Skip to main content
. 2022 May 28;12(4):369–379. doi: 10.1007/s13534-022-00230-2

Table 2.

Mean values of MSE, R.2 and computational time for artificial neural network models with different configurations

5 nodes 15 nodes 30 nodes
Period MSE Train 0.0015 0.0008 0.0004
Valid 0.0017 0.0011 0.0006
Test 0.0016 0.001 0.0006
R2 0.7124 0.8253 0.9057
Comp. Time (s) 0.2263 0.3642 0.5568
Limb Lengths MSE Train 0.000142 0.000107 0.00007
Valid 0.000145 0.000116 0.000084
Test 0.000145 0.000116 0.000083
R2 0.9923 0.994 0.9959
Comp. Time (s) 1.4087 2.9573 8.66
Orientation MSE Train 0.0048 0.0038 0.0027
Valid 0.0049 0.0041 0.0031
Test 0.0049 0.0041 0.0032
R2 0.9877 0.9901 0.9927
Comp. Time (s) 0.9615 2.7845 11.1782
Ankle Joint Angle MSE Train 0.00257 0.00217 0.00168
Valid 0.00265 0.00239 0.00204
Test 0.00265 0.00237 0.002
R2 0.8868 0.9019 0.9208
Comp. Time (s) 21 398 1425
Knee Joint Angle MSE Train 0.0042 0.00342 0.00252
Valid 0.00441 0.00378 0.00308
Test 0.00437 0.00378 0.00303
R2 0.9632 0.9692 0.9764
Comp. Time (s) 31 262 1131
Hip Joint Angle MSE Train 0.00172 0.00137 0.00105
Valid 0.00186 0.00154 0.00128
Test 0.00179 0.00151 0.00126
R2 0.9812 0.9847 0.9879
Comp. Time (s) 46 219 1034
Pelvis-Body Joint Angle MSE Train 0.00044 0.0004 0.00035
Valid 0.00044 0.00042 0.00038
Test 0.00045 0.00041 0.00039
R2 0.7164 0.7397 0.7666
Comp. Time (s) 39 350 1510
Vertical GRF MSE Train 0.00355 0.00309 0.00257
Valid 0.00354 0.0032 0.00292
Test 0.00361 0.00332 0.00299
R2 0.9832 0.985 0.9871
Comp. Time (s) 33 588 1555
Horizontal GRF MSE Train 0.00032 0.00029 0.00024
Valid 0.00034 0.00032 0.00028
Test 0.00033 0.00031 0.00027
R2 0.9643 0.9669 0.972
Comp. Time (s) 27 209 1346