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Abstract

Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated 

with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the 

concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat 

subjective task currently performed by pathologists. Here, we developed a machine learning 

pipeline to identify, quantitate and diagnose EoE patients’ at the whole slide image level. We 

propose a platform that combines multi-label segmentation deep network decision support system 

with dynamics convolution that is able to process whole biopsy slide. Our network is able to 

segment both intact and not-intact eosinophils with a mean intersection over union (mIoU) 

of 0.93. This segmentation enables the local quantification of intact eosinophils with a mean 

absolute error of 0.611 eosinophils. We examined a cohort of 1066 whole slide images from 400 

patients derived from multiple institutions. Using this set, our model achieved a global accuracy 

of 94.75%, sensitivity of 94.13%, and specificity of 95.25% in reporting EoE disease activity. Our 

work provides state-of-the-art performances on the largest EoE cohort to date, and successfully 

addresses two of the main challenges in EoE diagnostics and digital pathology, the need to detect 

several types of small features simultaneously, and the ability to analyze whole slides efficiently. 
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Our results pave the way for an automated diagnosis of EoE and can be utilized for other 

conditions with similar challenges.

Index Terms—

Decision support system; deep learning; digital pathology; eosinophilic esophagitis; whole slide 
image segmentation and classification

I. INTRODUCTION

Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory condition of the 

esophagus characterized by elevated levels of esophageal eosinophils [1]. After 

gastroesophageal reflux disease, EoE is the most common cause of chronic esophagitis 

leading to symptoms such as dysphagia and esophageal food impaction [2]. Food 

hypersensitivity, allergic inflammation, and multiple genetic and environmental factors 

are the main drivers of the disease pathogenesis [3]. The diagnosis of EoE requires a 

manual microscopic review of endoscopic biopsies, and the diagnostic threshold of at least 

15 eosinophils/400X high-power field (HPF) is required. Hematoxylin and eosin (H&E) 

staining is used frequently to detect eosinophilic cells, as their unique basically charged 

granule constituents have an affinity for the eosin stain [4]. A common practice is to identify 

the area of tissue within a slide that exhibits the densest eosinophil infiltration and quantify 

the peak eosinophil count (PEC) in that particular HPF and compare it to a predetermined 

threshold [4]–[6]. It is crucial to distinguish between intact eosinophils, which have both 

their intensely red cytoplasmic granules and nucleus visible [6] and contribute to the PEC, 

and not-intact eosinophils without granules or visible nucleus that are not added to the PEC.

Detecting and counting different cellular features is a laborious and time-consuming task 

that leads to inconsistencies even between trained observers [4]–[6]. The field still lacks a 

robust automatic process that can cope with the task of counting inflammatory cells such 

as eosinophils and aid the pathologists. Therefore, machine and deep learning techniques 

were utilized for various tasks in digital pathology [7], [8]. For example, identify types of 

cancerous lesions [9], [10], to segment cell nuclei [11], to segment inflammatory bowel 

disease (IBD) tissue features [12], to classify different cancer types via histology images 

[13], [14], to perform cancer screening [15], and to personalize cancer care [16]. Yet, several 

fundamental challenges still remain, particularly the gap between the scale of the features 

that determine the medical condition (which can be in the scale of a few cells) and the 

overall content of an entire slide that has a typical size of 108 − 1010 pixels (much larger 

than the typical input size of most architectures which is about 106 pixels).

One approach for predicting the patient outcome is to train deep networks based on 

one global label for each slide (e.g., whether a patient has active EoE or not) and 

train the network without local semantic labeling the image. The main advantage of this 

approach is that it does not require intensive labeling effort and allows the machine to 

infer representations of a condition without a priori local bias. We have recently used 

this approach to develop a deep learning system for classifying H&E-stained esophageal 

tissue images based on global labeling [17]. Using this approach led to a classification of 
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EoE disease activity with an accuracy of approximately 85% based only on global labels. 

Furthermore, these results showed that histological features associated with EoE are not only 

local clusters of eosinophils but also global attributes of the histology pattern.

A second approach for outcome prediction is to use semantic segmentation. In this case, 

each pixel in the image is labeled according to its tissue and cellular type, and the network 

is then trained to identify local regions belonging to the same classes in separate images. In 

this approach, the classification of the patients depends on spatial scores such as the area 

or number of particular features. One of the challenges of this approach is that in many 

cases, such as EoE, there are features which are very similar but have different clinical 

implications. In the case of EoE, it is critical to distinguish between eosinophils that are 

intact and ones that are non-intact. These cells look very similar but only the intact ones 

contribute to the PEC score.

Various net architectures have been developed for segmentation, such as Mask RCNN [18], 

Mask ECNN [19], DeepLab [20], [21], and Generative Adversarial Networks [22]. U-Net 

[23] is a common architecture model for biomedical image segmentation that was previously 

used for segmenting many cell types, including eosinophils [24]. This network is based on 

an auto-encoder architecture in which the encoder takes the input, performs down-sampling, 

and outputs a feature vector/map that represents the input. The decoder does the opposite 

orientation (i.e., up-sampling) that takes the feature vector (i.e., the features) from the 

encoder and gives the best closest match to the actual input or intended output. An upgraded 

model of the U-Net, called UNet++ [25], introduced re-designed skip pathways between the 

original U-Net layers. These pathways aim to reduce the semantic gap between the feature 

maps of the encoder and decoder sub-networks. Another update for UNet++ is the deep 

supervision that combines different sub-models of the full UNet++ to segment the image and 

enables more accurate segmentation, particularly for lesions that appear at multiple scales.

Here, we develop an efficient dynamic convolution pipeline, on the one hand, allows our 

proposed model to run rapidly on whole slide image in term of run time and memory 

constraints, and on the other hand, to segment a multi-label classes of intact and not-intact 

eosinophils for EoE diagnostics in high accuracy. We test our pipeline on the largest EoE 

cohort to date, and show that we achieved excellent segmentation performances with a mean 

intersection over union metric (mIoU) score of 0.93, allowing state-of-the-art eosinophils 

counting with a standard error of 0.611. Furthermore, based on the eosinophil counts, the 

model can classify EoE disease local activity according to whether the PEC is greater than 

15/HPF with an accuracy of 98.48%, a sensitivity of 96.89%, and specificity of 98.89%. 

Finally, we validated our model on the whole slide level using a cohort of 1066 biopsy 

slides from 400 patients and achieved an accuracy of 94.75%, sensitivity of 94.13%, and 

specificity of 95.25%.

II. METHODS

A. Study population and datasets

This study was conducted within the context of the Consortium of Eosinophilic 

Gastrointestinal Disease Researchers (CEGIR, https://www1.rarediseasesnetwork.org/cms/
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cegir) [26], a national collaborative network of 16 academic centers caring for adults and 

children with eosinophilic gastrointestinal disorders. The CEGIR clinical trial, Outcomes 

Measures in Eosinophilic Gastrointestinal Disorders across the Ages (OMEGA), is a 

longitudinal cohort study aimed at understanding the natural history of EoE, eosinophilic 

gastritis, and eosinophilic colitis during routine clinical care. All subjects’ clinical data 

were stored at the Data Management and Coordinating Center (DMCC) at Cincinnati 

Children’s Hospital Medical Center. Data were systematically extracted from the databases. 

This study was approved by the institutional review boards of the participating institutions 

via a central institutional review board at Cincinnati Children’s Hospital Medical Center 

(CCHMC IRB protocol 2015-3613). Participants provided written informed consent. 419 

subjects undergoing endoscopy (EGD) for standard-of-care purposes agreed to have their 

clinical, histologic, and demographic information stored in a private research database. 

Distal, mid, or proximal esophageal biopsies (1–3 per anatomical site) per patient were 

placed in 10% formalin; the tissue was then processed and embedded in paraffin. Sections 

(4μm) were mounted on glass slides and subjected to hematoxylin and eosin (H&E) staining. 

Slides were scanned on the Aperio scanner at 400X magnification and were saved in SVS 

format. Each slide of esophageal tissue was analyzed by an anatomic pathologist who is a 

member of the CEGIR central pathology core to determine peak eosinophil count per 400X 

high-power field (HPF). The peak eosinophil counts associated with each image were stored 

at the DMCC.

B. Semantic labeling

WSI images from 23 biopsy slides from 19 patients were used for semantic labeling. These 

had a median size of about 150K × 56K pixels. These images were split into patches with 

a size of 1200×1200 pixels. Patches contained less than 15% background were filtered to 

balance edges frequency. The remaining patches (n = 10,170) were annotated by a trained, 

experienced researcher, and were validated by four experts. Each pixel was assigned to 

one of three classes: intact eosinophils, defined by eosinophils with visible intensely red 

cytoplasmic granules and nucleus; not intact eosinophils, defined by eosinophils without 

a visible nucleus or large groups of extracellular eosinophil granules (Table I); or non-

eosinophils. The annotator marked the center of the intact or not intact eosinophils and a 

circle with a diameter of 50 pixels was used to generate the mask. We used this dataset to 

train the multi-label deep semantic segmentation network.

C. Segmentation metrics

To estimate the segmentation performances, we used the following metrics,

mIoU = 1
I ⋅ C ∑

i
∑

c

TPi, c
TPi, c + FPi, c + FNi, c

(1)

mPrecision = 1
I ⋅ C ∑

i
∑

c

TPi, c
TPi, c + FPi, c

(2)
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mRecall = 1
I ⋅ C ∑

i
∑

c

TPi, c
TPi, c + FNi, c

(3)

mSpecification = 1
I ⋅ C ∑

i
∑

c

TNi, c
TNi, c + FPi, c

(4)

where the c index iterates over the different classes in the image, and the i index iterates 

over the different images in the dataset. C is the total number of classes, and I is the total 

number of images. TP, TN, FP, FN are classification elements that denote true positive, true 

negative, false positive, and false negative of the areas of each image, respectively. mIoU is 

the intersection between the actual and predicted areas divided by their union, mPrecision 

is the fraction of the true positive out of the total predicated area, mRecall is the fraction of 

the true positive out of the total ground truth area being positive, and mSpecification is the 

fraction of the true negative out of the total ground truth area being negative.

D. Training procedure

The labeled images were split arbitrarily into training (80%) and validation (20%) sets. 

Using a rectangular grid, each image was cropped into nine 448×448 pixel patches. These 

patches were then used as an input for a model network based on the implementation 

of UNet++ (which achieved better performance than U-Net). The updated model was 

trained and optimized using Pytorch [27] framework on a single NVIDIA GeForce RTX 

2080 Ti GPU. During the training, different hyperparameters were examined. The “Cosine 

Annealing” learning rate scheduler, patch size of 448×448 pixels with a stride of 376×376 

pixels size, batch size of 5, 100 epochs, and 0.5 softmax threshold were revealed to be 

optimal. Moreover, the optimal loss function includes a Dice metric and a binary cross-

entropy (BCE) element, where the Dice and BCE are weighted with values of 1 and 0.5, 

respectively. The output of the model network was converted into a binary segmentation 

mask using a 0.5 probability threshold. The masks of the different patches were combined 

to reconstitute the original 1200×1200 image using OR function (i.e., is the truth-functional 

operator of inclusive disjunction) for the overlapping regions. During the training process, 

we examined different models based on eight different segmentation metrics, including 

mIoU, mPrecision, mRecall, and weighted average combinations between the Precision and 

Recall.

E. Estimating the eosinophils numbers and density

After semantic segmentation, the average area of a typical eosinophil is 2050 pixels. Each 

connected region with an area larger than 1800 and less than or equal to 3000 pixels was 

counted as one eosinophil. In a connected region that is larger than 3000 pixels, each 

additional 2000 pixels adds one eosinophil to the eosinophil count of this connected region. 

Based on this method, we calculate the intact eosinophil density for each image.
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F. Classifying active and not-active images

After calculating the intact eosinophil density, we compare it to the cutoff density used by 

pathologists of 15 intact eosinophils per 400X HPF (area of 0.3mm2, which corresponds to a 

size of 2144×2144 pixels).

G. Pipeline Architecture

Our pipeline input can be either one EoE patient’s whole slide image (WSI) or several 

patients’ WSIs, whereas the output includes three main elements:

1. Segmented WSIs. Each pixel of the WSIs is labeled as belonging to the relevant 

class (i.e., intact eosinophils, not intact eosinophils, or non-eosinophils). This 

output would aid the pathologist’s search for important regions.

2. PEC. The peak eosinophil count represents the intact intraepithelial eosinophil 

count of the most densely infiltrated high-power field for each WSI.

3. A ranked eosinophil count list. It can help the pathologist prioritize between 

severe to non-severe patients.

For inference, the WSI’s global PEC is calculated by counting intact eosinophils using a 

kernel in the size of the HPF of an area of 0.3mm2, and iterating over the slide with a 

stride of 500×500 pixels to find the maximum eosinophil count within the HPF boundaries, 

which corresponds to a size of 2144×2144 pixels (548μm×548μm). Each HPF is cropped 

into patches of 448×448 pixels size (1792μm×1792μm), with a stride of 424×424 pixels, 

in order to be adjusted to the deep learning net input size. Then, every patch is fed into 

the model network and segmented. Finally, all the segmentation patches masks (a typical 

number of 10K–100K patches) are fused back to the full size of the original WSI, and a 

full segmented EoE patient’s WSI is produced. This procedure was done using dynamic 

convolution, which allows the model network to run rapidly within the processing speed, 

and enables scalability in WSI size in terms of memory constraints of a standard computer. 

This technique involves the process of obtaining and analyzing only the relevant patches for 

each HPF that corresponds to a specific dynamic convolution iteration. The overall flow is 

described in Fig. 1.

III. RESULTS

A. Semantic Segmentation

We first validated the ability of the UNet++ model to detect and segment both intact and 

not-intact eosinophils. The network segments them with mIoU of 93%, mPrecision of 95% 

for intact eosinophils and 97% for not intact eosinophils, and mRecall of 97% for intact 

eosinophils and 95% for not-intact eosinophils. In addition, we trained another segmentation 

model based on U-Net and compared its segmentation metrics scores to the scores achieved 

by UNet++ (Table II). Since UNet++ is superior to UNet with respect to all segmentation 

metrics, we implemented our model based on UNet++. We also evaluated the ability of our 

network model to distinguish between the two types of eosinophils (Fig. 2a–d). Out of the 

true intact eosinophils, 98.8% were identified correctly as intact. This performance is critical 

to the ability of the model network to provide a reliable intact eosinophil count.
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B. Optimizing counting of intact eosinophils and image classification

Next, we further optimized the network for the tasks of counting intact eosinophils and 

classification according to eosinophils density. The original UNet++ optimization procedure 

calculates the mIoU per batch, and uses it as the optimization metric. As our data, as many 

histological datasets that involve rare single-cell features, contains many images without 

eosinophils, optimizing over a batch metric can lead to a bias. Moreover, there is a tradeoff 

between high precision, underestimating the number of eosinophils, and high recall and 

overestimating the number of eosinophils. To account for these factors, we trained eight 

models using eight different metrics per image (rather than per batch). Table III summarizes 

the performances of each model in terms of quantification and classification, according to 

eosinophils density performances. The model that provides the best results for both counting 

and classification is the one in which the optimization metric was the arithmetic mean of 

recall and precision. This model has a mean counting error of 0.611, classification accuracy 

of 98.48% and F1-score of 96.30%. Interestingly, the metric that provided the second best 

counting error was a weighted average of 0.4 recall and 0.6 precision. This metric counting 

error was much better than 0.6 precision and 0.4 recall case and better than the mIoU. 

This suggests that avoiding underestimating eosinophils numbers has a bigger weight than 

avoiding overestimating eosinophils numbers during the training process.

Fig. 2e–f illustrates the counting performances. The mean count error is 0.611 eosinophils. 

The best linear fit for the relationship between the predicted counts and ground truth has a 

slope of 1.005 (95% confidence interval values of 0.963 and 1.013) and an intersection of 

0.03 (confidence interval values of −0.065 and 0.126), R-square of 0.9721 and F-test p-value 

≪ 0.001 (Fig. 2e). That is, we observed no inherent bias in the counting estimation. Another 

measure for the quality of the segmentation and counting is that both the counting error 

and the actual false discovery rate of the labeled masks are low and correlated (Fig. 2f). In 

90% of the images, the connected segment’s false discovery rate is smaller than 0.1, and the 

counting error rate is lower than 3%. As such, the correct counting is indeed the result of 

correct local detection.

C. Network Validation on the Whole slide image level

To validate the ability of the network to estimate the peak eosinophil count of a whole 

slide, we examined a cohort of 1066 biopsy slides from 400 patients. These biopsy slides 

differ from the 23 slides used for training the network. In this cohort, each WSI was derived 

from a scan done at 400X magnification, resulting in input images with a width of 20K–

100K pixels and a typical length of 100K–200K pixels. An example of a WSI’s prediction 

process is presented in Fig. 3. These slides were scored by a pathologist who examined the 

slides and estimated the PEC per slide, that is, the maximal intraepithelial eosinophil count 

observed in an HPF of 0.3mm2, which corresponds to a size of 2144×2144 pixels.

The clinical diagnostic threshold density for classifying patients with active EoE is a 

count of greater than or equal to 15 eosinophils in at least one HPF. Fig. 4 shows 

the comparison between the model network count and the pathologist’s count, and the 

resulting classification. Note that in this case, the algorithm identifies the HPF with the 

highest number of eosinophils without prior knowledge of the specific HPF chosen by the 
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pathologist. Our pipeline provides an accuracy of 94.75% with a sensitivity of 94.13% and 

specificity of 95.25% (Fig. 4a, b). The area under the curve is 98.83%, and the critical 

threshold that maximizes the accuracy is 14.5 (Fig. 4c). The classification accuracy for 

defining PEC in the biopsies obtained from different spatial locations, proximal, mid, and 

distal esophagus, were 96.2%, 92.9%, and 93.3%, respectively.

IV. DISCUSSION

The digital transformation of pathology is expected to grow dramatically over the next few 

years as increasing numbers of laboratories gain access to high throughput scanning devices 

and aim to automate the analysis of scanned microscopic images. This transformation 

is driven by several factors, including the prolonged time per case due to the growing 

complexity of pathological criteria for diagnosing and monitoring diseases compounded by 

the limited supply of pathologists, especially in different geographical regions.

There are inherent challenges in digital pathology beyond data collection. One of the main 

challenges is the large textual variation of slides and the existence of multiple length scales 

– slides that are very large compared with the features that define the clinical condition. 

Moreover, the typical size of a slide is much larger than the typical image input size of 

current convolutional networks. Thus, even if a label exists at the slide level, training is 

challenging. On the other hand, labeling at the pixel level is laborious, particularly if there 

are multiple tissue features relevant to the clinical condition.

Herein, we developed a decision support system that is trained to identify two classes of 

eosinophils simultaneously and included an efficient dynamic convolution technique that 

scans the local segmented EoE features. This multi-label approach is different from training 

two different networks to identify each feature individually and relieve the problem of 

conflicting overlap regions.

EoE is an example of a condition that relies on the identification and counting of small 

objects, such as single cells, within a whole slide. The pathologist is required to scan the 

slide and evaluate the local concentration of eosinophils. The typical region that is used 

for counting is the size of 0.3mm2, and thus it is laborious to probe the entire slide. The 

validation cohort we used in the study is the largest to date and includes 1066 biopsy 

slides from 400 patients. Each slide has a PEC score of the maximal eosinophil density as 

determined by a body of expert pathologists associated with CEGIR. This score is based 

on the pathologist’s conclusion and reflects only the number of high-power fields that the 

pathologist probed. Thus, a clear advantage of our pipeline is that every possible high-power 

field can be probed for each slide.

Our model provides state-of-the-art segmentation of eosinophils that can discriminate 

between intact and not-intact eosinophils (Table II). This segmentation results in an intact 

eosinophil count that differs from the human expert counts by a mean absolute error of 0.611 

eosinophils on identical slides. The counting on the annotated dataset yields a classification 

accuracy of 98.48%. One of the main advantages of our dataset is that it allows testing 
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the counting performances on a large dynamic range of eosinophils ranging from zero to 

hundreds. Thus, our counting performances are tested in a real-life scenario.

While the model network has excellent performances on the patch level, each patch’s area 

is three orders of magnitude smaller than the area of a whole slide image. Our pipeline 

uses a dynamics convolution approach to segment the entire slide rapidly and estimates the 

maximal eosinophil density of any given high power field size. This is an essential feature 

as different pathologists may use distinct sizes of a HPF, leading to ambiguity between 

pathologists. Using the model network allows the user to give the size of the HPF as an 

input. Comparing the model network PEC score (using a HPF size of 0.3mm2) and the 

score from the CEGIR dataset resulted in a remarkable agreement between the machine 

and the human score and classification (Fig. 4). Translating the score agreement to the 

decision-making depends on the threshold. When taking different thresholds and comparing 

the performance in the ROC space, the optimal accuracy is obtained with a threshold of 

14.5/HPF; that is, for integer values, the best threshold is larger-equal than 15. This result 

highlights the lack of bias in model’s counting as this is the same threshold recommended by 

field experts [1].

Our work highlights the importance of multi-labeling capacity on small features and the 

ability to deploy the model network on a whole slide image rapidly and efficiently. These 

findings are a significant step toward an automated diagnosis of EoE using digital pathology 

and have implications for analyzing other biopsy-based disease diagnoses.
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Fig. 1. 
Overview of network training and procedure. The model network high-level architecture is 

presented. For training, whole slide images (WSIs) were pre-processed and cropped into 

patches on which a trained researcher marked the location of both intact and not intact 

eosinophils. The trained multi-label semantic segmentation network can get a WSI as an 

input, segment it, count the two types of eosinophils, locate the area with the highest number 

of eosinophils, count its value, and calculate the peak eosinophil count per high power field 

(PEC score). The model network was validated using 1066 whole slide images from 400 

patients for which the PEC had been previously determined by pathologists.
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Fig. 2. 
Quality of multi-label segmentation. Examples of multi-label segmentation (a–d). The size 

of each patch is 1200×1200 pixels. The left images are colored with the ground truth 

mask’s features, and the right replication is colored with its corresponding prediction mask’s 

features. The intact Eos class is colored in green, and the not-intact Eos class is colored 

in red. (a) and (b) are examples of slides from EoE patients with many eosinophils per 

patch/HPF, (c) is an example of an EoE patient with only two eosinophils at the local 

level per patch, and (d) is an example of an EoE patient without any eosinophils at the 

local level per patch. (e) The relationship between the true number of eosinophils and the 

number estimated from semantic segmentation of a 1200×1200 patch. The best linear fit has 

a slope of 1.005 (95% confidence interval values of 0.963 and 1.013), an intersection of 

0.03 (confidence interval values of −0.065 and 0.126), and an R-square of 0.9721. The mean 

absolute counting error is 0.611 eosinophils. (f) In 90% of the images, both the connected 

segments’ false discovery rate is smaller than 0.1, and the counting error rate is lower than 

3% (the area defined by the black dashed lines).
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Fig. 3. 
Applying our pipeline to whole slide images (WSIs). The figure presents an example of an 

analysis of a specific WSI in the different scales. The red box denotes the location of the 

HPF where the Network’s maximum PEC was found.
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Fig. 4. 
Network validation on a cohort of 1066 slides from 400 EoE patients. (a) Comparing 

the maximal intact eosinophils per HPF (0.3mm2) of an entire slide, as measured by the 

pathologists and the model network. (b) Classification confusion matrix based on comparing 

the peak eosinophil count in a high-power field to 15. (c) The classifier performance in the 

AUC space; each dot represents a different PEC threshold. A threshold of 14.5 (red circle) 

maximizes the overall accuracy.
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TABLE I

Semantic labeling statistics at the 1200×1200 patches level.

Class Number of images (percent of total)
a

Total Area (pixels)
b

Mean fraction out of total patch area
c

Eos-not intact 2028 (19.94%) 24.37M 0.83%

Eos-intact 2317 (22.78%) 78.47M 2.35%

a,
The total number and percentages of 1200×1200 pixel images containing at least one instance of the indicated class of eosinophil.

b,
The sum of the area (in pixels) of the indicated class of eosinophil.

c,
The average percentage of pixels classified as the indicated class per total patch area.

Eos, eosinophils; M, million.
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TABLE II

Segmentation metrics scores on the validation set. For each metric, the highest overall score is marked in bold.

Metric Model Intact eosinophils Not-intact eosinophils Overall

mloU (1)
UNet++ 0.93 0.93 0.93

U-Net 0.84 0.8 0.82

mPrecision (2)
UNet++ 0.95 0.97 0.96

U-Net 0.87 0.89 0.88

mRecall (3)
UNet++ 0.97 0.95 0.96

U-Net 0.92 0.86 0.89

mSpecificity (4)
UNet++ 0.998 0.999 0.998

U-Net 0.997 0.999 0.998

IoU, intersection over union; m, mean.
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