Skip to main content
. 2022 Sep 27;13:977189. doi: 10.3389/fphys.2022.977189

TABLE 6.

Testing data results.

Model TP TN FP FN Sensitivity Specificity Accuracy Balanced accuracy AUROC
4-layer DNN (Proposed) 3 30 8 1 0.75 0.7894 0.7857 0.7697 0.90
LR 2 21 17 2 0.5 0.4473 0.4523 0.4736 0.47
SVM 2 24 14 2 0.5 0.6315 0.6190 0.5657 0.55
KNN 2 37 7 2 0.5 0.8157 0.7857 0.6578 0.65
RF 2 27 11 2 0.5 0.7105 0.6904 0.6052 0.55
AdaBoost 1 33 5 3 0.25 0.8684 0.8095 0.5592 0.58
XGBoost 2 33 5 2 0.5 0.8684 0.8139 0.6842 0.67

TP, true positives; TN, true negatives; FP, false positives; FN, false negatives; AUROC, area under receiver operating characteristics; DNN, deep neural network; DT, decision tree; SVM, support vector machine; KNN, K-Nearest Neighbor algorithm; RF, random forest; AdaBoost, adaptive boosting; XGBoost, extreme gradient boosting.