Skip to main content
. 2022 Sep 27;13:975855. doi: 10.3389/fphar.2022.975855

TABLE 1.

Brief descriptions of 10 candidate regression models, including the related packages and their parameters (default settings).

Model Package Key hyperparameters
ETR scikit-learn 0.23.2 (from sklearn.ensemble import ExtraTreesRegressor) “n_estimators”: 100, “max_depth”: None, “min_samples_leaf”: 1, ‘”min_samples_split”: 2, “max_features: auto”
RFR scikit-learn 0.23.2 (from sklearn.ensemble import RandomForestRegressor) “n_estimators”: 100, “max_depth”: None, “min_samples_leaf”: 1, “min_samples_split”: 2, ‘”max_features”: auto
BR scikit-learn 0.23.2 (from sklearn.ensemble import BaggingRegressor) “n_estimators”: 10, “max_depth”: 1.0, “max_samples”: 1.0
GBR scikit-learn 0.23.2 (from sklearn.ensemble import GradientBoostingRegressor) “n_estimators”: 100, “max_depth”: 3, “min_samples_leaf”: 1, “min_samples_split”: 2, “alpha”: 0.9, “learning_rate”: 0.1, “max_features”: None
ABR scikit-learn 0.23.2 (from sklearn.ensemble import AdaBoostRegressor) “n_estimators”: 50, “loss”: linear, “learning_rate”: 1.0
XGBR xgboost 1.3.3 (from xgboost import XGBRegressor) “n_estimators”: 100, “max_depth”: None, “min_child_weight”: None, “gamma”: None, “colsample_bytree”: None, “subsample”: None, “reg_alpha”: None, “reg_lambda”: None, “learning_rate”: None
SVR scikit-learn 0.23.2 (from sklearn.svm import SVR) “C”: 1.0, “gamma”: scale, “epsilon”: 0.1, “kernel”: rbf
KNR scikit-learn 0.23.2 (from sklearn.neighbors import KNeighborsRegressor) “weights”: uniform, “n_neighbors”: 5, “p”: 2
DTR scikit-learn 0.23.2 (from sklearn.tree import DecisionTreeRegressor) “criterion”: squared_error, “max_depth”: None, “min_samples_leaf”: 1, “min_samples_split”: 2, “max_features”: None
MLR scikit-learn 0.23.2 (from sklearn.linear_model import LinearRegression) “fit_intercept”: True, “normalize”: deprecated, “n_jobs”: None, “copy_X”: True