specific type 1 regulatory T cells suppress autoimmunity [J]. EMBO Rep, 2019, 20(5): e47121-8.

(编辑:林 萍)