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Abstract

Ribosomes are macromolecular machines that are globally required for the translation of all 

proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and 

survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. 

RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol 

III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of 

small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and 

Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies 

and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, 

pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to 

distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we 

discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I 

and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and 

mechanisms underpinning their tissue-specific phenotypes.
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1. Introduction

The regulation of cell growth, proliferation, survival, and death during development is a 

carefully coordinated process. Central to this process is the flow of genetic information from 

DNA to RNA to protein. Three distinct RNA polymerases transcribe all the RNAs necessary 

in eukaryotic cells. RNA Polymerase II (Pol II) primarily transcribes mRNAs which are 

translated into proteins, while Pol I and Pol III transcribe non-coding RNAs that are 

critical for cellular homeostasis, including those for making ribosomes, the macromolecular 

machines that translate mRNAs into proteins. Despite a global requirement for Pol I and III 

during development, disruption of genes encoding Pol I or Pol III subunits results in distinct, 

tissue-specific phenotypes. In this review, we discuss recent advances in our understanding 

of the function of Pol I and Pol III, how mis-regulation of these polymerases result in 

disease, and the mechanistic basis for tissue specific regulation of Pol I and III.

2.1 RNA Polymerase I

RNA Polymerase I is a multi-subunit complex that transcribes ribosomal RNA (rRNA) 

in the nucleolus of the cell. rRNA constitutes an estimated 60% of all transcription in a 

cell [1] and the production of rRNA is a rate-limiting step in the process of ribosome 

biogenesis [2]. Pol I is therefore essential for cell growth and survival [3–5]. In humans, 

Pol I consists of a 10-subunit core complex plus 3 additional subunits [6, 7] (Figure 1A). 

Five of the subunits present in Pol I, POLR2E, POLR2F, POLR2H, POLR2K, and POLR2L, 

are components of all three RNA polymerases. Two subunits of Pol I, RPAC1/POLR1C 

and RPAC2/POLR1D, are shared with Pol III. The remainder, RPA190/POLR1A, RPA135/

POLR1B, RPA49/POLR1E, RPA43/POLR1F, RPA34/POLR1G, and RPA12/POLR1H are 

unique to Pol I and have distinct roles in Pol I transcription. POLR1A contains the active site 

of Pol I and interacts with POLR1B to form the DNA binding cleft. POLR1E, POLR1G and 

POLR1H contribute to Pol I passage through nucleosomes. The function of POLR1F is not 

as well understood but may be important for interactions with Pol I initiation factors [8, 9].

Pol I transcribes rRNA from rDNA, which is present in hundreds of tandem copies in 

the genome. The rDNA repeats are separated by intergenic spacer regions and a single 

repeat consists of an upstream control element, a core promoter, the 47S rDNA, and a 

downstream terminator element [10] (Figure 1B). Due to its highly repetitive nature, rDNA 

is subject to copy number variation, and the number of active repeats has dual roles in rRNA 

transcription and genome stability [11]. The number of active rDNA repeats is regulated by 

their chromatin status [11], and approximately 40% of rDNA repeats are typically silent in 

mammalian cells [12].

Pol I transcription requires Upstream Binding Transcription Factor (UBTF), Selectivity 

Factor 1 (SL1; known as TIF-IB in other vertebrates), and Transcription Initiation Factor IA 

(TIF-IA; RRN3 in yeast). Association of TIF-IA with Pol I is required for basal transcription 

initiation at the rDNA promoter [13, 14]. Full transcriptional activity depends on UBTF 

binding to the upstream promoter, which correlates with active rRNA genes [15], through 

its recruitment of SL1 to the core promoter [16]. Post-translational modifications including 

phosphorylation and acetylation of initiation complex proteins exhibit regulatory effects 

on Pol I transcription. These modifications can be activating or inhibiting and occur in 
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response to several signaling pathways including mTOR, AKT, p53, Rb, CK2, and ERK 

[17]. Transcription of rRNA is also dynamically regulated during the cell cycle through 

cyclin-dependent regulation of UBTF and SL1, with the highest levels occurring during 

S and G2 phases [18]. Additionally, Pol I can exist in an inactive dimer conformation in 

a manner sensitive to stress such as nutrient deprivation or inhibition of protein synthesis 

[19–21]. Thus, Pol I and its initiation factors are precisely regulated in response to several 

cellular events including cell cycle status, nutrient availability, and signaling, which helps to 

govern the amount of rRNA produced. This is important because rRNA synthesis is a key 

regulator of ribosome quantity and is integral to increased or decreased protein translation to 

meet a cell’s specific growth, proliferation, or other metabolic needs.

2.2 RNA Polymerase III

RNA polymerase III (Pol III) is a 17-subunit enzymatic complex responsible for the 

transcription of ubiquitously expressed, small non-coding RNAs (small ncRNA) [22, 23] 

(Fig. 1C). POLR3A/RPC1 and POLR3B/RPC2 form the active site of the enzyme and are 

part of the 10-subunit core which also contains two subunits shared with Pol I (POLR1C, 

POLR1D), and five subunits shared with Pol I and II (POLR2E, POLR2F, POLR2H, 

POLR2L, POLR2K), and POLR3K/RPC11. The remaining seven subunits of Pol III form 

subcomplexes important for transcription initiation and termination. POLR3H and CRCP 

form the stalk complex, important for Pol III initiation, while POLR3C, POLR3F, and 

POLR3G form a heterotrimer and POLR3D and POLR3E form a heterodimer, both of which 

are important for transcription initiation and termination [24, 25]. Furthermore, Pol III can 

exist in two distinct isoforms defined by inclusion of subunit POLR3G or POLR3GL [26].

The function of Pol III can be defined by the roles of its transcripts, perhaps the most 

well-known of which are the 5S rRNA and transfer RNAs (tRNAs) [22, 23]. Both of 

these play crucial roles in protein synthesis, highlighting the critical housekeeping role 

for Pol III in all cells. As the sole rRNA not transcribed by Pol I, 5S rRNA is not 

only an integral component of the ribosome but thought to play an additional role in 

ribosome biogenesis through forming the peptidyl transferase center functional domain [27]. 

Meanwhile, tRNAs, all of which are transcribed by Pol III, are crucial for decoding mRNA 

transcripts to mediate translation [28]. In addition, Pol III transcribes multiple small ncRNA 

whose function can be broadly grouped into one or more of the following categories: 1) 

transcription; 2) RNA processing and/or localization; and 3) translation (Fig. 2). In terms 

of transcription, Pol III transcribes 7SK RNA, an indirect inhibitor of Pol II transcription, 

which illustrates a role for Pol III transcripts in the expression of protein-coding genes 

[29]. Pol III transcripts involved in RNA processing include U6 RNA, RNAse P RNA, 

and RMRP RNA. U6 RNA forms the active site of the spliceosome and works with Pol 

II-transcribed spliceosome RNAs to catalyze the removal of introns from pre-mRNA [30]. 

RNAse P RNA regulates tRNA transcription and facilitates the removal of the 5’ leader 

sequence of pre-tRNA, creating a link between tRNA transcription and processing [31–33]. 

Meanwhile, RMRP RNA functions in pre-rRNA processing through its role in cleaving 

the common rRNA precursor produced by Pol I, highlighting an additional role for Pol 

III in ribosome biosynthesis [33]. Localization of RNA in a cell is assisted by the Pol 

III transcripts vault RNA and 7SL [22]. Notably, vault RNAs are involved in various 
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cellular pathways including regulation of mRNA, proliferation, differentiation, apoptosis, 

and autophagy [34]. However, the contribution of vault RNA to the nuclear pore complex 

implicates it in nuclear-cytoplasmic transport and, in turn, RNA localization [34]. 7SL is 

involved in targeting mRNA for secretion by serving as a scaffold for the signal recognition 

particle, a ribonucleoprotein that will recognize protein-coding transcripts destined for 

secretion and target them to the endoplasmic reticulum [22, 35].

Beyond these functions, certain Pol III ncRNAs play less canonical roles. Y RNAs are 

an emerging class of highly conserved, small ncRNAs which bind Ro60, a ring-shaped 

protein that associates with misfolded non-coding RNAs and pre-5S rRNA. Y RNAs play 

a perhaps counter-intuitive role by inhibiting Ro60 from binding aberrantly folded RNA, 

thereby inhibiting an RNA quality control mechanism [36]. Y RNA is also required for 

DNA replication initiation during the cell cycle [37]. Short Interspersed Element (SINE) 

retrotransposons are DNA repeat elements found abundantly throughout the human genome, 

the physiological impact of which are beginning to be elucidated. For example, SINEs such 

as Alu, most commonly thought of as “genetic parasites”, have been implicated in RNA 

editing and translation regulation [38]. Finally, the primate specific BC200 RNA, and its 

rodent counterpart Bc1 are expressed almost exclusively in neurons where they function in 

regulating local protein translation in dendrites [39]. Overall, the functions of the various 

small ncRNAs transcribed by Pol III illustrate the crucial and extensive roles for Pol III in all 

cells.

Pol III transcribes from three distinct promoter types, known as Type 1, Type 2, and Type 3, 

which vary based on the structure of the promoter elements and variable use of transcription 

initiation factors [40, 41]. Type 1 promoters utilize transcription initiation factors TFIIIA, 

TFIIIB, and TFIIIC and exclusively transcribe 5S rRNA. tRNAs and some small ncRNAs 

are transcribed by Type 2 promoters which utilize TFIIIB and TFIIIC, while other ncRNA 

transcripts are transcribed by Type 3 promoters. Type 3 promoters are unique among Pol III 

promoters for their use of upstream promoter elements and their transcriptional machinery, 

specifically the use of a different form of TFIIIB, which contains a BRF2 subunit instead of 

BRF1, and a small nuclear RNA activating protein complex (SNAPc) instead of TFIIIC [41]. 

As the only factor common to all Pol III promoter types, the three subunit TFIIIB complex is 

an important regulator of Pol III and consists of a TATA-binding protein (TBP), BDP1, and 

BRF1 or BRF2 [42].

Pol III activity in a cell is under control of the master regulator MAF1, a mechanism 

conserved from Saccharomyces cerevisiae to mammalian cells [43, 44], as well as tumor 

suppressor and oncogene pathways including p53 and RB1 [45, 46]. MAF1 inhibits Pol 

III activity in response to nutrient deprived conditions, as Pol III transcription places a 

large metabolic demand on a cell [47, 48]. In response to environmental and genetic 

stressors, Maf1 becomes dephosphorylated, triggering its import and accumulation in the 

nucleus. This enables Maf1 to bind to and allosterically inhibit Pol III [49–51], such 

that it cannot interact with the basal transcription machinery Brf1-Tbp promoter complex, 

thereby preventing Pol III transcription at the initiation step [51, 52]. Maf1 also binds 

elongating Pol III, playing an additional repressive role by preventing re-initiation and local 

recycling of the complex [51]. MAF1 in humans is thought to be more evolved and play a 
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more complex role than in yeast. While Maf1 in yeast can function under normal growth 

conditions, it is predominantly active during stress, such as nutrient deprivation. In contrast, 

MAF1 in humans has been shown to have a significant role in mediating Pol III-repression 

in unstressed conditions [44]. Furthermore, in humans, MAF1 represses Pol III function 

through an additional indirect function, physically binding to and regulating BRF1 as well 

as the gene that encodes TBP [44], thus acting through both direct and indirect mechanisms. 

Pol III transcription is further regulated by the tumor suppressor proteins p53 and RB1 

[45, 46]. Similar to MAF1, p53 inhibits Pol III transcription at the initiation step, in this 

case by binding the TBP subunit of TFIIIB and preventing TFIIIB interaction with other 

transcription factors at the promoter site [46, 53]. Thus, p53 blocks the formation of the 

basal transcription machinery complex and in turn, halts the recruitment of Pol III to its 

DNA target sites [53]. Similarly, the RB1 tumor suppressor protein also blocks the formation 

of the basal transcription machinery complex and prevents Pol III recruitment by binding to 

BRF1 in TFIIIB [45, 48]. MAF1, p53, and RB1 therefore all function, at least in part, by 

hindering the activity of TFIIIB, the transcription initiation factor ultimately responsible for 

Pol III recruitment and thereby blocking transcription initiation [45, 48, 53, 54].

2.3 RNA Polymerases I and III in Ribosome Biogenesis

Ribosome biogenesis, the process of making ribosomes, occurs in the nucleolus, a 

membrane-less structure within the nucleus [55] that has important regulatory functions 

in the cell [56] (Figure 3A). This process commences with the transcription of various types 

of RNA by RNA Pol I and Pol III, which ultimately constitutes about 80% of all nuclear 

transcription in a cell, and up to 95% of all RNA content [57]. The transcription of 47S pre-

rRNA by Pol I is coordinated with rRNA processing, and their subsequent integration with 

ribosomal proteins [58, 59]. As the 47S rRNA is transcribed, processing, which involves 

numerous nucleolar proteins and small nucleolar RNAs (snoRNAs), then occurs to remove 

the Externally Transcribed Spacer (ETS) and Internally Transcribed Spacer (ITS) regions 

to make the 5.8S, 18S, and 28S rRNAs, which are modified post-transcriptionally and 

incorporated into ribosomes [60, 61]. These post-transcriptional modifications contribute to 

the structure of rRNAs with modified bases tending to cluster within functionally important 

domains in the mature ribosome [62]. Pol III-mediated transcription produces 5S rRNA 

as well as non-coding RNAs involved in rRNA processing during ribosome biogenesis 

[63, 64]. The 5S, 5.8S and 28S rRNAs, together with large subunit ribosomal proteins 

(RPLs) form the large 60S ribosomal subunit, while the 18S rRNA is assembled with small 

subunit ribosomal proteins (RPSs) to form the small 40S ribosomal subunit (Figure 3A). 

Once exported to the cytoplasm, 40S and 60S pre-ribosomes undergo further maturation, 

and associate with an mRNA to form the 80S ribosome, which then functions in protein 

synthesis.

3. Disorders caused by disruptions in Pol I

Disruptions in any step of ribosome biogenesis can lead to disorders known as 

ribosomopathies, which display a wide range of tissue-specific phenotypes [65, 66]. 

Here we highlight two broad categories of developmental disorders, craniofacial and 

neurodevelopmental, which are considered ribosomopathies due to perturbed Pol I function.
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3.1 Craniofacial disorders

The craniofacial complex is an intricate assemblage of primary sense organs, central and 

peripheral nervous systems, and musculoskeletal components of the head and neck. The 

blueprint for human craniofacial development is established early in embryogenesis but is 

sensitive to genetic and environmental perturbation [67]. Craniofacial anomalies account for 

about one-third of all congenital birth defects and are typically attributed to disruptions in 

neural crest cell (NCC) development [68–70]. NCCs are a dynamic, multipotent progenitor 

population that arise at the neural plate border, undergo an epithelial-to-mesenchymal 

transition (EMT), and migrate throughout the embryo, giving rise to a variety of different 

cell types and tissues [71, 72]. For example, NCCs generate most of the cartilage and bone 

in the head and face, and also contribute to tooth development [72, 73].

3.1.1 Treacher Collins syndrome—Treacher Collins syndrome (TCS) is a rare 

mandibulofacial dysostosis condition that occurs with an estimated incidence of 1:50,000 

live births [74]. The primary features of TCS include micrognathia, maxillary and malar 

hypoplasia, downward slanting palpebral fissures, microtia, and coloboma of the eyelid (Fig. 

4A, B). Some individuals also present with cleft palate and conductive hearing loss [75–78]. 

TCS has been associated with pathogenic variants in four genes to date; TCOF1 (TCS1; 

OMIM: 154500), POLR1B (TCS4; OMIM: 618939), POLR1C (TCS3; OMIM: 248390), 

and POLR1D (TCS2; OMIM: 613717) which can be inherited in an autosomal dominant 

(TCOF1, POLR1B, POLR1D) or autosomal recessive (POLR1C, POLR1D) manner [74, 

79–82]. Pathogenic variants in TCOF1 are responsible for about 80% of TCS cases, whereas 

variants in POLR1B, POLR1C, and POLR1D contribute to a relatively small proportion 

of cases. However, in some instances of TCS, the pathogenic variant remains unknown 

[75, 76, 83]. TCOF1 encodes the nucleolar phosphoprotein Treacle, which together with 

UBF and SL1, forms a complex with Pol I and functions in rDNA transcription and rRNA 

processing [74, 81, 84–87]. The majority of TCOF1 variants result in nonsense-mediated 

mRNA decay or carboxy terminus truncation of the nuclear and nucleolar import motifs in 

Treacle, which lead to its accumulation in the cytoplasm and inability to promote rDNA 

transcription. POLR1C and POLR1D are subunits of Pol I and Pol III, which raises the 

question of whether TCS is both a Pol I and Pol III associated disorder. Modeling of 

TCS specific POLR1C variants indicated they disrupt the localization of POLR1C in the 

nucleolus and therefore primarily affect Pol I function with little to no effect on Pol III 

structure or function [6, 88]. However, analysis of a pathogenic POLR1D variant in yeast 

suggests that it can disrupt both Pol I and Pol III [89], though the relative contribution of Pol 

III to TCS remains to be determined. The recent identification of pathogenic variants in Pol 

I specific POLR1B, however, provide further evidence that TCS is primarily caused by Pol I 

dysfunction [80, 90].

Mouse and zebrafish models have revealed common mechanisms underlying perturbed Pol 

I function in the pathogenesis of TCS. Mice that are haploinsufficient for Tcof1 exhibit 

cranioskeletal anomalies characteristic of TCS in humans [91] (Fig. 4C). Tcof1 loss-of-

function results in diminished rRNA transcription, which induces p53-dependent cell cycle 

arrest and apoptosis particularly within the neuroepithelium and progenitor NCCs. This 

leads to the generation of fewer NCCs, which exhibit reduced proliferation, underpinning 
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hypoplasia of the craniofacial skeleton [91–93]. This mechanism has also been demonstrated 

in polr1c and polr1d homozygous mutant zebrafish [94] (Fig. 4D) and in polr1b morphant 

zebrafish [80]. Furthermore, conditional deletion of Tcof1 and Polr1c within NCCs revealed 

that these genes are required in a cell autonomous manner for NCC survival during early 

embryo development in mice [92].

3.1.2 Acrofacial dysostosis, Cincinnati type—Pathogenic variants in the largest 

subunit of Pol I, POLR1A, are associated with Acrofacial Dysostosis, Cincinnati Type 

(AFDCIN; OMIM: 616462) [95], which phenotypically overlaps with TCS. Affected 

individuals exhibit micrognathia and downward slanting palpebral fissures but can also 

present with hypoplasia of the zygomatic arches and maxilla. What distinguishes AFDCIN 

from TCS is the variable presence of limb anomalies [95]. Recent work suggests two 

AFDCIN variants may affect the active site of Pol I [6], and analysis of the E593Q variant 

in human cells revealed that mutant POLR1A segregated to the nucleolar periphery into 

nucleolar caps [96], structures observed in concert with Pol I inhibition and nucleolar 

stress [97]. AFDCIN may occur as a consequence of POLR1A haploinsufficiency, similar 

to TCOF1 in TCS, but recent studies suggest that the E593Q variant acts in a dominant 

negative manner to inhibit rRNA transcription [96].

AFDCIN pathogenesis also mechanistically overlaps with TCS. polr1a loss-of-function in 

zebrafish results in diminished rRNA transcription and ribosome biogenesis, which induces 

p53-dependent cell cycle arrest and apoptosis particularly within the neuroepithelium 

and progenitor NCCs. This leads to the generation of fewer NCCs, which exhibit 

reduced proliferation, underpinning the absence of most of the craniofacial cartilage [95]. 

Furthermore, conditional deletion of Polr1a in NCCs in mice revealed that this gene 

is required in a cell autonomous manner for NCC survival [92]. Interestingly, Polr1a 
conditional knockout mice and polr1a zebrafish exhibit similar but slightly stronger 

phenotypes than Polr1c/polr1c or polr1d animals (Fig. 4D), which reflects the more critical 

requirement for Polr1a/polr1a in Pol I as it contains the catalytic site for rRNA transcription.

The similar activation of p53 in the pathogenesis of TCS and AFDCIN is indicative of 

a conserved underlying molecular mechanism responding to Pol I disruption [92, 94, 

95, 98, 99]. Under conditions of normal growth and proliferation, rRNA and ribosomal 

proteins exist in a stoichiometric ratio conducive to ribosome formation to meet a cell’s 

specific needs. At the same time, Mdm2 (Murine double minute 2), an E3 ligase, binds 

to and ubiquitinylates p53, targeting it for proteasomal degradation (Figure 3B) [100–

102]. However, when rRNA transcription is disrupted, this creates an imbalance between 

rRNAs and ribosomal proteins, resulting in an excess of free ribosomal proteins [103]. A 

ribonucleoprotein (RNP) complex of ribosomal proteins RPL11 and RPL5 together with 

5S rRNA, called the 5S RNP then binds to Mdm2. The ensuing conformational change in 

Mdm2 renders it incapable of binding to and ubiquitinylating p53 [104], which leads to 

the stabilization and accumulation of p53, and consequently cell cycle arrest and apoptosis 

(Figure 3C). A point mutation in Mdm2 which specifically disrupts binding of the 5S 

RNP [105] can prevent p53 activation, confirming the importance of the 5S RNP-mediated 

mechanism in regulating p53 activity in response to disrupted ribosome biogenesis.
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Consistent with p53 activation in response to diminished rRNA transcription, there is 

decreased binding between Mdm2 and p53 in Tcof1, Polr1a, and Polr1c mutant mouse 

embryonic fibroblasts [92]. Inhibition of p53 prevents neuroepithelial and NCC death 

and rescues the craniofacial anomalies and viability of Tcof1+/− mice [98], and improves 

craniofacial cartilage development in polr1a, polr1c and polr1d mutant zebrafish, but 

not their viability [94, 106]. This suggests that both p53-dependent and p53-independent 

pathways act in response to perturbations in rRNA transcription in these models of TCS and 

AFDCIN.

3.2 Neurodevelopmental disorders

While the majority of pathogenic variants in genes encoding Pol I subunits described to 

date affect craniofacial development, several studies have indicated a potential role for Pol 

I in neurodevelopment. In fact, animal models with mutations in Tcof1, polr1a, polr1c, 

and polr1d display microcephaly in addition to their cranioskeletal anomalies [94, 95, 

107]. Consistent with this neurodevelopmental phenotype, Pol I transcription has previously 

been shown to be required for the survival of neural precursor cells and cortical neurons 

[108, 109], as well as influence neurite length and branching in hippocampal neurons 

[110]. Altogether, these studies indicate that rRNA transcription plays an important role 

in neurodevelopment and disruptions in Pol I subunit or initiation factor function have the 

potential to disrupt neurological development and maintenance.

3.2.1 Leukodystrophy—A novel pathogenic variant in POLR1A was recently identified 

in a family with features of neurodegenerative disease [111]. The two affected individuals 

displayed cerebellar features (i.e. head titubation, truncal ataxia), pyramidal signs (i.e. 

spasticity) and intellectual disability. One sibling displayed neurodegeneration while the 

other had seizures. Brain MRI revealed white matter abnormalities consistent with a 

leukodystrophy, as well as cerebral atrophy, thin corpus callosum and cerebellar atrophy/

hypoplasia. In contrast to AFDCIN associated POLR1A variants, the POLR1A c.2801C>T 

(p.Ser934Leu) neurodegeneration variant is inherited in an autosomal recessive manner 

[111]. Nucleolar expression of POLR1A was reduced in patient-derived fibroblasts [111], 

but how this variant functionally changes rRNA transcription in these cells remains 

to be determined. The identification of additional individuals with a similar clinical 

presentation are needed to confirm the typical pattern of inheritance for POLR1A associated 

leukodystrophy and also whether neurodegeneration variants are structurally or functionally 

distinct from those causing AFDCIN. Furthermore, it will be important in future studies to 

define the consequences of distinct variants in POLR1A to understand the specific role of 

POLR1A in neurological development.

3.3 Tissue specificity and Pol I transcription

Studies in mice and zebrafish have demonstrated the essential requirement for Polr1a, 
Polr1b, Polr1c, Polr1d, and Tcof1 in embryo survival [92, 94, 95, 106, 112, 113]. Although 

transcription by Pol I is required in all cells, disruptions in Pol I transcription result in 

distinct, tissue-specific phenotypes. This is confounding given the global importance of 

rDNA transcription and ribosome biogenesis and implies there must be tissue-specific 

requirements and/or regulators of rDNA transcription and ribosome biogenesis, or cell and 
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tissue-specific threshold sensitivities to their disruption. One attractive hypothesis is that 

different tissues have distinct requirements for Pol I-mediated rRNA transcription. During 

development, rRNA is differentially expressed in the mouse eye [114] and neuroepithelium 

[92], giving rise to the idea that the regulation of rRNA transcription may be cell-

type specific [115]. Interestingly, rRNA is downregulated during cellular differentiation 

[116–119] and premature downregulation of rRNA can trigger precocious differentiation 

[116]. Therefore, the tissue-specificity of TCS and AFDCIN may be due to a particular 

requirement for rRNA transcription in NCCs. In fact, NCCs display high levels of rRNA 

compared to other cell types during early craniofacial development [92]. How differential 

rRNA levels and thus regulation of Pol I activity are achieved is not well understood.

Dynamic and elevated polr1a, polr1c, and polr1d mRNA expression is evident in the head 

and central nervous system around 1 day post fertilization during zebrafish embryonic 

development [94, 95]. Similarly, mouse embryos exhibit broad expression of Polr1a, Polr1c, 

and Polr1d, with slightly elevated expression within the neuroepithelium [92], the location 

of neural and NCC progenitors. Tcof1 is also broadly expressed with elevated levels 

in the neuroepithelium and cranial mesenchyme [91, 92]. Furthermore, single-cell RNA 

sequencing revealed that Pol I genes as well as associated factor Tcof1 are enriched in 

NCCs [92]. This suggests that the high levels of rRNA transcription are underpinned by high 

levels of Pol I subunit expression and therefore Pol I function. Consistent with this idea, 

higher levels of Ubtf expression, which is also required for increased rRNA transcription, 

are found in NCCs and portions of the central nervous system in Xenopus [120] and mouse 

[121] embryos. The levels of Pol I subunits also tend to correlate with rRNA levels in 

cancer. Upregulated expression of Pol I subunits correlates with increased rRNA levels 

in various cancer models [122–124], and are associated with increased tumor size [123] 

and/or poor prognosis [125, 126]. In addition to the levels of Pol I subunit expression, 

tissue-specific transcription factors may also regulate rRNA transcription in specific tissues 

as has been demonstrated in bone development [116, 127] and EMT [128]. Hypoxia may 

also upregulate Pol I transcription and reprogram 2’-O-methylations [129], and hypoxia is 

particularly prevalent within the neuroepithelium during embryonic development [130, 131]. 

Furthermore, changes in the number of active rDNA repeats [132, 133], or regulation of the 

Pol I transcription initiation machinery in response to the cellular conditions [17, 18] may 

also contribute to differential regulation of rRNA. These examples add support to the idea 

that tissue-specific factors may interact with the rDNA promoter to regulate levels of rRNA 

transcription.

There are still many open questions about how distinct pathogenic variants in Pol I subunits 

change rRNA levels and its regulation in different tissues, and the relative contributions 

of the proposed mechanisms described above. Further exploration of the structural and 

functional consequences of pathogenic variants in Pol I subunits as well as roles for Pol I 

subunits in a tissue-specific manner in multiple model systems including human cells, yeast, 

zebrafish, and mouse models will advance our understanding of the tissue-specific nature of 

Pol I transcription as well as the conserved roles for Pol I throughout evolution.
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4. Disorders caused by disruptions in Pol III

Pol III performs fundamental, constitutive functions in all cells. Nonetheless, biallelic 

pathogenic variants in genes encoding subunits of Pol III (POLR3A, POLR3B, POLR1C, 
POLR3K and POLR3GL) have been found to cause a heterogenous group of disorders with 

overlapping characteristic neurodevelopment features (Table 1).

4.1.1 Hypomyelinating leukodystrophy and neurodevelopmental disorders

A subset of leukodystrophies, inherited white matter disorders of the brain, were the first 

diseases found to arise from abnormal Pol III function. Biallelic pathogenic variants in 

POLR3A (OMIM 607694) [134] and POLR3B (OMIM 614381) [135, 136], encoding the 

two largest subunits of Pol III and forming its catalytic core, were found to cause five 

hypomyelinating leukodystrophies: leukodystrophy with oligodontia [137]; ataxia delayed 

dentition with hypomyelination [138]; 4H syndrome [139]; hypomyelination with cerebellar 

atrophy and hypoplasia of the corpus callosum [140]; and tremor ataxia with central 

hypomyelination [141]. Because of the overlapping clinical and radiological features, 

together with the identification of POLR1C (OMIM 616494) [88] and POLR3K (OMIM 

619310) [142] as causative genes, these disorders are now recognized as POLR3-related 

hypomyelinating leukodystrophy (POLR3-HLD) or 4H (Hypomyelination, Hypodontia and 

Hypogonadotropic Hypogonadism) leukodystrophy [143]. Variants in POLR3A, POLR3B, 

POLR3K and POLR1C genes include missense, nonsense, small insertions or deletions, 

exonic or intronic splice site variants and large exonic deletions [88, 134, 135, 143–148].

Individuals with POLR3-HLD display diffuse hypomyelination [149] with sparing of early-

myelinating structures (i.e. dentate nucleus, optic radiation, anterolateral nucleus of the 

thalamus, globus pallidus, and, in some patients, corticospinal tracts at the level of the 

posterior limb of the internal capsule), with or without thinning of the corpus callosum and 

cerebellar atrophy [145, 150]. Phenotypically, these individuals present with varying degrees 

of neurological and non-neurological manifestations. The former consists predominantly 

of motor signs, including cerebellar (e.g., ataxia, dysmetria, dysarthria), pyramidal (e.g., 

spasticity) and extrapyramidal (e.g., dystonia) signs with variable cognitive involvement 

[145, 148, 151, 152]. The later includes abnormal dentition (e.g., hypodontia, delayed 

dentition, natal teeth), endocrine abnormalities (e.g., hypogonadotropic hypogonadism 

leading to absent, delayed or arrested puberty, short stature with or without growth hormone 

deficiency) and ocular abnormalities (commonly myopia) [145, 148, 153–157].

Most patients present in early childhood with motor anomalies and exhibit disease 

progression over several years. A minority of patients present late in childhood with 

intellectual disability or cognitive plateauing and then subsequently develop motor 

anomalies. There is however a wide phenotypic spectrum, including a very severe form 

presenting in the first few months of life with failure to thrive, prominent hyperkinetic 

movement disorder, rapid developmental regression and premature death, to an extremely 

mild form of the disease diagnosed incidentally in adult patients via brain MRI [145, 

158, 159]. Interestingly, the severely affected patients all carry a nonsense variant in a 

compound heterozygous state with a specific POLR3A splice site variant that has been 

previously implicated in a striatal phenotype involving the putamen, caudate nucleus and 
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red nucleus, but in which affected individuals have normal myelination [160–163]. Biallelic 

POLR3B variants have also been identified in individuals with isolated Hypogonadotropic 

Hypogonadism [164]. Some patients with variants in POLR3B also present with endosteal 

sclerosis [165].

The pathophysiology of POLR3-HLD remains somewhat enigmatic, though the fact that no 

patient carrying two null mutations have been reported indicates that the complete lack of 

POLR3 activity is incompatible with life [134]. POLR3-HLD causing mutations have been 

shown to hinder the biosynthesis or stability of the Pol III complex, alter the ability of 

Pol III to interact with DNA and/or lead to less protein expression of the affected subunit 

suggesting a common hypomorphic outcome [24, 88, 134, 135, 166–168].

POLR3-HLD is not the only POLR3-related disorder. Recently, it was shown that de 
novo pathogenic variants in POLR3B cause a completely different phenotype characterized 

by ataxia, spasticity, and demyelinating sensorimotor peripheral neuropathy, with variable 

intellectual disability, motor delay and epilepsy, but normal brain myelination [169]. Further, 

these individuals do not display endocrine dysfunction, growth defects, dental or ocular 

abnormalities. A recent report of one patient with a previously published de novo POLR3B 
variant [169] displaying isolated demyelinating peripheral neuropathy suggests that this 

novel POLR3-related disorder is also associated with a spectrum of severity [170]. Protein 

modelling and affinity purification coupled to mass spectrometry has shown these de novo 
POLR3B variants either cluster in a region of POLR3B that interacts with DNA and/or 

at a subunit interface, impacting the interaction between POLR3B and either POLR3A, 

POLR3C, POLR3F, POLR2H, POLR2K, or CRCP. This is distinct from POLR3-HLD 

where mutations at subunit interfaces are thought disrupt the entire POLR3 complex [166]. 

Moreover, in fibroblasts cultured from an individual with a de novo mutation in POLR3B, 

there was no reduction of POLR3B expression, indicating that the variants have the potential 

to function in a dominant-negative manner [169].

4.1.2 Wiedemann-Rautenstrauch syndrome

Beyond the critical role Pol III seems to play in the nervous system, mutations in 

POLR3A (OMIM 264090), POLR3GL and, most recently, POLR3B, have been shown to 

underlie some cases of Wiedemann-Rautenstrauch syndrome (WRS) [171–176]. WRS is 

a rare genetic disorder with heterogeneous clinical features including intrauterine growth 

restriction, poor postnatal growth, facial dysmorphia, and lipodystrophy [177, 178]. Similar 

to POLR3D-HLD, dental abnormalities including natal teeth and hypodontia are common in 

WRS, while myopia and hyperopia are found in a subgroup of patients [173]. Typically, no 

hypomyelination is observed in WRS, and most individuals display normal motor function, 

cognition and speech [173]. However, a subset of patients exhibits developmental delay 

and/or hypotonia, and one individual has been reported with cerebellar signs, muscle 

weakness and unintelligible speech [171–173]. Short stature is almost universal in WRS, 

whereas only 61% of individuals with POLR3-HLD are similarly affected [145, 153, 

173]. Additionally, while not present in POLR3-HLD, WRS individuals have characteristic 

facial features including mandibular hypoplasia, triangular face, widened fontanelles and 

pseudohydrocephalus [173]. WRS-associated variants in genes encoding Pol III subunits 
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are thought to cause partial loss of Pol III function, with POLR3A mutations disrupting 

biogenesis or stability of the Pol III complex, while at least one POLR3B missense 

mutations lies in the catalytic site and disrupts Pol III-DNA interactions [24, 166, 173, 

174]. The reported homozygous POLR3GL mutation is a nonsense mutation thought to be 

degraded via nonsense-mediated mRNA decay and shown to cause an 84% reduction in 

overall POLR3GL mRNA, indicative of a severely hypomorphic state [171].

4.1.3 Endosteal Hyperostosis

Recently, exome sequencing identified POLR3GL mutations in three individuals with 

endosteal hyperostosis, oligodontia, growth impairment, dysmorphic facial features and in 

two of those individuals, delayed puberty (OMIM 619234) [179]. Other than delays in motor 

development which were seen in all individuals, neurological impairment was minimal, 

and no ocular abnormalities were present. One individual exhibited a thin corpus callosum, 

without hypomyelination. The variants in POLR3GL reported to date are all splice site 

variants, found in either a homozygous or compound heterozygous state, and cause skipping 

of exon 2, which is involved in translation initiation, or exon 5, that is part of the domain 

thought to mediate interactions between POLR3GL and POLR3C [180]. RNA-sequencing 

of blood revealed an absence of full length POLR3GL RNA [179]. Since POLR3GL is the 

sole POLR3 subunit with an isoform, and POLR3G, has been shown to compensate for 

POLR3GL in vivo, this perhaps explains how the lack of wild-type POLR3GL does not 

affect viability [181].

4.1.4 Disorders associated with Pol III co-factors and transcripts

Biallelic variants in genes encoding proteins that interact with Pol III have been shown 

to cause a phenotype reminiscent of POLR3-related disorders. These include variants in 

BRF1, a subunit of the transcription factor TFIIIB, which is involved in recruiting Pol III 

to its DNA targets [182]. Hypomorphic biallelic pathogenic variants in BRF1 alter Pol III 

recruitment and transcription, and affected individuals present with cerebellar hypoplasia 

and thin corpus callosum, as well as non-neurological features such as dysmorphic facial 

features, dental abnormalities, and short stature [182]. Conditional deletion of Brf1 in mice 

results in perturbed 5S rRNA and tRNA transcription, diminished 80S ribosome production 

and loss of translation [183]. These studies suggest that Brf1 may be required in a dynamic 

spatiotemporal manner. Overall, this cerebellar-facial-dental syndrome further implicates Pol 

III hypofunction in this specific subset of tissues.

Mutations in certain Pol III transcripts cause disorders with partially overlapping phenotypic 

features. For example, hypomorphic mutations in RMRP RNA, the Pol III transcript 

involved in processing the common rRNA precursor produced by Pol I, is known to underlie 

various forms of skeletal dysplasia, including cartilage-hair hypoplasia (CHH), anauxetic 

dysplasia (AD) and kyphomelic dysplasia (KD) [184, 185]. These three disorders share 

abnormalities in connective tissues, which manifest as short stature, while individuals with 

AD also exhibit mild intellectual disability and abnormal dentition, and patients with KD 

display mild facial dysmorphism [185]. Each disorder demonstrates a critical role for Pol III 

transcription in connective tissues, dentition, and neurodevelopment.
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4.2 Tissue specific regulation of Pol III and Pol III transcripts

How certain tissues like the cerebral white matter are particularly vulnerable to reduced 

Pol III function remains intriguing. Spared early myelinated structures suggests myelination 

arrest during development [145]. There are two major pathophysiological hypotheses, the 

first being that reduced Pol III transcription leads to insufficient tRNA synthesis during 

a critical timepoint in development, such as during the high-protein demand of central 

nervous system myelination, and the second being that specific Pol III-transcribed ncRNAs 

are required for myelination [54, 88, 186]. Moreover, the pathogenesis of tissue-specific 

phenotypes as a result of disruption in Pol III regulatory factors suggest that there are tissue-

specific responses to changes in Pol III transcription which may be relevant to multiple Pol 

III-related disorders.

4.2.1 Tissue-specific regulation of Pol III transcription—Tissue-specific 

regulation of Pol III may be dependent upon Pol III initiation factors as well as negative 

regulators. Pol III is regulated indirectly via its basal transcription factors TFIIIB and 

TFIIIC, both at the level of their expression and phosphorylation-mediated ability to interact, 

and through proposed epigenetic mechanisms that modulate Pol III interaction with its 

target genes [187, 188]. TFIIIB and TFIIIC also influence Pol III-mediated transcription by 

regulating tRNA levels in response to growth conditions or signaling pathways [57, 187]. 

Furthermore, activity of negative regulator Maf1 [48] is modulated in response to nutrients 

and stress signaling pathways [189]. Null or conditional mutations of Maf1 in mice result in 

tissue-specific phenotypes related to formation of the mesoderm lineage, adipogenesis, and 

bone density, all of which are associated with increased Pol III activity [190–192].

Recent studies have suggested additional Pol III regulation mechanisms such as the 

SUMOU-biquitin-Cdc48 segregase pathway, which was identified in S. cerevisiae as 

targeting Pol III for proteasomal degradation [193]. Interestingly, this mechanism seems 

to preferentially target defective Pol III by recognizing defects in transcription initiation 

and/or elongation that cause Pol III to stall on the chromatin [193]. The prerequisite that the 

Pol III complex be formed and perhaps chromatin-bound likely limits the relevance of this 

pathway in many disease-causing POLR3 mutations that elicit defects in Pol III complex 

biogenesis or DNA interaction [24, 166]. However, certain POLR3-HLD causing mutations, 

which result in a growth defect in yeast can be rescued by disrupting this cascade [193]. 

Overall, the regulation of Pol III is quite complex, which is not surprising considering the 

critical role of Pol III in all cells and its association with multiple diseases.

4.2.2 Tissue-specific expression of Pol III and Pol III transcripts—Pol III 

transcribes multiple ncRNAs that likely contribute to the tissue-specificity of phenotypes 

arising from Pol III disruption. Similar to Pol I, the expression levels of these RNA 

transcripts as well as that of Pol III subunits may be cell type specific. In zebrafish, the 

expression of polr3b dynamically changes during development [194], similar to that of 

polr1c and polr1d [94]. polr3b expression is initially ubiquitous before becoming enriched in 

the central nervous system and developing gut [194]. Polr3g and Polr3gl have overlapping 

but distinct expression patterns in Xenopus embryos, with Polr3gl being more highly 

expressed in the branchial arches, neural tube and somites [195] where it may influence 
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craniofacial, central nervous system, skeletal, or muscle development. Polr3g is also highly 

expressed in pluripotent stem cells in mice and this particular isoform may be important for 

early embryonic development [196]. Furthermore, upregulated Pol III gene expression has 

been observed in cancer [197] and liver regeneration [198]. While these studies indicate 

roles for Pol III in different tissues, and increased expression levels of some Pol III 

subunits within the central nervous system, there is not always a clear correlation between 

expression level and the tissue type affected in human diseases. Therefore, a comprehensive 

examination of Pol III expression during development is needed to determine whether Pol III 

activity correlates with the levels of Pol III subunit expression or if the regulation of Pol III 

transcripts and their tissue-specific effects are due to other factors.

Tissue-specific expression of Pol III transcripts including 5S rRNA, tRNAs, and other 

non-coding RNAs has been demonstrated in multiple contexts. The 5S rRNA exists as a 

maternal/oocyte variant and somatic variant in Xenopus [199] and zebrafish [200], although 

the functional consequences of expressing one over another remain unclear. The primate-

specific cytoplasmic RNA, BC200, is highly expressed in the brain [201] and a recent study 

identified changes in BC200 in association with POLR3-HLD, suggesting that this lncRNA 

may be important in its pathogenesis [186]. Pathogenic variants in lncRNA RMRP which 

is highly expressed in hypertrophic chondrocytes [202] and involved in cell cycle regulation 

[203], are associated with Cartilage-Hair Hypoplasia (CHH) [204]. RMRP is the source of 

two small RNAs which regulate the expression of target genes including those involved in 

hematopoiesis, growth, and bone development [205].

Variants in tRNA sequences, tRNA modification, and tRNA maturation also have the 

potential to lead to changes in translation which may contribute to tissue-specific phenotypes 

associated with human disorders [206]. tRNAs are expressed at different levels across 

tissues in humans [207], with one tRNA specifically expressed in the central nervous 

system [208]. Furthermore, tRNAs are intricately linked to neurological disorders. Biallelic 

pathogenic variants in genes coding for various aminoacyl tRNA synthetases including 

EPRS1, DARS1 and RARS1, have been shown to cause hypomyelinating leukodystrophies 

[209–211]. Pathogenic variants in genes encoding proteins involved in the processing and 

maturation of tRNAs (i.e. CLP1, TSEN) are also associated with various neurological 

disorders including neurodegeneration and pontocerebellar hypoplasia [28], which further 

demonstrates a particular neurodevelopmental sensitivity to altered tRNA biogenesis. The 

tRNA pool may also be spatiotemporally regulated during development [212] as tRNAs are 

differentially expressed during proliferation and differentiation in cancer cell lines [213]. 

The response to changes in the tRNA pool may also be cell type specific due to the activity 

of tRNA-derived fragments or codon composition of mRNAs expressed within a tissue 

type. tRNA-derived fragments, which can be produced from immature or mature tRNAs, 

have regulatory functions and roles in cell proliferation [214] and may act as microRNAs, 

bind to RNA-binding proteins, or function in ribosome biogenesis [214, 215]. Further, if 

changes in the tRNA pool are induced by Pol III dysfunction, this could have a stronger 

effect on some mRNAs versus others due to their codon composition. Recent work has 

demonstrated that codon composition correlates with mRNA stability and “optimal” codons 

correlate with tRNAs that are highly expressed [216, 217]. This mechanism is used in the 

maternal-to-zygotic transition in zebrafish and Drosophila [216], and may also be important 
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in the response to stress [218] or cell cycle state [219]. However, while mRNA decay is 

important during neural development for cell fate decisions, codon optimality may not be 

the primary driver [220, 221]. Further studies are necessary to understand the cell type 

specific regulation of tRNA-derived fragments or the tRNA pool during development, which 

represents a new area of research in which Pol III-derived transcripts may regulate ribosome 

biogenesis and translation.

5. Discussion

5.1 Tissue-specific roles for ribosome biogenesis

The distinctive phenotypes of disorders in Pol I and Pol III suggest that there are tissue-

specific requirements and functions for the corresponding subunits, their regulation, and/or 

the RNAs transcribed by Pol I and III in ribosome biogenesis. While Pol I-related disorders 

are clearly defined as ribosomopathies, Pol III-related disorders are not referred to as 

ribosomopathies because of the diverse array of genes transcribed by Pol III that function 

outside of ribosome biogenesis. However, Pol III-mediated transcription of the 5S rRNA 

is an essential component of the ribosome as well as the response to ribosomal stress. In 

addition, the Pol III transcript RMRP is involved in processing rRNAs transcribed by Pol I, 

and U6 snRNA is modified within the nucleolus before its assembly into the spliceosome 

where it has catalytic function to remove introns from mRNAs, including those encoding 

ribosomal proteins. Therefore, Pol III transcription is required at multiple steps of ribosome 

biogenesis and its activity is coordinated with Pol I by many of the same pathways including 

mTOR [222], c-Myc, RB, and p53 [57] to regulate the synthesis of ribosomes and proteins.

The tissue-specific nature of phenotypes arising from disruptions in ribosome biogenesis 

have led to two broad hypotheses to explain this phenomenon. First, that ribosome 

concentration varies across tissues, and that deficiencies in ribosome biogenesis affect 

translation globally. The tissue-specificity in this model arises from the idea that mRNAs 

which initiate translation poorly will be more sensitive to a reduction in ribosome 

concentration or function [223]. Second, that ribosomes are heterogeneous with different 

compositions in different tissues, and that these “specialized” ribosomes translate specific 

subsets of mRNAs [224]. This model arose in part, from the observations that ribosomal 

proteins are tissue-specifically expressed and that subsets of genes were specifically 

downregulated [225]. However, given that no changes in cap-dependent or IRES-dependent 

translation were observed, perhaps ribosome concentration is key [223]. Studies in mouse 

embryonic stem cells have revealed differences in the stoichiometry of ribosomal proteins in 

polysomes suggesting heterogeneity within this cell type [226]; however, no differences in 

ribosome composition were observed in the mouse brain [227] or human hematopoietic cells 

despite evidence for tissue-specific transcript changes [228]. This suggests that we do not 

fully understand the degree to which “specialized” ribosomes may be present in individual 

tissues or the sensitivity of different mRNA transcripts in these tissues to differences in 

ribosome concentration. Alternatively, some ribosome biogenesis associated proteins may 

have non-ribosomal functions [229]. For example, in addition to rRNA transcription and 

processing [230] Tcof1/Treacle plays a critical role in the DNA damage response during 

embryogenesis particularly within the neuroepithelium [130, 131, 231–233].
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Emerging evidence suggests that distinct rRNA variants in different tissues may impact 

spatiotemporal specificity. rRNA is a catalytic component of the ribosome and therefore 

changes in rRNA sequence have the potential to affect translation depending on the location 

and structural consequences of the variant. 47S and 5S rDNA variants have been detected 

in several species including bacteria [234], Xenopus [199], zebrafish [200, 235], mice 

[236, 237], and humans [237], and each variant is tissue-specifically expressed, which 

could potentially result in “specialized” ribosomes. Analysis of rRNA variants in mice 

and humans showed that they map to the functional center of the ribosome and may also 

lead to changes in rRNA modifications [237]. Recent studies found expression of specific 

rRNA variants under hypoxic conditions [129] and in long term memory [238]. Together 

these results indicate that both environmental conditions and intrinsic tissue-specific factors 

could influence the expression of rRNA variants. Further work is needed to understand the 

functional consequences of rRNA variants and how the expression of these variants and the 

amount of rRNA produced may contribute to tissue-specific consequences of disruptions in 

Pol I transcription.

5.2 Ribosomal Stress as a consequence of disruptions in Pol I and III transcription

Nucleolar integrity is tightly linked to rRNA transcription and ribosome biogenesis, and one 

of the consequences of disruptions in ribosome biogenesis is nucleolar stress or perturbed 

nucleolar structure. This triggers the nucleolar surveillance pathway or ribosomal stress 

response, which results in activation of p53 [102, 239, 240]. However, defects in ribosome 

biogenesis do not necessarily always disrupt nucleolar integrity [119, 241, 242]. We 

therefore use ribosomal stress to refer to disruptions in ribosome biogenesis, and note that 

disruption in nucleolar morphology, or nucleolar stress may or may not be present. Either 

way, activation of the ribosomal protein (RP)-Mdm2-p53 cascade leads to p53 stabilization, 

cell cycle arrest and apoptosis.

A recent high-throughput screen identified RPL5 and RPL11, which comprise part of the 

5S RNP as the only RPs necessary for the ribosomal stress response [243], suggesting that 

this is the primary mechanism by which p53 becomes stabilized in response to ribosomal 

stress. P53 activation has been observed in both Pol I and Pol III mutant models [92, 94, 

95, 194, 244, 245], but it is important to consider the underlying causes of p53 activation 

in addition to its downstream consequences. p53 has the potential to regulate both Pol I 

and Pol III transcription, distinct from its known roles in cell cycle arrest and apoptosis. 

P53 interacts with SL1 at the Pol I promoter to inhibit rRNA transcription [246], and p53 

can specifically inactivate TFIIIB to inhibit Pol III-mediated transcription [53, 247]. Further, 

in the context of ribosome biogenesis, nucleolar stress is variably present and not always 

dependent upon p53 [109]. P53 can be activated in the absence of a disruption in nucleolar 

morphology, simply through an imbalance in rRNAs to ribosomal proteins [103]. Together, 

these observations suggest that activation of p53 can occur through nucleolar or ribosomal 

stress, but that blocking p53 does not prevent nucleolar stress or its p53-independent 

consequences.

The degree to which the RP-Mdm2-p53 pathway is triggered is dependent upon the rate 

of ribosome biogenesis [248] and this would suggest that tissues with relatively high rates 
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of rRNA transcription would be more likely to trigger robust p53 activation than cells 

maintaining a basal level of transcription. In mouse embryos, inhibition of Pol I with 

BMH-21 specifically increased neuroepithelial apoptosis, consistent with its relatively high 

rate of rRNA transcription, which was demonstrated by quantitative analysis of pre-rRNA 

[92]. Recent work in mouse embryonic fibroblasts demonstrated that the RP-Mdm2-p53 

response is activated upon Polr1a, Polr1c, and Tcof1 loss-of-function [92]. Importantly, the 

levels of Mdm2, Rpl5, and Rpl11 protein were unchanged between controls and mutants, 

while in contrast p53 protein increased in the mutants. Furthermore, previous studies in 

Tcof1+/− mutants showed that p53 protein levels increased in mutant embryos, but that 

p53 mRNA levels remained unchanged [91, 98]. Together, these studies mechanistically 

demonstrate that the post-translational stabilization of p53, and not activation of p53 mRNA, 

contrary to one recent hypothesis [233], dictates the cellular response to disruptions in rRNA 

transcription.

The induction of p53 in the ribosomal stress response is highly dependent upon the 5S RNP 

[105, 243] and mutations causing a disruption in Pol I transcription of rRNAs, as well as 

mutations in ribosomal proteins can trigger 5S RNP binding to Mdm2 [91, 92, 94, 106, 

239, 241]. Disruptions in Pol III reducing 5S rRNA, in the context of the 5S RNP, would 

therefore be expected to result in reduced binding of the 5S RNP to Mdm2, thus preventing 

p53 activation. However, the 5S rRNA also binds Mdm4. Knockdown of 5S rRNA reduces 

protein levels of Mdm4, but not mRNA levels or p53 protein levels, and consequently 

p21 expression increases, which results in growth arrest [249]. Therefore, in the context 

of POLR3-related pathogenic variants which downregulate 5S rRNA, these, hypothetically, 

may initially result in p53 activation in an Mdm4-dependent manner, but this has not been 

experimentally demonstrated. P53 activation has however been observed in Pol III mutant 

animal models [194, 244] as well as human fibroblasts [250]. Activation of p53 in zebrafish 

rpc9−/− mutants contributes to cell death, but has no effect on proliferation, and inhibition of 

p53 rescues cell death [245]. In the future, it will also be important to consider the degree to 

which p53-independent effects on cellular proliferation and survival occur due to Pol I or Pol 

III disruption.

5.3 Pol I and III – Pathogenic variants in one gene can lead to different syndromes; one 
syndrome may be caused by pathogenic variants in different genes

Pathogenic variants in genes encoding Pol I and Pol III subunits give rise to a variety 

of distinct disorders with some overlap in the specific tissues involved. For example, 

craniofacial and/or dental anomalies are associated with pathogenic variants in POLR1A, 
POLR1B, POLR1C, POLR1D, POLR3A, POLR3B, POLR3GL, and POLR3K. Similarly, 

central nervous system white matter involvement is associated with pathogenic variants 

in POLR1A, POLR1C, POLR3A, POLR3B, and POLR3K. Despite these commonalities, 

there are also important differences between disorders. Furthermore, there is considerable 

phenotypic variability within each disorder.

The ability to distinguish disorders arising from pathogenic variants in the same gene is 

best exemplified by biallelic pathogenic variants in POLR1C, which were first associated 

with TCS [79] and then associated with POLR3-HLD [88]. Molecular analysis showed that 
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POLR1C variants associated with POLR3-HLD specifically affected the assembly of Pol 

III and the ability of Pol III, but not Pol I, to bind to its target promoters [88]. While it 

was originally suggested that POLR3-HLD associated variants in POLR1C affect Pol III 

while sparing Pol I activity, a more recent analysis identified individuals diagnosed with 

both POLR3-HLD and craniofacial abnormalities, including 1 individual with a typical TCS 

phenotype [88, 148]. Recent structural analysis of different variants has also supported 

the initial classification of these distinct syndromes according to their disruption of either 

Pol I or Pol III [6]. However, work in yeast models has raised the possibility that Pol 

III dysfunction may contribute to TCS [89]. While POLR1C pathogenic variants tend to 

preferentially affect Pol I or Pol III function, several open questions remain regarding 

the tissue-specificity of the phenotypes, and the relative contribution of Pol I or Pol III 

transcription in these tissues. For example, pathogenic variants in POLR1A are associated 

with AFDCIN [95] and a leukodystrophy [111] which have distinct, non-overlapping clinical 

manifestations. Furthermore, distinct pathogenic variants in POLR3A are associated with 

POLR3-HLD [145], the mild and severe striatal forms of POLR3-HLD [158], WRS [173], 

or susceptibility to varicella-zoster virus infection [251]. Interestingly, both Pol I and Pol III-

mediated transcription are disrupted in fibroblast cells from one WRS patient [250], which 

displayed reduced rRNA transcription and disrupted nucleolar integrity, despite location of 

a pathogenic variant within Pol III. Whether pathogenic variants in Pol I subunits have 

a reciprocal effect on Pol III transcription remains to be determined. Together, this raises 

many questions regarding the origins of the variability and tissue-specificity of Pol I or 

Pol III-related disorders and their molecular underpinnings. Current hypotheses, which are 

combinatorial, include variant-specific effects, tissue-specific expression of Pol I and III 

transcripts, tissue-specific interactions with initiation factors, genetic background, epigenetic 

modifications, and environmental influences.

5.4 Future perspectives

Altogether, there are several mechanisms by which Pol I and III transcription are regulated 

throughout development and while our understanding of these processes is improving, 

multiple questions remain to be addressed. First, how Pol I or III subunits and their 

transcripts are differentially expressed during embryogenesis and whether these levels can 

be mechanistically tied to tissue-specificity. Second, how phenotypic variability arising 

from pathogenic variants in the same gene occurs, and whether environmental stressors 

are important. Third, how Pol I and Pol III are coordinately regulated, if at all, in Pol I 

and III-related disorders and if this confers additional phenotypic variation. Fourth, how, 

mechanistically, the integration of cellular signaling pathways gives rise to tissue-specific 

phenotypes associated with Pol I and Pol III function. Resolving these questions has the 

potential to uncover novel regulators of development and new targets for the treatment of Pol 

I and III transcription associated disorders.
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Figure 1. 
RNA Polymerase I subunits, rDNA repeat, and RNA Polymerase III subunits. A) Schematic 

representation of Pol I in humans. Shared Pol I and III subunits POLR1C and POLR1D are 

in blue and subunits shared across Pols I, II, and III are in orange. B) Structure of the rDNA 

repeat. The promoter elements are denoted in light blue. The 47S transcript consists of the 5’ 

Externally Transcribed Spacer (ETS), 18S rRNA, Internally Transcribed Spacer (ITS)1, 5.8S 

rRNA, ITS2, 28S rRNA, and the 3’ETS. These rDNA repeats are separated by intergenic 

spacers (white). C) Schematic representation of Pol III subunits in humans. Pol III isoform 

with subunit POLR3GL is represented, but it should be noted that an alternative form of 

Pol III exists with subunit POLR3G (not shown). Shared subunits are indicated as in A). 

Disorders associated with Pol I and III subunits are indicated in boxes.
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Figure 2. 
Broad grouping of classic Pol III transcripts and their functions. Classic RNA polymerase 

III transcripts and their roles in transcription, RNA processing and/or localization and 

translation. Abbreviations: Pol II, RNA polymerase II; Pol III, RNA polymerase III ; tRNA, 

transfer RNA ; rRNA, ribosomal RNA; mRNA, messenger RNA; BRF1, Transcription 

Factor IIIB ; SRP, signal recognition particle; NPC, nuclear pore complex, EPRS1, 

Glutamyl-Prolyl-tRNA synthetase 1; DARS1, Aspartyl-tRNA-synthetase 1; RARS1, 

Arginyl-tRNA-synthetase 1.
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Figure 3. 
Ribosome biogenesis occurs in the nucleolus. A) The 47S rRNA is transcribed by Pol 

I, and is then processed, modified, and incorporated with ribosomal proteins to form the 

mature ribosome, which functions in translation. Pol III transcribes the 5S rRNA, which 

associates with Rpl5 and Rpl11 and is incorporated into the 60S ribosomal subunit. Pol III 

also transcribes non-coding RNAs involved in rRNA processing and tRNAs important for 

translation. B) Under conditions of normal ribosome biogenesis and cell growth, MDM2 

binds to p53 targeting it for proteasomal degradation. C) Under conditions of ribosomal 

stress, the 5S RNP which includes RPL5 and RPL11 binds MDM2, causing it to undergo 

a conformational change such that it can no longer bind to p53. This results in p53 

accumulation and activation of target genes in cell cycle arrest and apoptosis.
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Figure 4. 
Models of craniofacial disorders arising from disruption in Pol I transcription. Hypoplasia of 

NCC derived skeletal elements is present in AFDCIN and TCS (B) compared to unaffected 

individuals (A). Cartilage and bone staining reveals hypoplasia of skeletal elements in 

mouse models of TCS (C) and zebrafish models of AFDCIN and TCS (D). Arrowheads 

indicate areas of mandibular hypoplasia.
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Table 1:

Overview of common clinical findings in diseases arising from variants in genes encoding Pol III subunits.

POLR3-related 
leukodystrophy

Ataxia, spasticity 
and 
demyelinating 
neuropathy

Wiedemann-
Rautenstrauch 
syndrome

Endosteal 
hyperostosis

Isolated 
Hypogonadotropic 
Hypogonadism

Pol III subunit 
affected

POLR3A, 
POLR3B, 
POLR1C, 
POLR3K

POLR3B POLR3A, 
POLR3B, 
POLR3GL

POLR3GL POLR3B

Inheritance Autosomal recessive De novo Autosomal recessive Autosomal recessive Autosomal recessive

Neurological 
features

Cerebellar (ataxia, 
dysmetria, dysarthria), 
Pyramidal (spasticity), 
Extrapyramidal (dystonia) 
signs, Cognitive 
involvement

Pyramidal 
(spasticity), 
Cerebellar signs 
(ataxia, dysmetria, 
dysarthria) 
Sensorimotor 
demyelinating 
peripheral 
neuropathy 
Developmental 
delay, Epilepsy

Not common – 
Hypotonia and/or 
Developmental delay 
in some individuals

Motor delay, 
Hypotonia, Mild 
intellectual disability

-

Myelin Diffuse brain 
hypomyelination

Peripheral nerves 
demyelination

- - -

Teeth Hypodontia, Oligodontia, 
Delayed dentition, Natal 
teeth, etc.

- Oligodontia, Natal 
teeth

Oligodontia -

Endocrine Hypogonadotropic 
hypogonadism (absent, 
delayed or arrested 
puberty), growth hormone 
deficiency, others

- - Hypogonadotropic 
Hypogonadism

Hypogonadotropic 
Hypogonadism

Growth Short stature - Short stature Short stature -

Eyes Myopia - Myopia, Hyperopia 
or normal vision

Hyperopia -

Bone Osteosclerosis (rare), 
Endosteal Sclerosis in 
some patients with 
biallelic POLR3B variants

- Congenital fractures Axial endosteal 
hyperostosis

-

Adipose tissue - - Lipodystrophy, 
Abnormal 
distribution of fat 
tissue

- -

Craniofacial 
bones

Not common - reported 
in some patients with 
biallelic POLR1C variants

- Characteristic facial 
features ex. 
triangular face, 
widened fontanelles, 
mandibular 
hypoplasia

Dysmorphic facial 
features

-
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