TABLE 1.
Brief descriptions of 10 candidate regression models, including the related packages and their parameters (default settings).
Model | Package | Key hyperparameters |
---|---|---|
ETR | scikit-learn 0.23.2 (from sklearn.ensemble import ExtraTreesRegressor) | “n_estimators”: 100, “max_depth”: None, “min_samples_leaf”: 1, ‘”min_samples_split”: 2, “max_features: auto” |
RFR | scikit-learn 0.23.2 (from sklearn.ensemble import RandomForestRegressor) | “n_estimators”: 100, “max_depth”: None, “min_samples_leaf”: 1, “min_samples_split”: 2, ‘”max_features”: auto |
BR | scikit-learn 0.23.2 (from sklearn.ensemble import BaggingRegressor) | “n_estimators”: 10, “max_depth”: 1.0, “max_samples”: 1.0 |
GBR | scikit-learn 0.23.2 (from sklearn.ensemble import GradientBoostingRegressor) | “n_estimators”: 100, “max_depth”: 3, “min_samples_leaf”: 1, “min_samples_split”: 2, “alpha”: 0.9, “learning_rate”: 0.1, “max_features”: None |
ABR | scikit-learn 0.23.2 (from sklearn.ensemble import AdaBoostRegressor) | “n_estimators”: 50, “loss”: linear, “learning_rate”: 1.0 |
XGBR | xgboost 1.3.3 (from xgboost import XGBRegressor) | “n_estimators”: 100, “max_depth”: None, “min_child_weight”: None, “gamma”: None, “colsample_bytree”: None, “subsample”: None, “reg_alpha”: None, “reg_lambda”: None, “learning_rate”: None |
SVR | scikit-learn 0.23.2 (from sklearn.svm import SVR) | “C”: 1.0, “gamma”: scale, “epsilon”: 0.1, “kernel”: rbf |
KNR | scikit-learn 0.23.2 (from sklearn.neighbors import KNeighborsRegressor) | “weights”: uniform, “n_neighbors”: 5, “p”: 2 |
DTR | scikit-learn 0.23.2 (from sklearn.tree import DecisionTreeRegressor) | “criterion”: squared_error, “max_depth”: None, “min_samples_leaf”: 1, “min_samples_split”: 2, “max_features”: None |
MLR | scikit-learn 0.23.2 (from sklearn.linear_model import LinearRegression) | “fit_intercept”: True, “normalize”: deprecated, “n_jobs”: None, “copy_X”: True |