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Abstract
Human lower limb activity recognition (HLLAR) has grown in popularity over the last decade mainly because to its applica-
tions in the identification and control of neuromuscular disorders, security, robotics, and prosthetics. Surface electromyogra-
phy (sEMG) sensors provide various advantages over other wearable or visual sensors for HLLAR applications, including 
quick response, pervasiveness, no medical monitoring, and negligible infection. Recognizing lower limb activity from sEMG 
signals is also challenging owing to the noise in the sEMG signal. Pre- processing of sEMG signals is extremely desirable 
before the classification because they allow a more consistent and precise evaluation in the above applications. This article 
provides a segment-by-segment overview of: (1) Techniques for eliminating artifacts from sEMG signals from the lower limb. 
(2) A survey of existing datasets of lower limb sEMG. (3) A concise description of the various techniques for processing 
and classifying sEMG data for various applications involving lower limb activity. Finally, an open discussion is presented, 
which may result in the identification of a variety of future research possibilities for human lower limb activity recognition. 
Therefore, it is possible to anticipate that the framework presented in this study can aid in the advancement of sEMG-based 
recognition of human lower limb activity.

Keywords Human lower limb activity recognition · Surface electromyography signal · Machine learning techniques · 
Biomedical signal processing · Human-machine interaction

1 Introduction

In recent times, Human Activity Recognition (HAR) has 
attracted the attention of researchers, particularly because of 
the advancements in computer vision, artificial intelligence 
approaches, availability of wearable sensors, and the Inter-
net of Things. HAR recognises a variety of human actions, 
including walking, sitting, running, standing, sleeping, 
showering, driving, and cooking. Numerous HAR applica-
tions can be found across a variety of disciplines, including 
healthcare monitoring, smart homes with aided surveillance, 
and tele-immersion applications [1, 2].

The HAR’s goal is to analyze people’s daily behaviors 
through observational data collected from them and their 
neighboring environments of living. It is a challenging 
problem because of the several difficulties inherent in HAR. 
However, the difficulty level associated with these obstacles 
varies according to the activity being considered. Based on 
the difficulty level and activity length, HAR may be cat-
egorised into five distinct types of activities, as shown in 
Fig. 1 [3, 4]:
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• Gestures based Activities involves simple activities such 
as the opening-closing of hands and bending of arms.

• Action based Activities are single-person activities that 
may be composed of multiple gestures organized, such 
as standing, sitting, walking, cycling, etc.

• Interaction based Activities involves two agents, one of 
that is a human and the other of that might be a person 
or an object. The interaction may be categorised into two 
types: human-object interaction and human-human inter-
action, depending on the nature of the agents. Human-
human interactions include wrestling, embracing, and 
shaking hands, whereas human-object interactions 
include human interaction with a phone or a laptop and 
may be other human work’s on machine.

• Group Activities are the activities performed by the group 
of multiple persons. For example, a group of people 
marching, a group having a meeting.

Two approaches can be used to observe and record the 
activities of the human lower limb. One is accomplished 
through the use of a visual sensor, while the other is accom-
plished through the use of wearable sensors [5] as shown 
in Fig. 2. In the vision-based approach, a camera is used 
to record the data about a human’s activities and collected 
data is in the form of images or video, which may then be 
categorised using computer vision techniques. Computer 
vision-based approaches provide excellent results and are 
also simple to implement; however, it faces numerous draw-
backs for the HAR [6, 7], i.e.,

Fig. 1  Representation of lower 
limb muscles

Fig. 2  Methods for human 
activity recognition
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• Security/privacy;
• Lightning variation;
• Perspective change if using single view acquisition sys-

tem;
• Partial occlusion of human body parts;
• Limited range;
• Requirement of more powerful computing machines.

Improvement in sensor technology leads to the develop-
ment of accelerometers, EMG, gyroscopes, and barometers, 
which can be used for capturing the data. Recently, these 

sensors are integrated with smartphones and wearables such 
as wristbands, smartwatches, and clothing which further 
improves the flexibility for a recording of the data. The EMG 
technique is better than the other wearable sensor techniques 
for detecting human activities for the application of control-
ling an artificial limb or exoskeleton, because it can antici-
pate movements and detect signal changes more quickly [8, 
9]. Table 1 indicates some of the previous articles on human 
activity recognition. The articles are listed in chronological 
sequence by year of publication, and the technique is also 
specified in this table as Vision-Based or Sensor Based.

Electromyography (EMG) techniques such as surface 
electromyography (sEMG) and intramuscular electromyo-
graphy (iEMG) are frequently employed for acquiring the 
EMG signals as shown in Fig. 3. sEMG has several advan-
tages relatively to iEMG, including the fact that the elec-
trodes can be worn without causing discomfort, and the risk 
of inflammation is extremely low. Long term control using 
surface electrodes is an easy task than the handling of iEMG 
needles. sEMG electrodes are classified into two types: 
gelled and dry sEMG electrodes. For short amounts of time, 
wet sEMG electrodes may provide higher-quality sEMG 
signals. As the gel dries, motion artefacts and high contact 
impedance may exacerbate the degradation of the signal. 
Therefore, if stability is more important than quality, dry Fig. 3  Types of EMG electrodes

Table 1  Literature Survey: founds work on human activity recognition

Author Year Approach Sensor Activities

Englehart et al. [10] 2001 Sensor EMG Close/Open hand, Wrist Extension/Flexion, Radial/Ulnar Deviation
Pawar et al. [11] 2007 Sensor ECG Sitting on a chair, left/right and both arms simultaneously lowered and 

raised, Walking, Twisting Left-Right-Left body movement, Down/Up 
Stairs

Tunçel et al. [12] 2009 Sensor Gyroscope Standing, right leg lower part back movement, right leg both part forward 
movement with knee bending, forward/backward locomotion without 
bending of knee, Extending the right leg towards the opposite side of 
body, Squatting, the movement of both the upper and lower legs, while 
seated on a stool, raise just the bottom portion of the right leg.

Khan et al. [13] 2010 Sensor Accelerometer Combination of sitting and standing, i.e, sit-stand and vice-versa, a combo 
of lie and stand, i.e., lie-stand and vice-versa, normal and fast Locomo-
tion, simple sitting/standing, upstairs/downstairs walking.

Wang et al. [14] 2012 Sensor Triaxial Accelerometer Task related to the household such as relax and sitting on the crouch, 
working on the computer by sitting at a desk, drinking/eating stuff, 
sleeping on the bed, locomotion in the corridor/ holding a box in arms, 
upstairs/downstairs, hand-washing, cleaning of windows/table/floor 
using cleaning rag, standing without movement and sitting.

Zhang et al. [15] 2013 Sensor Accelerometer, Gyro-
scope, Magnetometer

Multiple type of locomotion tasks such as forward/right/left, upstairs/
downstairs, normal, fast, jumping, stand-still and sitting.

Park et al. [16] 2016 Vision Depth Camera lift arms, push right, duck, goggles, shoot, bow, wind it up, throw, had 
enough, beat both, change weapon, and kick

Chen et al. [17] 2017 Vision Cameras Normal Walk, Slow Walk with Halt, Slow Lame Walk
Naik et al. [18] 2018 Sensor EMG Walking, Sitting, Standing
Hussain et al. [19] 2019 Sensor Gyroscope Locomotion at multiple speeds such as slow/normal/fast and positive/nega-

tive incline ground locomotion
Vijayvargiya et al. [20] 2021 Sensor EMG Walking, Sitting, Standing
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sEMG electrodes are preferable [21]. However, the position-
ing of the sEMG sensors has a major impact on the recorded 
signal and the computational algorithm’s subsequent analy-
sis and recognition. It is a technique in biomedical which 
evaluates and records the muscles generated electrical sig-
nals. The process for generating a EMG signal is as follows. 
Motor nerves in the cerebral cortex which is part of the cen-
tral nervous system generate electrical signals. These brain 
signals are transmitted via axons to muscle fibers, resulting 
in pulse sequences that drive them to contract and generate 
muscular tension. Meanwhile, in the human body, a current 
is created, resulting in transmembrane potential. Muscles 
cells developed the potential difference between the inter-
nal and external potentials, by the current is created in the 
human body, known to be transmembrane potential. When 
the muscle cells are inactive, they have a polarised mem-
brane potential. During the polarisation, a resetting potential 
is formed by the potential distance between the interior and 
outside of the membrane of the cell. Then, a cell is stimu-
lated leads to depolarization, this propensity will continue 
to develop roughly. The corresponding action potential is 
defined as an electromyography signal, Fig. 4.

A HAR system can monitor the activities of a human’s 
lower limbs by utilising a sEMG sensors . This type of 
human lower limb activity recognition (HLLAR) system 
can be beneficial in a variety of situations, including iden-
tifying jumps and lifts while performing ballet movements, 
identifying movements such as standing, sitting, walking, 
running, stair climbing and descending, vacuuming, and sit-
ups, diagnosing neuromusculoskeletal disorders that cause 
knee pain, composing a robotic prosthetic limb in the case 
of an amputee’s missing limb, and sports [23, 24]. The major 
contribution of this review article is as follows:

• Provide a thorough investigation of the general structure 
and methodologies for detecting human lower limb activ-
ity using sEMG.

• Describe and synthesise the sEMG datasets used in 
HLLAR.

• Classify and evaluate the processes used in HLLAR for 
conventional data processing, feature engineering, and 
feature extraction.

• Classify and analyse machine learning approaches appli-
cable to HLLAR, with a focus on current research in 
deep learning in HLLAR.

• Describe the difficulties and potential directions of 
HLLAR.

The findings from the search are presented in Fig. 5 A 
total of 5361 relevant records from Google Scholar, Pub-
Med, and Scopus were evaluated during the initial phase of 
the search. There were only 2836 records remaining after 
eliminating duplicates. There were a total of 578 records 
considered for inclusion after being checked for their titles 
and abstracts. Finally, the systematic review examined 92 
studies, 71 of which were published after 2010, and 21 of 
which were published before 2010.

The presented research article is organised as follows: 
Sect. 2 discusses the overview of sEMG dataset for lower 
limb activities. Section 3 provides noise sources in sEMG 
signal during lower limb activities. Section 4 comprises the 
sEMG signal processing techniques. A detailed overview 
of machine learning techniques on the lower limb activity 
recognition using sEMG signal is presented in Sect. 5. Then, 
Sect. 6 demonstrates the applications of the lower limb 
activity recognition. Finally, Sect. 7 concludes the overall 
work and identify potential future scopes.

Fig. 4  The mechanism by which 
the EMG signal is generated: 
a the neuromuscular sys-
tem’s structure, b a schematic 
representation of the nerve and 
muscle system’s EMG signal 
transduction [22]
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2  Overview of available sEMG datasets

This section discusses various sEMG datasets presented in 
the literature, which are collected for different human lower 
limb activities. As per the author’s knowledge, there have 
been very few publicly available sEMG datasets on human 
lower-limb motions. The sEMG dataset for lower limb 
movements is presented in Table 2, which includes several 
subjects and their performed activities during the data col-
lection. The sEMG signal of lower limb activities is col-
lected from the lower limb muscles. The anatomical struc-
ture of lower limb muscles is presented in Fig. 6. Table 3 
shows which limb muscles are more active or relevant for 
different human movements.

The HAR-sEMG [25] dataset was built by employing the 
Trigno wireless biofeedback sensors to collect sEMG data 
from five lower limb movements, including jogging, stand-
ing, lunge stretching, walking, and jumping. To acquire the 
HAR-sEMG dataset, nine healthy subjects, i.e., two females 
and seven men with a mean age of 23.5 years took part in 
the study. They each provided 1800 EMG signals with a 
duration of 10 seconds each. A total of six major muscles 
were chosen for the experiment, all of which are involved in 
lower-limb movements and can be easily identified within 
the muscle group. A total of six sensors, each of which was 
attached to a separate muscle region, were used to collect 
the sEMG signals for the HAR-sEMG dataset. The dataset 
includes the muscles namely, tibialis anterior, gastrocnemius 
medialis, gastrocnemius lateralis rectus femoris, vastus lat-
eral femoral, and semitendinosus muscles of the thigh, as 
well as others.

Fig. 5  PRISMA flow diagram for the systematic review

Fig. 6  Representation of lower 
limb muscles [22]
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The SUKFNN [26] dataset includes 2500 sEMG record-
ings from five patients. The sEMG signal was obtained 
utilising a Biometrics UK-developed and -manufactured 
sEMG acquisition equipment and five common lower limb 
movements: plane walking, crossing of the obstacle, sit-up, 
ascending/descending the stairs. The medial gastrocnemius, 
lateral femoral muscle, and semitendinosus muscles of the 
lower limb were deployed for the collection of a dataset in 
the present study.

The HHMM [27] dataset contains the lower limb sEMG 
signals data of various activities for five people such as 
walking, jumping, running, and sit-to-stand. Eight differ-
ent recording sites were used to record the sEMG dataset, 
the data is collected using the Noraxon Telemyo 2400T & 
2400R (Noraxon Inc., AZ, USA) at 1,000-Hz sampling fre-
quency and wet-type electrodes. The participants who were 
not injured were instructed to normal/fast left or right side 

walking across the spaces without implementation the walk-
ing and running exercises on the treadmill. A total of five 
sessions were conducted, with each session lasting 40 sec-
onds and the total number of sessions being 5. Participants 
were instructed the alternate between the sit-to-stand action, 
such as the standing-up/sitting-down for the 40 seconds in 
each session, which was then done five times. For the coun-
ter movement leaps, participants were instructed to attempt 
to jump as high as they possibly could in position. The total 
of 8 muscles such as rectus femoris, biceps femoris, vastus 
lateralis, vastus medialis, peroncus longus, tibialis anterior, 
gastrocnemius medialis, gastrocnemius lateralis were con-
sidered in this study.

ENABLE3S dataset [28] proposed by Hu et al. consists 
of the neuro-mechanical lower-limb bilateral signals from 
10 healthy subjects (3-female,7-male; 160–193 cm; 23–29 
years; 54–95 kg) using three wearable sensors like., EMG 

Table 2  A survey of sEMG datasets for human lower limb activities

Dataset Year Subjects Activities Sampling frequency Instrument Number 
of sen-
sors

HAR-sEMG [25] 2020 9 (7 Male, 2 female) Running, Standing, Lunge 
Stretching, Jumping, 
Walking

2000 Hz DELSYS Trigno wireless 
EMG equipment

6

SUKFNN [26] 2020 5 (Healthy) walking, downstairs, 
upstairs, crossing obsta-
cles and standing

2000 Hz Biometrics wireless sEMG 
sensor system

3

HHMM [27] 2019 5 Walking, Running, Jump-
ing, Sit-to-stand

1000 Hz Noraxon Telemyo 2400T 
& 2400R

8

ENABLE3S [28] 2018 10 (7 Male and 3 female) Sitting, Standing, zero 
incline Walking, Stair 
upward/downwards, 
Stairs, Ramp Ascent/
Descent

1000 Hz Delsys DE-2.1 sEMG 
Sensor

7

TAS [29] 2016 10 walking, sitting, standing, 
Stair upward/downwards

1000 Hz Biopac BN-EMG2s 9

MFWF [30] 2015 5 Downstairs, upstairs, 
downhill, and uphill

1000 Hz NORAXON MyoResearch 
XP

9

UCI-sEMG [31] 2014 22 (11 Normal and 11 
Abnormal)

Walking, Sitting, Standing 1000 Hz MWX8 by Biometrics 4

Table 3  Relevant muscles 
involvement in movement

Name of muscle Types of movements

Satorius Hip flexion and lateral rotation exercise
Quadriceps (Rectus femoris, Vastus medialis, Vastus lateralis, 

Vastus intermedius)
Hip flexion or knee extension

Hamstrings (biceps femoris, semitendinosus, semimembranosus) Hip extension or knee flexion
Adductor magnus Hip adduction
Gracilis Hip adduction, rotation, and flexion
Gastrocnemius Knee flexion and ankle plantar flexion
Soles Plantar flexion of the foot
Tibialis anterior Foot dorsiflexion
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sensors, inertial measurement unit (IMU), and goniometer. 
On both lower limbs, sEMG electrodes were implanted on 
seven muscles: gastrocnemius, vastus lateralis, semitendi-
nus, soleus, biceps femoris, rectus femoris, and tibialis 
anterior. Each subject repeated two distinct sequences of 
the seven gait activities mentioned below for a total of 25 
repetitions: Sitting → Standing → Level ground walking → 
Stair/Ramp ascent → flat ground walking → Ramp descent/ 
Stair descent → flat ground walking → Standing → Sitting. 
These exercises took place in a 20 x 30 foot area that con-
tained a platform (thirty inches tall) connected to the stairs 
(7.7 inch rise, 10 inch run) and length of ramp (14 ft. long). 
The length of the chosen segment was approximately 45 
feet. Following that, signals were amplified 1000 times at a 
sampling rate of 1 kHz and then sent through a band-pass 
Butterworth filter operating between 20 and 450 Hz.

The TAS dataset [29] includes ten patients with no his-
torical musculoskeletal disorders and have aged between 
26–32 years. The MP150 and six BioPac BN-EMG2s com-
mercial available sEMG instruments were used to aug-
ment the sEMG signals. The raw data were acquired on the 
sEMG signal collecting device utilising a 1-kHz sampling 
rate with a bandpass filter of range 20–450 Hz and a 16-bit 
ADC converter. Nine sEMG channels were attached to the 
multiple muscles for collection of the dataset; namely, the 
biceps femoris, peroneus longus, sartorius, semitendinosus, 
gastrocnemius, tibialis anterior, rectus femoris, and vastus 
lateralis/medialis,

In the MFWF dataset [30] includes 600 sEMG signals 
were recorded from 5 subjects for the lower limbs activities, 
who have performed the four activities such as going up 
and down the stairs, walking up and downhill. The surface 
electromyography equipment NORAXON MyoResearch XP 
16-channel was used to capture the sEMG signal. The sam-
pling rate for the equipment can reach up to 2048Hz, with 
a bandwidth ranging from 10Hz to 1000Hz. Experiments 
were conducted to acquire sEMG signals from nine differ-
ent muscles of lower limb: rectus femoris, vastus media-
lis, vastus lateris, biceps femoris, semitendinosus, tibialis 
anterior, medial gastrocnemius, lateral gastrocnemius, and 
soleus muscles.

UCI-sEMG dataset [31] proposed by Sanchez et al. con-
cerns the three different lower limb movements performed 
22 male, 11 subjects are healthy and the other 11 with knee 
abnormalities. Subjects were older than 18 years. Lower 
limb activities such as walking, sitting, and standing were 
performed. There was no prior case history of discomfort or 
damage in the knee of normal subjects. In abnormal subjects, 
the four had meniscus injuries, six had anterior cruciate liga-
ment (ACL) injuries, and one had sciatic nerve injuries. The 
sEMG signal is collected from the left leg for the healthy 
person whereas the acquired signal from the abnormal sub-
ject was from the affected leg. Four surface electrodes were 

used for the data collection. These are placed around the 
muscles; namely, biceps femoris, rectus femoris, semiten-
dinosus, and vastus medialis. A goniometer was also affixed 
to the outside of the knee joint for capturing the joint angle 
which could be used for the knee prosthetic leg application. 
The sample rate and resolution were 1000 Hz, and 14 bits, 
respectively.

3  Noise sources in sEMG signal during lower 
limb activity

Whenever a muscle’s EMG signal is recorded, it is con-
taminated by a variety of noise sources. The EMG signal’s 
characteristics are determined by the subject’s internal struc-
ture, which includes blood flow velocity, skin formation, 
skin temperature, measuring site, tissue structure, and other 
factors. Assessing and classifying EMG signals is highly 
difficult due to the diverse order of EMG that is influenced 
by the physiological/anatomical properties of muscles. In the 
following, the several types of electrical noise that impact 
EMG signals [32–34] are discussed.

3.1  Inherent noise in the EMG electrodes

Most of the electronic equipment generates the inherent or 
electrical noise which consists of the frequency components 
in the range of 0 Hz to several thousand Hz. Therefore, it is 
found that the silver/silver chloride electrodes (10 mm × 1 
mm) has an appropriate signal-to-noise ratio (SNR) and also 
electrically exceptionally stable for the recording of EMG 
signals. On the other hand, there is an inverse relationship 
between the electrode size and impedance. High electrode 
impedance significantly lowers the signal quality and results 
in a poor signal-to-noise ratio. Therefore, it is necessary to 
consider both factors before choosing the appropriate elec-
trodes. High electrode impedances or a large number of elec-
trodes may be used in studies when the requirement of the 
statistical power is high; otherwise, use the low electrode 
impedances is suggested. This type of noise can be mitigated 
by the employment of smart circuit design with high-quality 
instrumentation.

3.2  Ambient noise

The human body works as an antenna, with electric and 
magnetic radiation assaulting its surface all the time, caus-
ing electromagnetic noise. The unwanted signal recorded 
from a muscle is either superimposed or canceled by elec-
tromagnetic sources in the environment. The magnitude of 
the noise is about one to three times the sEMG signal. It is 
almost impossible to avoid the interference of this type of 
noise in EMG signals on the earth’s surface. Power sources 
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like Power-Line Interference (PLI) are the major cause of the 
generation of the ambient noise ranges in 60 Hz (or 50 Hz). 
It is important to understand the reasoning behind of gen-
eration of noise. It is because of the differences between the 
electrode impedances and stray currents flowing through the 
wires and patients. Off-line processing is needed to eliminate 
the recorded artifact [35]. In some cases, when the inference 
has a high-frequency component then there is a necessity for 
a high pass filter. However, it is necessary to understand the 
sEMG signal’s nature before implementing the processing 
of data.

3.3  Motion artifact

Motion artifacts [36] are generated by establishing the 
connection between the electrode to an amplifier and also 
contact between the electrode’s detecting surface and the 
body skin. In order to record the sEMG signals, there is a 
requirement of placing the electrodes near the chosen muscle 
groups. Whenever an activity is performed, the length of 
muscles is decreased, so the position of the muscle, skin, and 
electrodes moves relative to each other. At this moment, the 
movement artifact is detected in the electrodes. Typically, 
the range of noise generated is lies between 1-10 Hz, and 
the voltage magnitude corresponds to the sEMG signals.

Motion artifacts resemble the signal characteristics of 
baseline wander noise [37]. It is a low frequency artefact in 
the EMG that can be caused by a variety of factors, including 
patient movement, poor contact between electrode cables 
and EMG recording equipment, inadequate skin preparation 
where the electrode is placed, and dirty electrodes.

3.4  Inherent instability of signal

Since the magnitude of the sEMG signal is depend upon the 
activity performed, these dependencies make it unpredict-
able in nature. EMG signal is adversely impacted by the 
firing rate of the motor units [38]; typically, firing range has 
a frequency in the range 0-20 Hz. This type of noise is badly 
impacting the quality of the signal; therefore, it is important 
to mitigate this. In addition, multiple factors like the number 
of active motor units and mechanical contact between mus-
cle fibers also affect the sEMG signal nature.

3.5  Cross talk

Crosstalk [39] is a special type of EMG signal which is gen-
erated from the unknown muscle group, an unwanted signal. 
It can contaminate the signal and lead to the erroneous inter-
pretation of the data. Crosstalk is influenced by a variety of 
physiological factors; however, it may be reduced by care-
fully selecting electrode sizes and inter-electrode spacing.

As many forms of noise contaminate the signals, the 
process of analyzing and identifying EMG data becomes 
exceedingly challenging. So, here are some recommenda-
tions for recording high-quality EMG signals:

• Surface EMG electrodes of high quality should be used 
with small inter-electrode spacing (1cm or less).

• Ensure that the surface EMG signal is recorded at a rate 
of at least 1000 Hz by setting the sampling rate to 1000 
Hz.

• Adjusting the hardware amplification (referred to as gain) 
is important for EMG signal quality; a properly config-
ured gain improves the signal-to-noise ratio. A gain of 
1000 is often appropriate for surface EMG signals. Check 
that there is no clipping in the signal; if so, ensure that 
the EMG sensor and reference electrode are properly 
connected.

• For general usage in surface EMG recording, a Butter-
worth filter with corner frequencies ranging from 20 to 
500 Hz is suggested.

• Inspect the recording to ensure that there are no instru-
ments or electrical connections that might cause line 
interference during the recording.

• To obtain valuable information from the EMG signal, the 
skin’s impedance must be minimized and skin should be 
completely cleaned. The dead skin was removed using an 
abrasive gel.

• Place the EMG sensor in the muscular belly, away from 
innervation zones and tendon origins.

• Ensure that good contact between the electrodes and the 
skin.

4  sEMG signal processing techniques

4.1  Denoising techniques

The process of evaluating and classifying EMG data gets 
extremely challenging as various types of noise contaminate 
the data. As a result, signal denoising is a necessary step that 
must be completed before the signals can be used for clas-
sification purposes. Many researchers have presented various 
approaches for the detection of muscle activity which allows 
for a consistent and accurate assessment of neurophysiologi-
cal, rehabitational, and assistive technology findings. The 
noises that are not in the spectrum range of sEMG signal 
can be mitigated using state-of-art filters like High Pass, 
Low Pass, or Band Pass. However, they have faced difficul-
ties for mitigation of white Gaussian noise present in the 
sEMG signal spectrum. In recent times, various researchers 
have implemented novel methods such as wavelet denoising, 
Empirical Mode Decomposition (EMD), and Independent 
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Component Analysis (ICA), which helps in the reduction of 
these noises in the sEMG signal [40, 41].

As per the literature, it is beneficial to employ the wave-
let denoising technique on the sEMG signal dataset con-
sisting of upper and lower limbs. Phinyomark et al. pro-
posed utilising the wavelet denoising approach to denoise 
the sEMG signal [42]. Wavelet denoising can effectively 
remove random disturbances such as White Gaussian noise 
usually present in sEMG signals. In the implementation of 
wavelet denoising over signals, discrete coefficients of wave-
lets are generated when the signal is passed via low-pass 
as well as high pass filters. With the help of the wavelet 
denoising approach, detail and approximation coefficients 
are acquired using signal decomposition and thresholding 
is accomplished. The total number of coefficients is decided 
by the level of decomposition. There is a total of 324 wavelet 
functions from 15 wavelet families. This technique requires 
the selection of five parameters such as mother wavelet, level 
of decomposition, threshold selection, threshold rescaling, 
and thresholding function [43].

Phinyomark et al. [44] investigated the denoising of the 
sEMG signal for multifunction myoelectric control using 
five wavelet algorithms: sym5, sym8, db2, db5, and coif5. 
It is discovered that scale level 4 performs the best as com-
pared to the other scale levels based on the mean square 
error (MSE) parameter for processed sEMG data. In addi-
tion, it was also suggested that the 5th order coiflet function 
gives the optimal reconstruction for the sEMG signal. Jiang 
and others [41] analysed four typical threshold estimation 
functions and concluded that EMG signals are insensitive to 
the choice of the threshold estimation function. Kumar et al. 
[45] quantified muscle failure using the Symlet function 
(Sym4 and Sym5) decomposed at levels 8 and 9. Hossain 
and colleagues [46] demonstrated that mother wavelet db45 
had the highest contrast between 50 and 70 Hz when com-
pared to the other four mother wavelets such as Haar, db2, 
sym4, and sym5. Vijayvargiya et al. [47] used the wavelet 
denoising technique for the detection of human knee abnor-
mality using sEMG signal. In this study, it was calculated 
the value of mean absolute error, signal to noise ratio, mean 
squared error, and peak signal to noise ratio of the sEMG 
signal with different mother wavelets and level of decompo-
sition. They have observed that sym4 originating from the 
family of symlet to the first level of decomposition led to the 
best results relatively to other mother wavelets and levels of 
decomposition.

In the other study of Vijayvargiya et al. [48], wavelet 
denoising is used with db7 from the Daubechies family till 
fourth level decomposition for the classification of three 
lower limb activities such as walking, sitting, and stand-
ing, for three different cases: 1) Knee healthy subjects, 2) 
Knee anomaly subjects, and 3) Pooled data (Combined of 
healthy and knee abnormal subjects). Dutta et al. [49] used 

the discrete wavelet transform of identifying the six distinct 
lower limb activities: full leg swing, forward leg swing, lift-
ing knee, backward swing, squatting, and sideways leg swing 
using On-Body Creeping Wave Propagation.

Independent component analysis (ICA) [50] is a signal 
processing technique for separating additive subcomponents 
from a multivariate signal. This is achieved by assuming that 
the subcomponents are non-Gaussian signals and statisti-
cally independent. By maximising the statistical independ-
ence of the estimated components, ICA locates the inde-
pendent components. There are various methods to establish 
a proxy for independence, and the one you choose deter-
mines the ICA algorithm. The following are the two widest 
techniques of independence for ICA: 1) Mutual informa-
tion minimization, 2) Non-Gaussianity maximization. The 
Kullback-Leibler Divergence and maximal entropy metrics 
are used in the Minimization-of-Mutual-Information family 
of ICA techniques. Kurtosis and negentropy are used in the 
non-Gaussianity family of ICA algorithms, which are justi-
fied by the central limit theorem. It is now commonly used 
to identify and eliminate noise sources from EMG signals, 
as well as to decompose EMG signals into as many distinct 
components as possible. The ICA techniques such as the 
fast ICA, the Joint Approximate Diagonalization of Eigen-
matrices (JADE), and the Infomax Estimation or maximum 
likelihood algorithm are commonly employed for the filter-
ing of the EMG signal. [51–54].

The decomposition methodologies which assume that the 
process is stationary/linear may produce inaccurate or mis-
leading findings because of the presence of non-stationary/
non-linearity in the sEMG dataset [55]. A stationary time 
series signal is one in which statistical characteristics (for 
example, the mean and variance) do not change over time. 
On the other hand, non-stationary signal is a time series 
whose statistical features are changing throughout the span 
of time. Empirical Mode Decomposition is a very effective 
topology for the decomposition of the non-stationary/non-
linear signals that have both complex spatial and temporal 
characteristics to their orthogonal components, which is 
known to be the Intrinsic Mode Functions (IMF) [56]. IMF 
is a single-frequency oscillatory mode or a mono-component 
function [57]. The signal can be subdivided into that multi-
ple number of IMFs using the EMD approaches iteratively. 
On the other hand, the EMD approaches have complexity 
issues with the frequent appearance mode mixing because 
of its sensitivity to noise [58]. In order to address this prob-
lem, the EEMD was developed which is a noise-assisted data 
analysis method that defines the IMFs as the average of an 
ensemble of trials [59].

Wavelet de-noising is frequently used to remove white 
Gaussian noise and undesired signals such as the contri-
butions from other muscle signals while preserving key 
properties of the signal. Empirical Mode Decomposition is 
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employed to filter out sounds such as power line interfer-
ence (PLI) and baseline wandering (BW). Because of its 
mostly independent signal-to-noise ratio and minor impacts 
on the frequency content, the ICA-based filtering process 
successfully removes power-line noise (PLI). According 
to the existing literature, all signal processing procedures 
have advantages and disadvantages, hence researchers also 
adopted a combination of different strategies for EMG signal 
processing. Zhang et al. [60] developed the noise-assisted 
multivariate empirical mode decomposition (NA-MEMD) 
approach for pre-processing multiple channel EMG signals 
that allow the temporal and spatial features of different mus-
cle groups to be statistically depicted. Vijayvargiya and col-
leagues [20] proposed the wavelet denoising with ensemble 
empirical mode decomposition (WD-EEMD) pre-process-
ing technique for denoising the sEMG signal of lower leg 
muscles for activity detection applications. Naik et al. [18] 
developed an ICA-based classification algorithm for lower 
limb sEMG data, which was implemented and validated with 
signals from healthy people and people with knee pathology.

4.2  Segmentation

The nature of the EMG signal is random in nature, so seg-
mented EMG signals are preferable to whole sEMG signals 
after the denoising. The segmentation is used as a part of 
pre-processing as it is a smart way to process time-series 
data to reduce the computational complexity. To implement 
the segmentation process, the windowing method is usually 
utilized. Two discrete methods of windowing are present to 
accomplish the process of segmentation: adjacent window-
ing and overlapping windowing [61]. The following seg-
ment overlaps the preceding segment in the overlap window; 
however, no segments overlap in the adjacent windowing 
approach as shown in Fig. 7. Englehart et al. [62] observed 

that the lengths of EMG data have an influence on classifica-
tion accuracy. For data segmentation, two critical factors to 
consider are the windowing technique and the data length. 
Farina et al. [63] demonstrated that a window size of 250-
500 ms is appropriate, and that employing a segment length 
smaller than 128 ms degrades classifier performance, result-
ing in large bias and variation of features.

5  Machine learning techniques

Numerous noises and artifacts can be seen in a raw sEMG 
signal reduces the overall accuracy since the required infor-
mation stays as an amalgam in the raw sEMG dataset. To 
improve the classification accuracy, firstly the sEMG signal 
is denoised, and, then the features are extracted for use as 
input to a computational classifier. There are three different 
types of feature extraction approaches are presented in the 
literature: time-domain (TD), frequency-domain (FD), and 
time-frequency domain (TFD) feature. Time-domain fea-
tures are popular because they perform better signal classi-
fication in low-noise conditions and require less processing 
effort [64]. Therefore, in the majority of studies, time-
domain features are employed to classify sEMG signals. The 
most commonly used features extracted from sEMG signal 
are indicated in Table 4.

Many researchers have been interested in developing an 
efficient method for identifying electromyography signal 
patterns. Various kinds of classifiers, such as Artificial 
Neural Networks, Support Vector Machine, Linear Dis-
criminant Analysis, Random Forest, and Decision Tree, 
have been efficiently employed for different EMG applica-
tions [20, 47, 67, 76]. The feature vector is utilised as an 
input to the classifier after the feature extraction proce-
dure. As per the studies, dimensional reduction strategies 

Fig. 7  Types of Windowing 
[48]
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such as principal component analysis, and linear discri-
minant analysis, are used to reduce the classifier’s burden 
and processing time. Toledo-Pérez et al. [77] utilised the 
principal component analysis approach to minimise the 
dimensionality of the retrieved features from the lower 
limb sEMG signal and investigate the impact of chang-
ing the number of channels or the muscles. Phinyomark 
et al. [78] employed linear discriminant analysis, which 
reduces the number of features needed in the categoriza-
tion of hand movements using sEMG signals. Englehart 
and colleagues [10] employed principle components analy-
sis to minimise the size of a wavelet-based feature set, 
which increased classification accuracy significantly in a 
myoelectric-controlled prosthesis application. A dimen-
sionality reduction strategy minimises intra-class variabil-
ity while increasing inter-class distance, simplifying the 
classification problem. After the feature reduction process, 
the features are employed to perform the classification 
task. Luan et al. [25] compared the five different feature 

reduction techniques such as Principal component analysis 
(PCA), Linear Discriminant Analysis (LDA), ) Locally 
Linear Embedding (LLE), Laplacian eigenmaps, and Rank 
preserving discriminant analysis (RPDA) for six distinct 
lower limb activities. There are several ways to dimension-
ality reduction, which are given below [79]:

• Linear Discriminant Analysis;
• Independent Component Analysis;
• Principal Component Analysis;
• General Discriminant Analysis;
• High Correlation Filter;
• Low Variance Filter;
• Missing Value Ratio;
• Backward Feature Elimination;
• Random Forest;
• Factor Analysis;
• Projection methods;
• Forward Feature Selection.

Table 4  Feature Extraction 
from sEMG signal

Features References

Time domain Integrated EMG  [65, 66]
Mean absolute value (MAV)  [20, 47, 65–68]
Simple square integral (SSI)  [65, 66]
Root Mean Square (RMS)  [20, 47, 65–67]
Zero Crossing (ZC)  [20, 47, 65, 67]
Slope Sign Change (SSC)  [20, 47, 65, 67]
Variance (VAR)  [20, 47, 65–67]
Wilison Amplitude (WAMP)  [47, 65, 67]
Myopulse Percentage Rate (MYOP)  [47, 65, 67]
Difference Absolute Standard Deviation Value 

(DASDV)
 [20, 47, 65, 67]

Skewness (Skew)  [20, 47, 65, 67, 69]
Kurtosis (Kurt)  [20, 47, 65, 67, 69]
Waveform Length (WL)  [65, 66, 68, 70]
Histogram of EMG (HIST)  [65]
Auto-regressive coefficients (AR)  [65, 66, 71]
Average Amplitude Change (AAC)  [20, 47, 65, 67]

Frequency Domain Mean Frequency (MNF)  [32, 65, 66, 69, 70]
Median Frequency (MDF)  [32, 65, 66, 69, 70]
Peak Frequency (PKF)  [32, 65]
Mean Power Frequency (MNP)  [32, 65]
Total Power (TTP)  [32, 65]
Frequency Ration (FR)  [32, 65]
Power Spectrum Ratio (PSR)  [65, 69, 70]
Variation of Central Frequency (VCF)  [32, 65]

Time-Frequency Domain Discrete Wavelet Transofrm (DWT)  [65, 71]
Continous Wavelet Transform (CWT)  [65, 72]
Emprical Mode Decomposition (EMD)  [65, 73]
Short Term Fourier Transform (STFT)  [65, 71, 74]
Wavelet Packet Transform (WPT)  [65, 75]



354 Biomedical Engineering Letters (2022) 12:343–358

1 3

The electromyogram classification system’s effectiveness is 
strongly dependent on the selection and extraction of high-
quality features [80]. With the feature extraction stage in 
a classification system, the information density of the sig-
nal is increased [81]. Naik et al. [18] made good use of a 
multivariate technique called entropy bound minimization 
(ICA-EBM) for the assortment of lower limb activities. It 
classifies the walking, standing, and sitting activities of 11 
healthy and 11 possessed knee pathology subjects with an 
accuracy rate of 96.1% and 86.2% by using a linear discri-
minant analysis classifier. Vijayvargiya and colleagues [20] 
proposed a new hybrid wavelet denoising with ensemble 
empirical mode decomposition (WD-EEMD) pre-processing 
technique for the classification of three lower limb activities 
same as Naik et al. with an accuracy of 90.69% and 97.45% 
for healthy and knee abnormal subjects, respectively. In the 
article [29], the authors proposed a new top and slope feature 
extraction technique for lower limb human motion detection 
(Table 5).

Deep learning algorithms have been used in several dif-
ferent areas in recent years. Deep learning does not need the 
extraction of handcrafted features. These algorithms extract 
features and later classify them accordingly. A Convolutional 
Neural Network (CNN) is a type of deep learning algorithm 
that can automatically extract the signal features. Vijayvar-
giya et al. classify three different activities for three distinct 
cases: healthy, knee abnormal, and pooled data, which is a 
combined dataset of healthy and knee abnormal participants. 
They employed a voting-based 1D convolutional neural net-
work and obtained classification accuracy of 99.35, 97.63, 
and 97.14 percent for healthy, pathological knee, and pooled 
data, respectively [48]. Gautam et al. [86] developed a new 
classification methodology that considers the lower-limb 
movements when determining knee joint angle prognosis. 
CNN and Long Short-term Memory (LSTM) collaborate to 

develop an architecture for classifying activities, with CNN 
extracting features from sEMG signal data and LSTM pre-
dicting joint angles and interpreting the features. After that, 
a dense layer is connected for classification. The authors 
developed the MyoNet model, which uses these three blocks 
to predict lower-limb activities (walking, standing, and sit-
ting) as well as joint angle. In [87], to achieve the classifi-
cation of the limb movements from EMG signal, a Deep 
belief network (DBN) was used to get the better of local 
minima problems and overfitting issues. This 4-class clas-
sifier algorithm achieved better classification performance 
with reduced training time and was trained for each subject.

6  Applications

In the last decade, sEMG-based solutions have grown with 
an increasing number of demonstrations and attempts in 
three critical rehabilitation scenarios as shown in Fig. 8. 
First, the lower limb activity recognition based on sEMG 
plays an important role in accurately diagnosing the neuro-
muscular diseases in the lower limb so that patients could 
begin the rehabilitation process before their disorders 
progressed further. Vijayvargiya et al. [67] used sEMG 
signal-based lower limb activities to differentiate between 
diseased and healthy knees. In this study, 11 time-domain 
characteristics were extracted from the sEMG signal of 
four lower limb muscles and classified using five machine 
learning classifiers: support vector machine, decision tree, 
k-nearest neighbor, random forest, and additional tree 
classifiers, all with 10-fold cross-validation. The results 
revealed that the extra tree classifier outperforms the other 
classifiers with 91.3 % of accuracy. In the other study of 
Vijayvargiya et al. [47], the effect of imbalance of sEMG 
signal during the walking of knee abnormal and healthy 

Table 5  Summary of lower limb activity recognition using sEMG

Author Preprocessing Activities Classifier Accuracy

[18] ICA-EBM Walking, sitting, standing LDA –
[20] WD-EEMD Walking, sitting, standing LDA 97.45% for healthy

90.69% for knee abnormal
[48] WD Walking, sitting, standing 1D CNN 99.35% for healthy

97.63% for knee abnormal
[82] WD Walking, sitting, standing MP-ANN –
[83] – Horizontal walking, crossing obstacles, standing up, going down 

the stairs, and going up the stairs
Gaussian Kernel LDA 96.00%

[84] – Sit, stand, level walk, stair ascent, stair descent, ramp ascent and 
ramp descent

SVM, KNN, LDA, ANN 96.43-98.78%

[85] – Walking, sitting, standing Long-term Recurrent 
Convolution Network

98.1% for healthy
92.4% for knee abnormal

[86] WD-SVD Flexion of the leg up (standing), hip extension from a sitting 
position (sitting) and gait (walking)

SVM 91.85%
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subject was studied. The walking task takes longer for 
people with a knee deformity than for healthy subjects. 
Therefore, the length of the sEMG signal was longer than 
the one of healthy subjects. It resulted in an imbalance in 
the collected data. Thus, the oversampling was used for 
increasing the training minority dataset which helps in the 
balancing of the used dataset. The classification between 
myopathy and neuropathy based on sEMG signal using 
neural network was also presented by Swaroop et al. [88].

Second, sEMG-based LLAR have been used to assess 
patients’ rehabilitation progress and therapy success on a 
broader scale. Robot-assisted rehabilitation and therapy 
are becoming more popular for assisting the elderly, and 
disabled patients. As proven by favorable clinical out-
comes and recovery time, robot-assisted lower limb reha-
bilitation has significant benefits over standard manual 
therapy and training. Meng et al. [89] conducted a system-
atic review on the recent development of mechanisms and 
control techniques for robot-assisted lower limb rehabili-
tation, focusing on various robotic mechanisms, training 
modes, and control strategies.

Thirdly, sEMG-based LLAR is used to control assis-
tive equipment such as intelligent prostheses and orthoses 
[90]. These auxiliary devices can be employed for aid-
ing the patients during physical rehabilitation. It can ease 
the load on the physical therapy to a certain extent [91, 
92]. Additionally, this technology enables these gadgets 
to attain a higher level of security and a more pleasant 
user experience. In recent times, the interface between the 
human-machine become a research topic for the artificial 
lower limb. It is because of the requirement of the delib-
erate human locomotion knowledge and also helps the 

external devices for the development of the active control 
mechanisms.

7  Conclusion and future prospective

This study delves into the fundamental structure and meth-
odology for identifying human lower limb activity using 
sEMG signals which is very important due to its applications 
in the diagnosis of neuromuscular diseases, security, con-
trolling of robots/prostheses, human-machine interaction, 
and pattern recognition. Due to the presence of undesirable 
signal sources or artifacts in EMG data, filtering procedures 
are advised to reduce the existent noise. However, while this 
procedure may minimise these noises, it does not ensure the 
originality of EMG signals. Classification of EMG data is 
critical for real-time control of, for example, a robotic limb. 
As a result, researchers are concentrating their efforts on 
EMG signal processing methods to develop a more accurate, 
simple, and dependable system for recognising lower limb 
motion patterns. This study discussed the methods and pro-
cedures utilised for sEMG signal pre-processing. The sEMG 
signal is random in nature so, features are extracted from it 
after denoising and used as input to a computational classi-
fier to increase classification accuracy. The most commonly 
used extracted features from sEMG signal were discussed. 
The implemented machine learning algorithms were then 
indicated. Finally, an overview of different applications of 
lower limb activity recognition were presented.

Other significant findings that should be investigated fur-
ther in the future are yet possible. To begin, the accessible 
dataset comprises information from a rather limited number 

Fig. 8  Application scenarios 
of the sEMG based activity 
recognition
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of patients. As a result, the recommended approaches should 
be examined using a large number of participants to miti-
gate the bias imposed by small datasets. There are limited 
lower limb activity datasets available on abnormal people 
based on sEMG signals, therefore researchers can focus on 
this field as well. There has been relatively little research on 
the imbalance of sEMG signals in healthy and pathologi-
cal knee individuals, consequently it is also an open topic 
for researchers. Feature extraction is a crucial step for the 
classification task using machine learning techniques. So, 
in further study, one may strive to minimise the extracted 
feature space by employing feature reduction or selection 
strategies. On the brighter side, this study provides a clear 
and concise overview of sEMG signal based human lower 
limb activity recognition techniques, databases, challenges, 
application, and its future prospective.
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