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Abstract

High-throughput sequencing and functional characterization of the cancer transcriptome have
uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations
in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing
alteration-dependent gene expression and, in some cases, generation of novel splicing-derived
proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer
pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic
intent.

RNA splicing is an evolutionarily conserved nuclear enzymatic process whereby precursor
mRNA (pre-mRNA) is transformed into mature mRNA for translation to protein. This
fundamental eukaryotic process is an essential regulator of gene expression and proteome
diversity:2. Alternative RNA splicing regulates a multitude of cellular processes, including
development, differentiation, cell cycle and cell death. As such, dysregulation of alternative
splicing can alter fundamental cellular processes to promote neoplastic transformation,
cancer progression or therapeutic resistance. Here, we review normal splicing mechanisms
and splicing dysregulation in cancer. We highlight current and developing strategies to target
cancer-specific aberrant splicing and discuss advances in chemical modulation of splicing
and targeting of post-translational modifications (PTMs) of splicing proteins.

Molecular regulation of RNA splicing

RNA splicing, whereby noncoding segments (introns) of pre-mRNA are removed to produce
mature mMRNA, largely occurs in parallel with transcription by RNA polymerase Il. Splicing
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is performed by a large highly dynamic RNA-protein macromolecular complex known

as the spliceosome3. Over 99.5% of splicing reactions are performed by the major (or
U2-dependent) spliceosome, which is composed of five small nuclear ribonucleoproteins
(snRNPs) U1, U2, U4, U5 and U6 as well as >200 non-snRNP protein components®.

The remaining (<0.5%) splice sites are recognized by the minor (or U12-dependent)
spliceosome, which is made up of the U5 snRNP as well as distinct functional analogs

of the major spliceosome’s U11, U12, U4atac and UGatac SnRNPs (reviewed recently in ref.

5)_

The spliceosome machinery assembles on introns by the stepwise recognition of three core
consensus sequences that help distinguish intronic from exonic regions (Fig. 1a,b). These
include the 5” splice site (5’ss), which contains the GU dinucleotide at the 5" end of the
intron, the branch site residue, which is typically an adenosine nucleotide, and the 3" splice
site (3”ss), which is comprised of the polypyrimidine tract (which promotes spliceosomal
recognition of the branch site residue) and the AG dinucleotide at the 3" end of the intron.
The recognition of diverse regulatory sequences including splice sites relies on RNA-RNA,
RNA-protein and protein—protein interactions.

Splicing catalysis is initiated by the U1 snRNP after binding of the 5’ss consensus sequence,
followed by splicing factor 1 (SF1) binding of the branch site sequence and the U2 auxiliary
factor (U2AF) complex binding of the polypyrimidine tract and the AG dinucleotide at

the 3”ss%. Removal of SF1 from the branch site allows for U2AF-mediated guidance

of U2 snRNP and its components, including splicing factor 3b subunit 1 (SF3B1), to

the branch site sequence. The preassembled U4/U6.U5 tri-snRNP is then added to the
growing spliceosome machinery followed by U1/U4 snRNP release, leading to formation

of a catalytically active complex of the spliceosome. Pre-mRNA intron removal then
proceeds by two sequential transesterification reactions that are initiated by nucleophilic
attack of the 5”ss by the branch site nucleotide that results in the formation of an

intron lariat (Fig. 1a). The lariat is a temporary structure that is subsequently removed

by 5’ss-mediated attack on the 3’ss, producing a mature mRNA product followed by
spliceosome disassembly. Development of single-particle cryo-electron microscopy has
revolutionized our understanding of the spliceosome, allowing for visualization of highly
dynamic fully assembled spliceosomes, including the U4/U6.U5 tri-snRNP in humans®7 and
other species’*8.

Alternative splicing and splicing regulation.

Splice sites are generally classified based on whether they are always (‘constitutive’) or
only sometimes (“alternative’) recognized as splice sites. High-throughput RNA sequencing
studies have revealed that >95% of pre-mRNAs in humans undergo alternative splicing

in which different sets of exons are spliced together with the potential to generate
non-productive transcripts or multiple mRNA isoforms allowing for a diverse array of
translated proteins from a single genel2:2.10, | ong-read RNA sequencing (RNA-seq)

and high-throughput single-cell sequencing can now be applied to quantify genome-wide
splicing changes at the individual cell level and to identify a more accurate compendium of
full-length transcripts (Fig. 2). Splicing can regulate gene expression through generation of
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unproductive mRNAs that are targeted to the non-sense-mediated decay (NMD) pathway.
Moreover, RNA splicing is tightly linked to nuclear export, subcellular localization,
translation and stability of mRNA transcripts. Each of these processes provide means by
which splicing regulates expression of a gene to protein.

Alternative splicing is controlled by both cis-acting regulatory elements and #rans-acting
splicing factors. As splicing is a cotranscriptional process, changes in the rate of

RNA polymerase Il elongation can also influence splicing outcomes by adjusting the

chance that splice sites may be recognized by the spliceosome!!. 7rans-acting splicing
regulatory factors, such as serine/arginine-rich (SR) proteins and heterogeneous nuclear
ribonucleoproteins (hnRNPs), can recognize and interact with c/s-acting regulatory
sequences, including exonic and intronic splicing enhancers and silencers, which

can strongly affect spliceosome assembly to promote or repress splicing activity,
respectively213 (Fig. 1b). SR proteins have been shown to primarily promote splice site
usage, whereas hnRNPs act primarily as repressors of splicing; however, their actions are
context dependent. The ENCODE datasets evaluating the functional impact of RNA-binding
proteins on RNA splicing, gene expression and binding to RNA and chromatin have clarified
the cell- and site-specific effects of many splicing regulatory proteins'4. As described in
detail below, certain SR proteins and hnRNPs have been shown to be mutated and or
dysregulated in cancer, acting as both oncoproteins and tumor suppressors (Fig. 1c).

Alternative pre-mRNA splicing and regulation of cell death pathways.

Apoptosis is a key cellular process that is tightly regulated by alternative pre-mRNA
splicing. The function of many apoptotic proteins is regulated by alternative splicing
through generation of mRNA transcripts, producing protein isoforms with distinct apoptosis
regulatory activities!>-17. Apoptosis can be induced through either the extrinsic (death
receptor) or intrinsic (mitochondrial) cell death pathways. Alternative splicing is thereby
used to alter the functions of apoptosis proteins at multiple stages of the extrinsic or
intrinsic pathways via changes in protein subcellular localization, ratios between pro-

and antiapoptotic splice variants, dominant-negative effects and antagonistic functions.
Consistent with this, frans-acting splicing regulatory proteins, including SR proteins and
hnRNPs, have been shown to substantially modify cell death pathways in cancer (reviewed
in ref. 18).

Alternative splicing regulation of the BCL-2 family of cell death factors, which are
commonly upregulated in cancer, has been previously described. Traditionally, members

of the BCL-2 family function as antiapoptotic factors and possess several shared protein
domains, including four BCL-2 homology (BH) domains, one transmembrane (TM) domain
and in some cases a polypeptide sequence enriched in proline, glutamate, serine and
threonine amino acids (PEST) domain. A striking example is the generation of multiple
isoforms of the BCL-2 family member BCL-x due to alternative splicing of its BH domains,
which have distinct functions and localizations within the cell. BCL-xL contains four BH
domains and functions as an antiapoptotic factor. However, alternative splicing can produce
a proapoptotic isoform called BCL-xS, which only contains the BH3 and BH4 domains
(Fig. 1d). BCL-xS antagonizes the inhibitory functions of BCL-xL as well as BCL-2
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and is widely expressed in tissues with high turnover, such as developing lymphocytes,
whereas BCL-xL is found primarily in postmitotic tissues!®. Importantly, aberrant BCL-x
splicing has been implicated in several cancers, and novel therapeutic strategies, including
splice-switch oligonucleotides, small molecular modulators and BH3 mimetics, are being
investigated to promote BCL-x splicing correction?C. Similarly, the antiapoptotic factor
MCL1 has a PEST domain, four BH domains and one TM domain, but alternative splicing
events can generate proapoptotic isoforms, including MCL-1S, which only possesses the
PEST, BH4, BH3 and TM domains (Fig. 1d), and MCL-1ES, which possesses BH1-BH3
and the TM domain?Z.

Many annotated alternative splicing variants in apoptotic genes have only been confirmed

at the RNA level, and further investigation of these predicted isoforms at the protein level
and their functions will be crucial for mechanistic understanding of cell death regulation and
exploitation for therapeutic targeting.

Dysregulation of RNA splicing in cancer.

Mutations

Over the last decade, genomic DNA and RNA sequencing have revealed numerous means
by which splicing is pathologically altered in cancer, including mutations in regulatory
sequences of tumor suppressor genes22:23, recurrent somatic mutations in genes encoding
core spliceosomal proteins and regulatory components24-30 and tumor-specific changes in
the expression of specific RNA splicing factors31:32, In parallel, systematic transcriptomic
analyses of cancer cells have revealed widespread changes in alternatively spliced transcripts
compared to normal tissues, leading to skewing of isoform usage of annotated isoforms and
the generation of aberrant, unannotated RNA isoforms in cancer?2:23:33.34_ A comprehensive
pan-cancer analysis combining whole-exome sequencing and RNA-seq showed that tumors
harbor up to 30% more alternative splicing events than normal tissues3°. These studies
highlight the commonality of splicing dysregulation in cancer and provide a rationale for
potential therapeutic intervention.

in RNA splicing factors

In 2011, groundbreaking work by Yoshida and colleagues identified recurrent somatic
mutations in genes encoding core spliceosomal proteins in individuals with myelodysplastic
syndromes (MDS)24. These findings were supported by additional studies in MDS25:27

and chronic lymphocytic leukemia (CLL)26:29, providing a striking direct connection
between splicing misregulation and cancer pathogenesis. Since that time, splicing factor
mutations have been identified in a variety of cancer subtypes3®, including acute myeloid
leukemia (AML), and solid tumors, such as uveal melanoma (15-20%)28:30, breast cancer
(5.6%)37:38, pancreatic ductal adenocarcinoma (4%)3°, lung adenocarcinoma (3%)%° and
bladder cancer3®.

Alterations affecting splicing regulation in cancer generally fall into two categories: (1) cis-
acting mutations that occur within or outside (intronic mutation altering splicing) the mRNA
sequence that is being spliced and (2) frans-acting alterations, whereby mutations, changes
in expression and/or PTM of splicing factors promote aberrant splicing of pre-mRNA (Fig.
1c).
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SF3B1.

The most frequent and well-characterized #rans-acting recurrent splicing mutations in
cancer primarily occur in four genes (Fig. 1e): SF3B1, serine/arginine-rich splicing
factor 2 (SRSF2), U2 snRNA auxiliary factor 1 (U2AFI) and zinc-finger, RNA-binding
motif and serine/arginine-rich 2 (ZRSR2)?42527  Several features of mutations in these
genes, including their occurrence as heterozygous hotspot mutations at specific amino
acid residues in SF3B1, SRSF2 and U2AF1, suggest gain or alteration of function. By
contrast, mutations in the X chromosome-encoded ZRSR2 occur throughout the gene as
stop codons or disruptions in the reading frame, which are more consistent with loss of
function?4. Importantly, mutations in these four splicing factors occur in a statistically
mutually exclusive manner. Below, we discuss the current understanding of the functional
implications in the most commonly mutated RNA splicing factors in cancer.

SF3B1 is the most commonly mutated splicing factor across cancers, with the highest
frequency in hematological malignancies®. In MDS, SF3B1 mutations define a distinct
clinical entity known as MDS with ring sideroblasts (MDS-RS) and confer an overall
favorable prognosis?425, Alternatively, SF3B1 mutations in CLL are more common in
unmutated /GHV/ CLL, which is a well-established adverse prognostic subset of CLL26:29,

SF3B1 is a subunit of SF3b, which in combination with SF3a and the core U2

snRNP comprise the 17S holo U2 snRNP complex. SF3B1 facilitates binding of the

U2 snRNA to the pre-mRNA branch site sequence through N-terminal interactions with
the U2AF heterodimer (Fig. 1b). The SF3B1 C-terminal Huntington, elongation factor 3,
PR65/A, TOR (HEAT) domain is responsible for a variety of protein—protein and protein—
RNA interactions, including the branch site and surrounding pre-mRNA sequences*2:43,
Importantly, the majority of cancer-associated SF3B1 mutations occur within the HEAT
domain as heterozygous point mutations, wherein mutations at distinct residues are
associated with different cancer subtypes?8:44 (Fig. 1e). For example, substitutions at R625
are restricted to melanomas, whereas K700E substitutions occur in 97% of individuals
with MDS-RS28:30.36 K666 substitutions are rare in MDS-RS, at ~1.5%; however, they
are distinctly associated with high-risk MDS and AML?®. The association of specific
SF3B1 point mutations with different cancer types and clinical outcomes warrants further
investigation into the mechanism underlying allele-specific effects of distinct SF381
mutations.

SF3B1 hotspot mutations are associated with recognition of aberrant branch site residues,
which most commonly leads to use of an aberrant intron-proximal 3’ss located 10-30 base
pairs upstream of the canonical 3"ss#647. The transcripts generated from such missplicing
most commonly contain premature termination codons predicted to trigger NMD#8:49,
However, there are many mutant SF3B1-dependent splicing changes that are not aberrant
3’ss events. As a key example, inclusion of a novel unannotated exon within BRD9 occurs
across SF3B1-mutant hotspots and cancers and appears to be critical for SF3B1-mutant
pathogenesis in the case of uveal melanoma®C. Currently, it appears that there are a small
number of SF3B1 mutation-induced aberrant splicing events, which appear to be central to
development of distinct SF3B1-mutant cancers. For example, recent work dissecting the role
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of individual misspliced transcripts in MDS-RS identified that aberrant splicing of three to
five distinct gene products can recapitulate MDS-RS in human cells®l. Furthermore, Lieu
and colleagues demonstrated a functional role for MAP3K7 missplicing and subsequent
downregulation in MDS anemia®2.

Recent studies have highlighted a critical role for the spliceosomal protein SURP and
G-patch domain-containing 1 (SUGP1) in wild-type SF3B1 splicing. MDS-associated
mutations in SF3B1 were found to weaken the interaction between mutant SF3B1 and
SUGP1, resulting in defects in branch site recognition and increased cryptic 3"ss usage®3.
Reduction of SUGP1 expression could partially recapitulate mutant SF3B1 splicing defects,
and overexpression of SUGP1 in SF3B1-mutant cells partially rescued SF3B1-associated
aberrant splicing®3. Furthermore, pan-cancer genomic analyses identified SUGP1 mutations
in SF3B1 wild-type cancers and showed that SUGP1 mutants induced use of cryptic 3’ss
similar to mutant SF3B1 aberrant splicing®®.

U2AF mutations.

SRSF2.

U2AF is a heterodimeric complex composed of U2AF1 and U2AF2 that function primarily
to delineate the 3’ss during a splicing reaction (Fig. 1b). U2AF2 is the larger subunit

that binds to the polypyrimidine tract, whereas the small subunit U2AF1 recognizes the

AG dinucleotide consensus sequence at the 3”ss and intron—exon boundary®>-%8, U2AF1
and U2AF2 are recurrently mutated in myeloid malignancies and are associated with high-
risk MDS and AML, with U2AF1 mutations being significantly more common?7:59.60,
U2AF1 is also mutated in solid tumors, with the highest frequency in lung cancer??.
U2AF1 mutations occur within the first and second zinc-finger domains at residues S34
and Q157, respectively?427 (Fig. 1e). The global effects of U2AF1 mutation on RNA
splicing are allele specific and lead to changes in cassette exon usage that is dependent

on nucleotide sequences surrounding the 3“ss AG dinucleotide®?. While U2AF1-mutant-
dependent splicing alterations affect a number of genes implicated in myeloid malignancies,
including ASXL1, BCOR and DNMT3B%L, the role of any of these specific alterations in
MDS pathogenesis is not clear. Recent data reveal that U2AF1 mutations promote use of
specific isoforms of GNAS and IRAK4, which may promote malignant transformation2.63;
however, these are annotated alternative splicing events that are not specific to U2AF1-
mutant cells.

U2AF2 mutations are much less common, but recurrent hotspot U2AF2 mutations (G176
and L187) have been identified and cluster within the first of two RNA recognition motif
(RRM) domains. U2AF2 mutations are predicted to affect binding to the polypyrimidine
tract; however, further functional studies are needed to determine the downstream
implications of this change in protein—RNA interaction.

SRSF2 is an auxiliary splicing factor mutated in ~50% of individuals with chronic
myelomonocytic leukemia, 20-30% of individuals with MDS and 10-14% of individuals
with AML2480 Mutations in SRSF2 are enriched in high-risk MDS and are associated
with increased risk of transformation to AML in the setting of MDS as well as clonal
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ZRSR2.

hematopoiesis®*%5. SRSF2 is a member of the SR protein family and is involved in splicing
regulation by promoting exon recognition through binding of exonic splicing enhancer
(ESE) sequences within pre-mRNAs via its RRM domain66-68, Wwild-type SRSF2 efficiently
recognizes both C- and G-rich mMRNA sequences89; however, the hotspot mutation at the
P95 residue alters SRSF2’s ability to bind RNA in a sequence-dependent manner (Fig. 1e),
leading to a skewing in which G-rich ESE sequence recognition is reduced while C-rich
sequence recognition is increased, ultimately enhancing inclusion of exons with C-rich
ESEs’0.71,

As with SF3B1, several differentially spliced genes in mutant SRSF2 cells have been
implicated in the pathogenesis of myeloid malignancies. Interestingly, SRSF2 mutation-
dependent splicing promotes an EZH2 isoform with inclusion of a highly conserved

poison exon that undergoes NMD, leading to impaired hematopoietic differentiation?©.
Consistent with this change in EZH2 expression in SRSF2-mutant cells, EZH2 loss-of-
function mutations are mutually exclusive with SRSF2 mutations in MDS®0. Of note, mutant
SRSF2 splicing changes go beyond cassette exon splicing and include effects on intron
retention’0:72,

ZRSR2 is encoded on the X chromosome and functions as an RNA-binding protein where

it primarily interacts with the 3"ss of U12-type introns’3. Mutations in ZRSR2 result in the
retention of minor introns’3:74. The splicing consequences of ZRSR2 genetic alterations,
therefore, appear quite different from those in SF3B1, U2AF1 or SRSF2. Moreover, while
there is no functional evidence that SF3B1, U2AF1 or SRSF2 mutations confer any
advantage in vivo in mouse models without additional genetic aberrations, loss of Zrsr2

in mice results in a strong competitive self-renewal advantage to hematopoietic stem cells’4.
This unique impact of Zrsr2 mutations on hematopoiesis in mice may be related to the
remarkable conservation in minor intron sequences between species (which is not the case
with the vast majority of U2-type introns)’>76,

snRNA mutations.

Beyond mutations in protein-coding genes, recurrent hotspot mutations in the U1, U2 and
U11 RNA components of the spliceosome (known as sSnRNAs) have been identified in
several cancers’’~"9. U1 and U2 snRNAs are primarily responsible for recognition of the
5’ss and branch site, respectively, in major introns, and recurrent U1 mutations occur at

the third base of U1 snRNA within the 5”ss-binding region. The U1 3A > C mutation

was discovered across multiple cancer subtypes, including CLL, other B cell non-Hodgkin
lymphomas, hepatocellular carcinoma and pancreatic adenocarcinoma. By contrast, the U1
3A > G mutation is restricted to individuals with medulloblastoma (MB), with a significant
preference for sonic hedgehog-type MB’. Hotspot mutations in the fifth nucleotide of U11
snRNA, which is responsible for 5’ss recognition of minor introns, were also reported in
MB’7. Tumors with mutant U1 and U11 snRNAs have significant aberrant splicing and
increased cryptic 5”ss events. Hotspot mutations within the 28th nucleotide of the U2
SnRNA (c.28 > T/G substitutions) have been discovered in B cell malignancies as well as
prostate and pancreatic cancers’. This unexpected finding was complicated by the fact that
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there are numerous copies of nearly identical SnRNA genes and pseudogenes across the
genome, which makes identification of true somatic mutations in genes encoding SnRNAs
exceedingly difficult. Moreover, it is important to note that the functional impact of U2
SnRNA mutations are currently unclear, as there have not been detectable alterations in gene
expression or splicing in cell lines or primary tumors with this U2 snRNA mutation to date.

Other mutations and splicing modifications.

In addition to the mutations described above, whole-exome sequencing data from the 33
tumor types within The Cancer Genome Atlas have identified somatic mutations in PRPFS,
PHF5A (a component of the SF3b complex that interacts with SF3B1), HNRNPCL 1,
RBM!10, SFPQ, PCBP1, PCBP2, FUBPI, FUBP3and QK/among others36:80.81 | oss-of-
function mutations in the tumor suppressor gene KBMZI0are present in lung and bladder
adenocarcinomas and are primarily associated with exon inclusion events36:40. For example,
mutations and changes in the expression of RBM10 promote alternative splicing of the
Notch signaling inhibitor NUMB via an exon inclusion event at exon 9, leading to sustained
Notch activation in lung cancer82:83, Qutside of RBM10, there has been little functional
characterization of the aforementioned mutations to date.

Additional studies have found that changes in the expression or activity of splicing factors,
especially SR and hnRNP proteins, can lead to cancer-associated splicing and transformation
(reviewed in ref. 81). As splicing factors tend to operate in a concentration-dependent
manner, changes in expression levels and PTMs can promote oncogenic transformation.

For example, upregulation of SRSF1 is prevalent in multiple cancers and transforms cells

by promoting alternative splicing of target genes, including MST1/84 and RPS6KBI (ref.
31), Additionally, phosphorylation of SRSF1 by SRPK1 can promote tumor-specific isoform
expression of Rac1b in colorectal cells8®. PTMs of SR proteins have been shown to regulate
spliceosome formation and catalysis by regulating the shuttling of SR proteins in and out of
the nucleus86:87,

Beyond frans-acting mutations in splicing factors, mutations within introns and exons are
well established to have established effects on splicing regulation, including cis-acting DNA
mutations that affect the 5”ss, 3’ss, branch site or splicing enhancer or silencer elements.
Importantly, even synonymous mutations may alter splicing regulatory elements to cause
missplicing?2. Both somatic exonic and driver noncoding splice site mutations have been
implicated in the inactivation of tumor suppressor genes, including recurrent synonymous
mutations and noncoding intronic mutations, disrupting splice sites within 7P53and other
genes important in tumorigenesis?3:88,

Targeting RNA splicing in cancer

Splicing factor mutations represent attractive therapeutic targets, as they frequently occur as
early initiating events, are present in dominant clones and are found in cancers with few
effective treatment options81:89, Spliceosomal factors SF3B1, SRSF2 and U2AF1 typically
harbor mutually exclusive heterozygous mutations, and coexpression of these mutations

is intolerable to cells®%91, Furthermore, several studies have shown that splicing-mutant
cells are preferentially dependent on wild-type spliceosome function, where deletion of
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the wild-type allele leads to cell death across different cancer subtypes with mutations in
SF3B1 (ref. 92), SRSF2 (ref. 93) or U2AF1 (ref. %4). These data highlight the vulnerability
of splicing factor-mutant cells to global perturbations in splicing catalysis and provide a
therapeutic rationale for targeting splicing to trigger cell death. Over the last decade, several
different therapeutic strategies targeting splicing have been developed and are discussed
below (Fig. 3).

Small-molecule modulators of splicing in cancer.

The first class of small molecules to target splicing catalysis were derived from natural
products and their derivatives that bind directly to the SF3b complex and abrogate

its interactions with the branch site residue. These drugs include spliceostatin A%,
sudemycin®, pladienolide®?, E7107 (analog of pladienolide), H3B-8800 (orally bioavailable
analog of E7107) and herboxidiene®. Functional genomic studies support the specificity
of these molecules for the SF3b complex through the identification of resistance mutations
in SF3B1 (SF3B1R1074H)99 and PHFSA (PHF5AY36C)43. Additionally, structural analysis
of the SF3b complex with pladienolide B0 and E7107 (ref. 43) provided mechanistic
insight that these molecules interact at the branch site binding pocket of SF3B1, blocking
U2 snRNP recognition of RNA and leading to increased intron retention and cassette exon
skipping throughout the genome®3,

Phase I trials of E7107 in solid tumors were complicated by unexpected ocular toxicity
and precluded further clinical evaluation of this agent101.102 While preclinical studies of
the oral SF3b inhibitor H3B-8800 showed great preferential killing of spliceosome-mutant
cancers103104 the phase | dose escalation study of H3B-8800 showed no partial or
complete responses and only a mild treatment effect, with 5 of 15 individuals with MDS
with missense SF3B1 mutations experiencing red blood cell transfusion independencel%®.
Importantly, several individuals who experienced red blood cell transfusion independence
showed downregulation of aberrantly spliced 7TMEM14C, suggesting an on-target effect
of H3B-8800 (ref. 195). Additional trials of H3B-8800 in individuals with SF3B1-mutant
myeloid malignancies and exploration of other dosing schedules are currently ongoing.

RBM39 degraders.

Concerns surrounding the safety and therapeutic window of directly targeting core
spliceosome components has led to investigation of alternative strategies of mutant splicing
factor modulation through targeting accessory splicing factors. Recently, aryl sulfonamide
molecules, such as indisulam, tasisulam, E7820 and chloroquinolxaline sulfonamide, have
been shown to link accessory RNA splicing factors RBM39 and RBM23 to CRL4/DCAF15
E3 ubiquitin ligases, leading to proteasomal degradation of RBM39 and dose-dependent
splicing alterations196:197 (Fig. 3). Functional genomic studies96:107 and structural
studies!08-110 confirm the targeting of RBM39 with these small molecules. RBM23 is

also degraded by these drugs, but it appears dispensable for cell survival. Preclinical data
demonstrate that splicing factor-mutant leukemias show increased sensitivity to genetic
depletion and pharmacological inhibition of RBM39 compared to wild typell. Interestingly,
several phase I and 11 (ref. 112) clinical trials with RBM39/RBM23 degraders have already
been completed with good safety profiles in individuals with cancer. Unfortunately, these
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trials were completed before knowledge of the mechanism of action of these agents, and
data to confirm if RBM39 degradation and/or splicing changes occurred in individuals
treated with these drugs is lacking. In future studies, it will be crucial to explore

these compounds in splicing factor-mutant malignancies with proper assessment of target
engagement in individuals. A phase Il trial of the orally bioavailable RBM39 degrader
E7820 is ongoing in splicing factor-mutant individuals with myeloid neoplasms refractory to
standard therapy (NCT05024994).

Small molecules targeting U2AF—-RNA interactions.

New small-molecule splicing inhibitors, such as phenothiazine derivatives, have been shown
in vitro to disrupt U2AF homology motifs (UHMs) and U2AF ligand motifs, which are
common protein interaction domains among splicing factors and are critical for early
spliceosome assembly13. Under normal circumstances, the C-terminal UHM domain of
U2AF2 interacts with the N-terminal U2AF ligand motif of SF1 to recognize 3’ss before
recruitment of the SF3b complex. These small molecules disrupt the function of an entire
family of UHM domain-containing proteins, including U2AF2, RBM39, SPF45 and PUF60.
Additionally, Kobayashi and colleagues discovered a small molecule (UHMCP1) targeting
the U2AF2 UHM domain, preventing SF3B1/U2AF2 interaction and leading to changes in
RNA splicing and cell viability114,

In contrast to the above agents that block U2AF interactions to perturb splicing, Chatrikhi
and colleagues have discovered a hit compound (NSC 194308) that specifically enhances
RNA binding by a U2AF2 subunit1®, This compound stalls pre-mRNA splicing by
binding an inter-RRM interface and enhances U2AF2 association with the splice site
RNA. This proof-of-principle study identified a therapeutic strategy whereby stabilization
of precatalytic splicing intermediates could be applied for therapeutic intervention.

Protein arginine methyltransferase (PRMT) inhibitors.

Given the importance of PTMs in the regulation of spliceosome assembly, subcellular
localization and protein—protein interactions, an alternative approach for targeting mutant
splicing changes incorporates the use of small molecules that inhibit placement or

removal of these modifications. Several PTMs are known to regulate splicing function,
including lysine phosphorylation116:117 performed by SR protein kinases and arginine
methylation118:119 mediated by type I and 11 PRMTs. Importantly, splicing factors are

the most abundant arginine-methylated substrates in cells, and preclinical studies have
highlighted the importance of arginine demethylation mediated by PRMTS5 and type 1
PRMT enzymes for splicing factor-mutant leukemia cell survivall19120, PRMTS5 inhibitors
are under clinical investigation, including two phase I/11 trials in advanced MDS/AML
(NCT03614728) and advanced solid tumors/hematological malignancies (NCT03886831).

Oligonucleotide-based therapeutic approaches.
Antisense oligonucleotide (ASO) therapy uses modified nucleic acids to base pair with
pre-mRNA and modifies splicing by inhibiting RNA-RNA or splicing factor—-RNA
interactions and has met clinical success in the non-cancer setting with the Food and
Drug Administration approval of nusinersenl2! and eteplirsen122 for the treatment of
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spinal muscular atrophy and Duchenne muscular dystrophy, respectively. Two formidable
challenges of ASO treatment in cancers include the molecular complexity of cancer (which
typically contains hundreds of altered splicing events in addition to many genetic mutations)
and the difficulty of delivering therapeutic oligonucleotides systemically. Nonetheless,

one proof-of-concept study showed that correcting aberrant BRD9 splicing in SF3B1-
mutant uveal melanoma cells using ASOs restored BRD9 protein levels and demonstrated
therapeutic effects in vitro and in vivo®°. Unfortunately, translation of ASO therapy

to human care has proven difficult, and a recent clinical trial of a BCL-2-modifying

ASO in combination with chemotherapy showed safety but lacked efficacy in improving
outcomes23,

Pharmacologic induction of neoantigens by modulating RNA splicing.

Checkpoint inhibitor-based immunotherapies have greatly improved clinical outcomes
across an array of cancer subtypes. Response to checkpoint blockade is associated with high
tumor DNA mutational burden124.125 and mismatch repair deficiency26, which contribute to
increased tumor neoantigen presentationl27:128_ While coding mutation-derived neoantigens
have been thoroughly investigated, RNA-seq analysis of The Cancer Genome Atlas data
provides evidence that tumor-specific alternative splicing events are abundant and produce
neoantigens that are predicted to be more immunogenic than missense mutations32:129,
Furthermore, two additional studies have shown that noncoding regions are the main
sources of targetable tumor-specific antigens in cell lines and human samples!30 and that
retained intron neoepitopes are presented on major histocompatibility complex class | (MHC
class 1) on the surface of cancer cell lines!31, Additionally, tumor-associated epitopes
presented on MHC class | are typically predicted based on cancer-specific mutations in
previously annotated protein-coding regions; however, several studies have highlighted that
the source of cancer antigens presented on MHC class | may be more diverse and possibly
derived from translation of unannotated open reading frames (NUORFs)132:133_ The extent
to which nuORFs contribute to the diversity of immunopeptidomes of cancer cells was
unknown. Recent work coupling ribosome profiling, hierarchical ORF prediction and mass
spectrometry of primary healthy and cancer samples and cell lines showed that peptides
that originate from nuORFs are displayed on MHC class | of cancer cells and represent a
new unexplored pool of MHC class | tumor-specific peptides with potential for therapeutic
targeting?34.

The above studies provide proof of concept that novel spliced-derived peptides could serve
as neoepitopes; however, whether splicing-derived neoepitopes could elicit an endogenous
immune response remained unanswered. Recent work demonstrated that pharmacologic
modulation of splicing using clinical-grade compounds with distinct mechanisms can boost
immune checkpoint blockade by inducing MHC class I-presented neopeptides!3® (Fig.

4a). Such splicing-derived neoepitopes were able to trigger an antitumor T cell response

in vivo. This provides a means to quickly and reversibly induce neoantigen generation
without genomic changes. More broadly, these data suggest that modulation of splicing acts
as a novel source of immunogenic peptides, which may have increased immunogenicity
compared to mutation-derived neoantigens.
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While the above approach appears promising, whether combination treatment with
splicing modulatory compounds and immune checkpoint blockade will be tolerated in a
clinical setting, given the possibility of increased inflammatory side effects, is unknown.
Furthermore, it is unclear whether splicing modulation will result in long-lasting immune
responses and whether maintenance splicing inhibitor drug therapy will be required for a
continued antitumor effect.

Synthetic introns for mutation-dependent gene expression.

A limitation of currently available splicing inhibitors is that they target the core

spliceosome machinery, which is an essential component of both normal and malignant
cells. Indiscriminate inhibition of both wild-type and mutant splicing, even if preferentially
affecting malignant cells, increases the potential risk of adverse side effects, and the
therapeutic window of these therapies is not well defined. As discussed above, however,
recurrent change-of-function mutations in RNA splicing factor genes induce sequence-
specific changes in RNA splicing. Thus, the neomorphic functions of mutant RNA splicing
factors highlights these mutations as exciting therapeutic targets. To date, however, there
have been no therapeutic approaches identified that specifically target splicing factor-mutant
cells.

A recent novel method harnesses the change in RNA splicing activity between mutant and
wild-type cells to drive spliceosomal mutation-dependent gene expression in cancers!38
(Fig. 4b). After identifying endogenous genes that were alternatively spliced in individuals
with SF3B1-mutant cancer compared to normal controls, SF3B1-mutant-specific synthetic
introns were generated for intron-dependent delivery of a suicide gene that preferentially led
to elimination of leukemia, melanoma and breast and pancreatic cancer cells bearing SF3B1
mutations in vitro and in vivo while leaving wild-type cells unaffected. Importantly, any
gene of interest can be expressed in a mutant or wild-type splicing factor-dependent manner,
allowing for genotype-specific expression of florescent reporters, immunotherapies or cell
surface receptors among many other applications.

Conclusion

Decades of research have identified means by which cancer initiation, progression or
maintenance is fueled by alterations to the process of RNA splicing. While functional
genomic studies continue to dissect the causal links between altered RNA splicing and
cancer, a burgeoning toolbox of chemicals is being developed that may provide new means
to probe and harness altered RNA splicing in cancer. Even if drugs that perturb splicing

do not have direct therapeutic impact on their own, it will be exciting to identify if the
enzymatic changes to splicing induced by these agents can be leveraged for novel uses. For
example, exciting recent work used splicing regulation induced by the oral drug branaplam
(LMI070) to regulate expression of a gene therapy vector in vivo37 (Fig. 4c). In addition,
one current major area of interest is understanding whether alterations in RNA splicing,
either derived from cancer-specific changes to the splicing process or via drugs that perturb
splicing, can generate therapeutically meaningful novel antigens, with relevance for cellular
immunotherapies (such as T cells bearing transgenic T cell antigen receptors or chimeric

Nat Cancer. Author manuscript; available in PMC 2022 October 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Stanley and Abdel-Wahab Page 13

antigen receptor T cells against the misspliced products). Furthermore, it will be important
to extend these efforts from RNA splicing in cancer to other abundant and functionally
important RNA-processing enzymatic processes, such as RNA polyadenylation and NMD.
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Fig. 1|. Mechanisms of RNA splicing and dysregulation in cancer.
a, Sequential transesterification reactions involved in removal of an intron with resultant

splicing product. During splicing catalysis, the branch site adenosine (A) nucleotide carries
out nucleophilic attack of the 5”ss, forming a lariat, and the 3" OH of the released 5

exon performs a second nucleophilic attack on the last nucleotide of the intron at the

3’ss, joining the exons and releasing the intron lariat. b, Key sequence features and early
splicing factors that govern splicing are shown. Sequence elements required for spliceosome
assembly include the 5”ss and 3’ss, the polypyrimidine (poly(Y)) tract and the branch

site residue that often follows the illustrated consensus motifs. The U1 snRNP (green)
initiates splicing by recognizing the 5’ss consensus sequence. The U2 snRNP complex
(brown) consisting of SF3B1 and other proteins is recruited to the branch site residue

by the U2AF heterodimer (orange), which recognizes the 3’ss. Enhancers (ESE and ISE
(intronic splicing enhancer)) and silencers (ESS (exonic splicing silencer) and ISS (intronic
splicing silencer)) are recognized by specific frans-acting RNA-binding proteins, including
SR proteins and hnRNPs. SR proteins commonly serve as enhancers of splicing, whereas
hnRNPs commonly repress splicing. ¢, The following are mechanisms by which RNA
splicing is altered in cancer: (1) cis-acting mutations affecting splicing regulatory sequences,
(2) trans-acting mutations in the U1 snRNA, (3) mutations in RNA splicing factors and

(4) changes in splicing factor expression. d, Alternative splicing of BCL-2 family of cell
death factors BCL2L1and MCL1 and alternative transcripts with resultant protein domain
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structures. Alternative splicing of BCL2L 1 leads to generation of proapoptotic BCL-xS
(green), which inhibits antiapoptotic BCL-xL (red) function, allowing BAX/BAK activation
of mitochondrial outer membrane permeabilization (MOMP) and induction of apoptosis.
Similarly, alternative splicing of MCL1 leads to generation of proapoptotic MCL1-S (green),
inducing apoptosis through inhibition of antiapoptotic MCL1-L (green) function. EX, exon.
e, Protein diagrams (colored regions) of four splicing factors (SF3B1, U2AF1, SRSF2 and
ZRSR2) and secondary RNA structure of the U1 and U2 snRNAs, with depictions of the
most frequently reported hotspot mutations in red. ZnF, zinc-finger; RS, serine/arginine-rich
domain; RRM, RNA recognition motif; UHM, U2AF homology motif.
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Fig. 2|. Recent advancesin genomic analysis of RNA splicing.
Schematic of available tools used to assess RNA splicing alterations. One gene (exons

in gray) can produce multiple transcripts (different colors represent different exons)
through alternative splicing, which allows for variation in RNA modifications, including
mOA methylation and alterations in poly(A) tail sequence. While detection of splicing
events and isoforms from conventional RNA-seq is the most mature method, short-read
lengths (100-200 base pairs) rarely span splice junctions, requiring methods to infer
full-length RNA transcripts!38-140_ importantly, short-read RNA-seq cannot differentiate
intermediate splicing products from final splicing products and is unable to accurately
quantitate the efficacy of the two-step enzymatic splicing reaction. Two distinct long-read
RNA-seq technologies have been commercialized by Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (ONT). PacBio uses fluorescently labeled dNTPs and
DNA polymerase to create average read lengths of >20 kilobases. By contrast, ONT

uses biological nanopores within a membrane that translocate nucleic acid under an
electric current and has no length limit141-143, Furthermore, ONT nanopore sequencing
has the ability for direct RNA sequencing and detection of epigenetic modifications,
including RNA modifications. Both long-read RNA-seq systems can generate millions of
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reads, allowing for comprehensive expression profiling. Such third-generation sequencing
technologies have been used in characterizing isoforms in organisms with poorly annotated
transcriptomes144:145 a5 well as for novel isoform discovery46:147  There is substantial
heterogeneity in RNA splicing and gene expression among individual cells, even within a
clonal population, which highlights limitations to the sequencing of bulk cell populations
for gaining insight into splicing regulation and function. While single-cell RNA-seq is
high throughput, detection and quantification of splicing changes from single cells remain
major challenges, as the most widely used platforms for single-cell RNA-seq rely primarily
on sequencing of 5" and 3" ends of transcripts. However, several studies have recently
performed long-read sequencing of RNA from individual cells148:149, Further efforts to
probe splicing at the single-cell level using similar approaches may be enlightening as well
as efforts to merge spatial transcriptomics with analysis of RNA splicing.
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Diagram of key sequence features (5’ss and 3’ss) and splicing factors (U1 snRNP,

Page 24

green; U2 snRNP, brown; U2AF heterodimer, orange) involved in splicing catalysis with
accompanying splicing targeting mechanisms with natural products and small-molecule
inhibitors. Top left, SF3b complex inhibitors bind to the branch site residue-binding pocket
of SF3B1, blocking U2 snRNP recognition of the branch site, leading to intron retention

and cassette exon skipping. Top right, protein domains of select UHM protein family

members and drugs that have been shown to bind and inhibit these proteins. NSC 194308
targets U2AF2 through binding between its RRM domains to enhance U2AF2’s binding to
RNA. Alternatively, phenothiazines target U2AF2 through binding of the UHM domains of
several different UHM protein-containing proteins, including U2AF1, U2AF2, PUF60 and
SPF45. Bottom right, RBM39 degraders induce an interaction between the E3 ubiquitin
ligase adaptor protein DCAF15 and RBM39, leading to polyubiquitination and proteasomal
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degradation of RBM39. Bottom left, several post-translational modifications are known
to regulate splicing function, including lysine phosphorylation and arginine methylation.
Splicing factors are the most abundant arginine-methylated substrates in cells, and PRMT
inhibitors are currently under clinical investigation. CLK, Cdc-like kinase; SRPK, serine/
arginine protein kinase; DYRK, dual-specificity tyrosine-regulated kinases.
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Fig. 4 |. Novel uses of splicing modulator drugs and synthetic introns responsive to splicing factor
mutations.

a, Tumor-specific alternative splicing events are abundant in cancer and produce
immunogenic neoantigens. Pharmacologic modulation of splicing using RBM39 degraders
or PRMT inhibition induces novel splicing-derived neoepitopes that are presented on
MHC class I. Splicing inhibition can improve response to immune checkpoint blockade
through increased neoantigen generation. b, Diagram depicting the methodology and
concept of synthetic intronic sequences to drive selective gene expression in cells with
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cancer-associated mutations in the RNA-splicing machinery, as described recently in ref. 136,
In brief, endogenous splicing events, which are differentially used in splicing factor-mutant
cells, are used to generate optimized shortened synthetic sequences. These optimized introns
are then used to interrupt the protein-coding sequence of a gene of interest such that the
gene of interest is only expressed in cells with an altered RNA splicing machinery. Such an
approach may eventually be used to discover drugs that specifically regulate mutant splicing
activity. ¢, Diagram depicting a splicing switch element. The switch element allows for
precise control of gene replacement or gene editing after exposure to the small molecule
LMI070. In the absence of exon 7 (E7) a premature stop codon blocks translation of the
gene of interest. LMI070 regulates usage of exon 7, thereby regulating translation of the
gene of interest to a protein product (such as erythropoietin, Cas9 or a fluorescent protein,
such as green fluorescence protein (GFP)). Diagram reproduced from ref. 137, Springer
Nature.
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