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Abstract
Purpose  Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in early breast cancer (EBC) is largely 
dependent on breast cancer subtype, but no clinical-grade model exists to predict response and guide selection of treatment. 
A biophysical simulation of response to NAC has the potential to address this unmet need.
Methods  We conducted a retrospective evaluation of a biophysical simulation model as a predictor of pCR. Patients who 
received standard NAC at the University of Chicago for EBC between January 1st, 2010 and March 31st, 2020 were included. 
Response was predicted using baseline breast MRI, clinicopathologic features, and treatment regimen by investigators who 
were blinded to patient outcomes.
Results  A total of 144 tumors from 141 patients were included; 59 were triple-negative, 49 HER2-positive, and 36 hor-
mone-receptor positive/HER2 negative. Lymph node disease was present in half of patients, and most were treated with an 
anthracycline-based regimen (58.3%). Sensitivity and specificity of the biophysical simulation for pCR were 88.0% (95% 
confidence interval [CI] 75.7 – 95.5) and 89.4% (95% CI 81.3 – 94.8), respectively, with robust results regardless of subtype. 
In patients with predicted pCR, 5-year event-free survival was 98%, versus 79% with predicted residual disease (log-rank 
p = 0.01, HR 4.57, 95% CI 1.36 – 15.34). At a median follow-up of 5.4 years, no patients with predicted pCR experienced 
disease recurrence.
Conclusion  A biophysical simulation model accurately predicts pCR and long-term outcomes from baseline MRI and clini-
cal data, and is a promising tool to guide escalation/de-escalation of NAC.

Keywords  Neoadjuvant chemotherapy · MRI · Simulation · Pathologic complete response · Prognostic Biomarker

Background

Neoadjuvant chemotherapy (NAC) is the cornerstone of 
treatment for high-risk, early breast cancer (EBC), facilitat-
ing breast-conserving surgery and allowing for an in vivo 
assessment of sensitivity to treatment [1]. It has been 

repeatedly demonstrated that response to NAC is a strong 
predictor of long-term outcomes. Those who achieve a path-
ologic complete response (pCR) have the best event-free 
survival (EFS) [2, 3], although pCR rates vary among cancer 
subtypes. A number of emerging treatment strategies have 
demonstrated further improvements in pCR rates, includ-
ing carboplatin in triple-negative breast cancer (TNBC) [4], 
and immunotherapy in high-risk hormone receptor positive 
(HR +) disease [5] and TNBC [6, 7]. The administration of 
intensified neoadjuvant therapy comes with an increase in 
toxicities—in the case of carboplatin the side-effects are usu-
ally short term, but immunotherapy can cause irreversible 
and life-altering endocrinopathies. Therefore, tools which 
can accurately predict pCR to specific regimens that allow 
for treatment optimization and potentially minimize toxici-
ties could lead to the realization of precision medicine.
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Several biomarkers have been identified to predict 
response to neoadjuvant chemotherapy. In addition to molec-
ular features, a number of pre-treatment radiomic charac-
teristics are associated with treatment response, including 
simple morphologic features like tumor shape [8] and sphe-
ricity [9]. Various radiomics [10]studies support the corre-
lation of radiomic features with underlying disease biology 
and treatment sensitivity [11, 12]. Other studies have shown 
that the combination of radiomic features with clinical data-
enhanced response prediction [9, 13, 14]. These studies, 
however, require robust validation, and thus, have not yet 
made their way into routine clinical practice.

Multiscale cancer modeling allows for dynamic simula-
tion of tumor response on both a spatial and temporal scale 
[15]. TumorScope (SimBioSys, Chicago, IL) is a commer-
cial multiscale biophysical simulation platform that utilizes 
pre-treatment patient information and pre-treatment MRI to 
model tumor response over time. The platform accounts for 
the individual physical and biological traits of each cancer 
and has previously been used for the in silico simulation of 
cancer response on a per-patient basis [16]. We present a ret-
rospective, independent, blinded evaluation of this biophysi-
cal simulation model as a tool to predict pCR to a variety of 
different NAC regimens in breast cancer.

Methods

Study design and population

We conducted a retrospective single-center evaluation of a 
biophysical simulation model for the prediction of pCR. The 
study included patients age 18 or older who received NAC at 
the University of Chicago for EBC between January 1st 2010 
and March 31st 2020 under an institutional review board 
approved protocol. For inclusion in the study, patients had 
to be diagnosed with invasive breast cancer and all subtypes 
and histology of breast cancer were accepted, and had a pre-
treatment dynamic contrast enhanced (DCE) MRI available. 
There was no restriction on magnet strength (1.5 T or 3 T) or 
machine manufacturer, and MRI series required for inclusion 
were a pre-contrast T1-weighted image, and images nearest 
to 200 s–300 s (early post-contrast) and 500 s–600 s (late 
post-contrast) after contrast administration. Patients with 
bilateral breast tumors were also eligible and tumors were 
independently modeled. Patients receiving experimental reg-
imens, those with metastatic disease, and patients receiving 
neoadjuvant endocrine therapy alone were excluded. Given 
an a priori estimate of model specificity of 80% for pCR, 
compared to average pCR rates of approximately 19% in 
the general population [2], a sample size of 17 is required 
for each group analyzed to maintain a power of 95% at the 
two-sided alpha = 0.05 significance level.

Pre-treatment clinical data and MRI were analyzed using 
the biophysical simulation model for prediction of response 
by investigators who were blinded to actual response data. 
The primary outcome was sensitivity and specificity of the 
biophysical simulation model for prediction of pCR, defined 
as absence of invasive carcinoma in the breast or lymph 
nodes at the time of surgery (ypT0/Tis ypN0). Secondary 
end points included prediction of tumor volume over time 
and association of predicted pCR with EFS and overall sur-
vival (OS). Subgroup analysis was planned for breast cancer 
subtype and chemotherapy regimen. The analysis follows 
the REMARK guidelines for reporting on tumor prognostic 
markers [17].

Model design

This study evaluated a commercially developed multiscale 
biophysical model that simulates tumor response to various 
neoadjuvant chemotherapy regimens in three-dimensional 
space over time [16]. A three-dimensional model of tumor-
ous, vascular, fibroglandular, and fatty tissues is segmented 
from pre-treatment DCE-MRI for each patient using a UNet-
based convolutional neural network, with spatial represen-
tations of tumors modeled with cubic voxels of side length 
0.5 mm, resulting in approximately 250 K to 550 M voxels 
per tumor [18, 19]. Initial tumor volume from automated 
segmentation in this retrospective cohort was reviewed for 
accuracy by a breast radiologist (H.A.). The simulation is 
composed of voxel-based cubic lattices of tumor and nor-
mal tissue along with chemical concentrations of tumor 
nutrients (i.e., glucose, oxygen, select amino acids), meta-
bolic byproducts (lactic acid), and chemotherapeutic agents 
(Fig. 1, Supplemental Figure S1, Supplemental Table S1, 
Supplemental Methods) [20, 21]. Drug/chemical concentra-
tions are updated over time using an explicit reaction–dif-
fusion equation with sources/sinks defined by a modified 
Tofts model [20] that captures chemical delivery via micro-
vasculature, and with a macrovascular model incorporating 
the larger vessels identified on initial segmentation. Tumor 
growth at each voxel is modeled based on nutrient expo-
sure, and tumor death is modeled based on drug uptake and 
inhibitory concentrations derived from prior studies (Sup-
plemental Table S2) [22–27]. A mass-spring mesh is used to 
model the growth/contraction of tumor morphology across 
voxels. Response is then forecast continuously over small 
time increments throughout the planned neoadjuvant treat-
ment regimen. Specific inputs are patient age, race, T and 
N stage, ER percent staining, PR percent staining, HER2 
status, grade, histology type, pre-treatment T1-weighted 
DCE-MRI, and regimen administered. The primary analy-
ses described above were performed with the documented 
treatment regimen including dose reductions, but model 
accuracy with standard dose therapy was also evaluated. A 
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predefined cutoff of residual tumor volume less than 0.01 
cm3 or a 99.9% or greater reduction in tumor volume in these 
three-dimensional tumor models at the date of surgery was 
used to predict pCR.

Statistical analysis

All statistical analyses were performed on individual tumors, 
with separate predictions performed for each tumor in 
women with bilateral breast cancers. Baseline clinicopatho-
logic data were compared between the pCR and residual 
disease subgroups using a chi-squared test for categorical 
variables and a two-sided two sample t test for continuous 
variables. The primary outcome metrics of sensitivity and 
specificity for pCR in the overall population were estimated 
using the Clopper–Pearson interval [28]. The accuracy of 

both predicted residual tumor volume and predicted percent-
age reduction in tumor volume as predictors of pCR was 
measured with the area under the receiver operating char-
acteristic curve (ROC). As a comparator, a clinical model 
to predict response was also developed using a logistic 
regression from patient age, race, disease histology, receptor 
subtype, tumor grade, tumor T and N stage, and treatment 
regimen. Logistic regression models were developed on two 
thirds of the dataset to predict response in the remaining 
third of the data; the average ROC curve across the entire 
dataset was calculated using threefold cross validation. Con-
fidence intervals for the area under the ROC curves were 
computed with 1000 × bootstrapping. To explore the ability 
of the model to predicted pCR to discriminate long-term out-
comes, we compared disease-free interval (DFI), event-free 
survival (EFS), and overall survival (OS) between predicted 
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Fig. 1   An Overview of the Biophysical Simulation Model. A Patient 
imaging and pathology data are used as inputs in order to construct a 
comprehensive 3D virtual tumor for simulation. B Imaging data are 
segmented into tissues of interest, including the tumor (tan), blood 
vessels (red), as well as surrounding healthy adipose and fibroglan-
dular tissues (not shown for clarity). C DCE-MRIs are further used 
to fit a two compartment pharmacodynamic model of tissue perfu-
sion using a modified Tofts model [20]. This model is used within the 
simulations to provide nutrients and drugs to the simulated tissues, 
as well as to clear away any byproducts of the tissue's metabolism. D 
During the simulations, proprietary genome-scale metabolic models 

are used to predict the metabolic behaviors of the cells within each 
voxel [21]. This includes the rates at which cells utilize resources 
(such as glucose, oxygen, amino acids, etc.), produce byproducts 
(CO2, lactate, formate, etc.), and grow. E At the same time, propri-
etary pharmacokinetics and pharmacodynamics models of the drugs 
administered account for the dynamics of drug plasma concentra-
tions, uptake by the tissues and tumor, any intracellular conversions 
that may take place, and overall cytotoxicity. F–G Because cells in 
different regions may be growing and/or dying at different rates, the 
tissues themselves must deform. This is handled through the use of an 
elastic material mechanics model
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pCR and predicted residual disease patients using a log-rank 
test. The predictions from the biophysical simulation were 
also correlated with radiographic response, assessed with 
the Pearson correlation coefficient with significance tested 
using the Fisher transformation [29]. All statistical testing 
was done with α = 0.05 significance level. Given the small 
number of outcomes analyzed and exploratory nature of this 
analysis, false discovery correction was not performed for 
these outcomes.

Results

A total of 233 cases were assessed for eligibility, of which 
144 cancers in 141 patients were included for analysis (Sup-
plemental Figure S2). Median patient age was 52 years; the 
cohort was diverse, with one-half of patients self-reporting 
Black race. Most cancers were high-grade (77%) invasive 
ductal carcinomas (96%); 41% of tumors were triple nega-
tive. Of patients with HER2-negative breast cancer, 93% 
received an anthracycline, reflecting the high-risk nature of 
the population studied. A total of 54% of patients (n = 78) 
received paclitaxel and dose-dense doxorubicin and cyclo-
phosphamide; 22% (n = 32) received paclitaxel or docetaxel, 
carboplatin, trastuzumab with or without pertuzumab (Sup-
plemental Table S3). Median follow-up was 5.4 years; at 
last follow-up, 11% of patients had recurrence and 14% of 
patients had died – 9% of whom died from disease. Char-
acteristics did not differ significantly between patients with 
pCR (n = 50) and residual disease (n = 94), aside from 
breast cancer subtype (p < 0.001) and recurrence (p = 0.005, 
Table 1).

The biophysical simulation model predicted pCR in 54 
patients and residual disease in 90 patients (Table 2), with 
a sensitivity of 88.0% (95% confidence interval [CI] 75.7 
– 95.5), and specificity of 89.4% (95% CI 81.3 – 94.8). 
Representative volumetric presentations with the model are 
illustrated in Fig. 2, with simulation results for all patients 
illustrated in Supplemental Fig. 3. Sensitivity and specific-
ity were preserved across receptor subtypes, with the low-
est sensitivity of 80.0% (95% CI 28.4 – 99.5) seen in the 
HR + /HER2- patients, and the lowest specificity of 86.5% 
(95% CI 71.2 – 95.5) seen in patients with TNBC. Of the 
10 patients predicted to have pCR who had residual disease, 
5 had residual nodal disease, and 6 had residual breast dis-
ease (Supplemental Table S4). Of the 6 with residual breast 
tumors, cellularity was available for 4 patients and was ≤ 5% 
for 3 of the 4 patients. Dose reductions were documented 
in 28 cases – when predictions were made with standard 
dose therapy without dose reductions, sensitivity for pCR 
remained the same, but specificity was reduced to 86.2% 
(95% CI 77.5—92.4, Supplemental Table S5).

As pCR predictions are based on a numeric cutoff of 
simulated residual tumor volume and percent change in 
tumor volume, we evaluated the discriminative accuracy of 
these metrics using receiver operating characteristic analy-
sis (Supplemental Figure S4). As a comparator, we used 
a logistic regression model to predict pCR from all the 
pre-treatment clinical characteristics used in the biophysi-
cal simulation. Simulated percent response and simulated 
post-treatment volume performed similarly as predictors 
of response and outperformed a model based on clinical 
characteristics alone. The AUROC for predicted percent 
response and predicted post-treatment volume were 0.87 
(95% CI 0.80—0.93) and 0.86 (95% CI 0.79—0.93), 
respectively, compared to 0.72 (95% CI 0.62—0.80) for 
the logistic regression model using clinical characteristics.

In addition to assessing the ability of the model to accu-
rately predict pCR, we also assessed the correlation of 
predictions with long-term outcomes. Notably, no patients 
with predicted pCR experienced disease recurrence 
(Fig. 3). Patients with predicted pCR had a prolonged DFI 
(5-year DFI 100% with predicted pCR vs. 79% with pre-
dicted residual disease, log-rank p = 0.001, HR not com-
puted due to lack of events), prolonged EFS (5-year EFS 
98% with predicted pCR vs. 78% with predicted residual 
disease, log-rank p = 0.01, HR 4.57, 95% CI 1.36 – 15.34), 
and prolonged OS (5-year OS 98% with predicted pCR vs. 
82% with predicted residual disease, log-rank p = 0.02, HR 
3.78, 95% CI 1.11 – 12.85). Biophysical simulation model 
predictions performed similarly to pCR as a prognostic 
biomarker (Supplemental Figure S5). Notably, there was 
a trend towards improved long-term outcomes in patients 
with residual disease who were predicted to have pCR ver-
sus those predicted to have residual disease (Supplemental 
Figure S6).

Aside from predicting pathologic response, model pre-
dictions strongly correlated with radiographic assessment 
of tumor volume for 267 follow-up MRIs, including 144 
inter-regimen and 123 post-treatment/pre-operative MRIs 
(r = 0.95, p < 0.001, Fig. 4). The mean absolute error in 
predicted response as a percent of pre-treatment tumor 
volume for all follow-up MRIs (i.e., excluding initial 
MRIs that are incorporated into the model) was 9.62% 
(95% CI 7.94%—11.31%), and the error as a function of 
time elapsed from initial MRI is illustrated in Fig. 4b. As 
expected, error in pre-treatment prediction volumes was 
low – as the pre-treatment MRI was used as model input, 
and thus, the predicted volume is solely representative of 
the accuracy of the MRI segmentation algorithm from the 
model. Nonetheless, absolute error remained < 20% for 
both inter-regimen and post-treatment scans, which are 
not used as model inputs (Supplemental Table S6).
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Table 1   Baseline demographics

p values for comparison between cases with pCR and residual disease
Statistics are listed on a per-tumor level, with three cases of bilateral breast cancer
pCR Pathologic complete response (ypT0N0 or ypTisN0), HR Hormone receptor, HER2 Human epidermal growth factor receptor 2, TNBC 
Triple-negative breast cancer

Missing Overall (n = 144) Residual (n = 94) pCR (n = 50) p-Value

Age at Diagnosis, mean (SD) 0 51.7 (12.7) 51.4 (12.5) 52.3 (13.3) 0.71
Race, n (%)
 African American 6 72 (50.0) 50 (53.2) 22 (44.0) 0.22
 Asian 4 (2.8) 4 (4.3)
 Caucasian 51 (35.4) 28 (29.8) 23 (46.0)

 Native American 1 (0.7) 1 (1.1)
 Other / Missing 16 (11.1) 11 (11.7) 5(10.0)

Histology, n (%)
 Adenocarcinoma 0 1 (0.7) 0 (0.0) 1 (2.0) 0.21
 Invasive Ductal Carcinoma 138 (95.8) 89 (94.7) 49 (98.0)
 Invasive Lobular Carcinoma 4 (2.8) 4 (4.3) 0 (0.0)
 Metaplastic Carcinoma 1 (0.7) 1 (1.1) 0 (0.0)

Receptor Status n (%)
 HR + /HER2 +  0 24 (16.7) 19 (20.2) 5 (10.0)  < 0.001
 HR + /HER2- 36 (25.0) 31 (33.0) 5 (10.0)
 HR−/HER2 +  25 (17.4) 7 (7.4) 18 (36.0)
 TNBC 59 (41.0) 37 (39.4) 22 (44.0)

Grade, n (%)
 1 0 2 (1.4) 2 (2.1) 0.14
 2 31 (21.5) 24 (25.5) 7 (14.0)
 3 111 (77.1) 68 (72.3) 43 (86.0)

Tumor Stage, n (%)
 T1 0 27 (18.8) 17 (18.1) 10 (20.0) 0.24
 T2 86 (59.7) 52 (55.3) 34 (68.0)
 T3 27 (18.8) 22 (23.4) 5 (10.0)
 T4 4 (2.8) 3 (3.2) 1 (2.0)

Nodal Stage, n (%)
 N0 0 72 (50.0) 43 (45.7) 29 (58.0) 0.57
 N1 59 (41.0) 42 (44.7) 17 (34.0)
 N2 10 (6.9) 7 (7.4) 3 (6.0)
 N3 3 (2.1) 2 (2.1) 1 (2.0)

Regimen, n (%)
 HER2-directed, Anthracycline containing 0 19 (13.2) 11 (11.7) 8 (16.0) 0.41
 HER2-directed, Anthracycline free 35 (24.3) 20 (21.3) 15 (30.0)

Chemotherapy, Anthracycline free 6 (4.2) 5 (5.3) 1 (2.0)
 Chemotherapy, Anthracycline containing 84 (58.3) 58 (61.7) 26 (52.0)

Months Follow-up, mean (SD) 0 5.6 (2.7) 5.3 (2.7) 5.9 (2.7) 0.21
Alive, n (%)
 Yes 0 123 (85.4) 76 (80.9) 47 (94.0) 0.06
 No 21 (14.6) 18 (19.1) 3 (6.0)

Recurrence, n (%)
 Yes 0 16 (11.1) 16 (17.0) 0.005
 No 128 (88.9) 78 (83.0) 50 (100.0)
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Discussion

In this retrospective, independent validation study, a bio-
physical simulation model predicted pCR to standard neo-
adjuvant chemotherapy with a remarkable 89% accuracy. 
In the small proportion of patients who were predicted to 
have a pCR but did not, the residual disease was predomi-
nantly of low cellularity, providing further evidence that 
the simulation can accurately model biologic response to 
chemotherapy. The model’s prediction of response distin-
guishes patients with good and poor long-term prognosis 
in this retrospective cohort, with no recurrences in patients 
with predicted pCR. Although the ability to test the model 
with different regimens in a retrospective setting is limited 
by the dosing schedules and combinations that are currently 
used in clinical practice, comparison of predicted volume to 
inter-regimen MRI suggest that the tool is accurately mod-
eling response to individual drugs. Predictive accuracy was 
similar across tumor subtypes and treatment regimens. Addi-
tionally, this retrospective study demonstrated admirable 
performance of a predictive model in an ethnically/racially 
diverse cohort, enriched for African–American patients, who 
are uniquely affected by aggressive triple-negative breast 
cancers but often underrepresented in clinical trials [30].

Other multiscale models of breast cancer response to ther-
apy have been evaluated in silico [16, 31] in small explora-
tory cohorts of patients [32]. To our knowledge this is the 
first large-scale independent validation of a multiscale simu-
lation model of response to breast cancer treatment. Other 
models using pre-treatment imaging data have generally 
relied on extraction of radiomic features, and most have not 
been externally validated [33]. In one radiomic model with 
external validation in three institutions, AUROCs ranged 
from 0.71 to 0.80 [9]. Deep learning, a form of artificial 
intelligence, has also been used to predict response to neoad-
juvant therapy from MRI – in one study, response prediction 
for HER2-directed therapy achieved AUROCs of 0.77 and 
0.85 in two validation cohorts [34]. The biophysical simu-
lation model compares favorably to these other tools, with 
an overall accuracy, sensitivity, and specificity of approxi-
mately 90%. Since the prediction of pCR from the simula-
tion is made based on a threshold of both percent response 

and residual tumor volume, it is not possible to construct a 
precise AUROC curve to directly compare to other models. 
However, AUROC for percent response (0.87) and residual 
tumor volume (0.86) in this external cohort compare favora-
bly to other radiology-based models of response (Fig. 3). 
The biophysical simulation model also predicted response 
more accurately than clinical factors alone. This is consist-
ent with other recently published work, demonstrating an 
AUROC of 0.70 for prediction of pCR using clinical risk 
factors [35]. Although hormone receptor and HER2 status 
remain the most important features for response prediction, 
the simulation of response with a biophysical model adds 
incremental accuracy, and further study to identify model 
parameters most predictive of response is ongoing.

Anthracycline use in early breast cancer carries a dose-
dependent risk of both long-term cardiac toxicity [36] and 
secondary hematologic malignancies [37]. As this biophysi-
cal simulation model can precisely predict response to spe-
cific NAC regimens, it could profoundly impact clinical 
care, by identifying patients who can achieve a pCR with 
an anthracycline-sparing regimen, thereby minimizing the 
risk of long-term toxicities in individuals who do not need 
such cardiotoxic therapies. And, while immunotherapy has 
demonstrated efficacy in early TNBC, the additive pCR 
benefit ranges from 8% in KEYNOTE-522 [38] to 17% in 
IMpassion031 [7]. Thus, the majority of patients do not need 
or will not benefit from immunotherapy, exposing a large 
number of patients to the risk of long-term immune-related 
toxicities for not benefit. Unlike in metastatic TNBC, PD-L1 
is not a predictive biomarker of response in the neoadjuvant 
setting; a biophysical simulation model can accurately iden-
tify patients who would have a pCR with standard neoad-
juvant chemotherapy, thus, sparing a significant proportion 
exposure to immunotherapy. Such a model could also be 
used to further delineate the benefit of emerging therapies 
tested in the neoadjuvant setting.

Our analysis of this biophysical simulation model had 
several limitations. In patients who received treatment 
locally, dose reductions and treatment delays were incor-
porated into the simulation. This analysis reflects a feasi-
ble use of the model in clinical practice – for example, if 
a dose reduction is considered, the tumor response could 

Table 2   Outcome Metrics, Overall, and Select Subgroups for Prediction of Pathologic Complete Response

n n pCR Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Overall 144 54 88.9 (82.6–93.5) 88.0 (75.7–95.5) 89.4 (81.3–94.8)
HR + /HER2- 36 7 88.9 (73.9–96.9) 80.0 (28.4–99.5) 90.3 (74.2–98.0)
HER2 +  49 23 91.8 (80.4–97.7) 91.3 (72.0–98.9) 92.3 (74.9–99.1)
TNBC 59 24 86.4 (75.0–94.0) 86.4 (65.1–97.1) 86.5 (71.2–95.5)
Anthracycline-containing regimens 103 40 86.4 (78.2–92.4) 88.2 (72.5–96.7) 85.5 (75.0–92.8)
Anthracycline-free regimens 41 14 95.1 (83.5–99.4) 87.5 (61.7–98.4) 100.0 (86.3–100)
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be re-analyzed with the modified regimen to determine if 
the dose adjustment resulted in conversion from predicted 
pCR to predicted residual disease. Given the retrospective 

nature of this study, it is not possible to determine the exact 
pre-treatment regimen planned for all patients with com-
plete confidence. Nonetheless, we also analyzed model 

Fig. 2   A Biophysical Simulation Predicts Change in Volume and 
Morphology Throughout Treatment. Representative examples 
of model predictions showing how the tumor volume changes in 
response to therapy. A three-dimensional rendering of the breast 
segmentation derived from DCE-MRI depicting the tumor (blue), 
glandular tissue (dark gray), and the outline of the patient's body 
(light gray) at time of diagnosis is shown for each patient. The three-

dimensional model is used as input to the model, which predicts 
change in volume over the treatment course. Predicted tumor vol-
ume (red) matches well with segmentations of from intra-treatment 
MRIs (blue). Examples of patients with residual globular (top) and 
multi-centric (bottom) tumors are shown, along with an example of a 
patient achieving pCR (middle)
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performance without dose reductions, demonstrating a 
minimal reduction in model specificity, and highlighting that 
model performance is maintained using purely pre-treatment 
data.

The biophysical model evaluated in this study predicts 
response with a simulation of the primary breast tumor but 

does not separately model response in lymph nodes. Four 
patients with predicted pCR had ypT0/Tis response with 
residual lymph node disease at the time of surgery. Models 
that simulate response in lymph nodes along with the pri-
mary tumor bed may allow for even more accurate stratifi-
cation of pCR, especially as some studies suggest radiomic 
features of lymph nodes are most predictive of response [11].

Conclusions

A biophysical simulation model predicted pCR in this inde-
pendent single institution validation cohort with remark-
able accuracy. False-positive predictions of response gen-
erally occurred in cases of minimal residual cellularity, 
and no recurrences were seen in patients with a predicted 
pathologic complete response. This model could be used to 
identify patients eligible for both de-escalation and escala-
tion of treatment, allowing clinicians to treat patients with 
immunotherapy or other novel agents if they are predicted 
to respond poorly to standard NAC. With better prediction 
of pathologic response and long-term outcomes, multiscale 
simulation models can usher in an era of personalized medi-
cine for patients with high-risk, early-stage breast cancer.
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