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Abstract

Background: Anti–programmed cell death 1 (anti–PD-1) and PD ligand 1 (PD-L1) immune checkpoint therapies (ICTs) provided
durable responses only in a subset of cancer patients. Thus, biomarkers are needed to predict nonresponders and offer them
alternative treatments. We recently implicated discoidin domain receptor tyrosine kinase 2 (DDR2) as a contributor to
anti–PD-1 resistance in animal models; therefore, we sought to investigate whether this gene family may provide ICT
response prediction. Methods: We assessed mRNA expression of DDR2 and its family member DDR1. Transcriptome analysis
of bladder cancer (BCa) models in which DDR1 and 2 were perturbed was used to derive DDR1- and DDR2-driven signature
scores. DDR mRNA expression and gene signature scores were evaluated using BCa–The Cancer Genome Atlas (n¼259) and
IMvigor210 (n¼298) datasets, and their relationship to BCa subtypes, pathway enrichment, and immune deconvolution
analyses was performed. The potential of DDR-driven signatures to predict ICT response was evaluated and independently
validated through a statistical framework in bladder and lung cancer cohorts. All statistical tests were 2-sided. Results: DDR1
and DDR2 showed mutually exclusive gene expression patterns in human tumors. DDR2high BCa exhibited activation of
immune pathways and a high immune score, indicative of a T-cell–inflamed phenotype, whereas DDR1high BCa exhibited a
non–T-cell–inflamed phenotype. In IMvigor210 cohort, tumors with high DDR1 (hazard ratio [HR]¼1.53, 95% confidence
interval [CI]¼1.16 to 2.06; P¼ .003) or DDR2 (HR¼1.42, 95% CI¼1.01 to 1.92; P¼ .04) scores had poor overall survival. Of note,
DDR2high tumors from IMvigor210 and CheckMate 275 (n¼73) cohorts exhibited poorer overall survival (HR¼1.56, 95%
CI¼1.20 to 2.06; P< .001) and progression-free survival (HR¼1.77 95%, CI¼1.05 to 3.00; P¼ .047), respectively. This result was
validated in independent cancer datasets. Conclusions: These findings implicate DDR1 and DDR2 driven signature scores in
predicting ICT response.

Immune checkpoint therapies (ICTs) are emerging as an impor-
tant pillar of anticancer therapy (1-3). ICTs target co-inhibitory
receptors on T cells, such as programmed cell death 1 (PD-1),
PD-1 ligand 1 (PD-L1), and cytotoxic T lymphocyte–associated
protein 4 (1). Despite many durable clinical responses in mela-
noma, non-small cell lung carcinoma (NSCLC), bladder cancer
(BCa), and renal cell cancer (4), many patients are nonrespond-
ers (5,6). In an attempt to stratify response, biomarkers includ-
ing PD-L1 overexpression on cancer cells or immune cells,
tumor mutational burden (TMB), microsatellite instability, and
neoantigen load have been studied (4). Although there are

associations between these biomarkers and ICT outcomes, nei-
ther PD-L1 overexpression nor TMB as a single marker can dis-
tinguish ICT responders from nonresponders (7,8). A meta-
analysis of 45 studies using ICTs showed that PD-L1 overexpres-
sion in cancer or immune cells was predictive in only 28.9%
cases and not predictive or not tested in the remaining 53.3%
and 17.8% cases, respectively (9). These studies highlight the
need to improve or identify new biomarkers for stratifying ICT
responses, which is the objective of the current study.

We recently identified discoidin domain receptor 2 (DDR2)
expression as a determinant of ICT response in murine models
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of BCa and then used genetic and pharmacologic methods to
show that DDR2 inhibition can sensitize murine BCa ICT re-
sponse (10). Interestingly, DDR2 inhibition alone did not influ-
ence murine BCa growth. Therefore, we reasoned that
signatures composed of genes modulated by DDR2, or its family
member DDR1, can possibly stratify patient response to
ICT. Here, we show that scores generated from such gene signa-
tures can stratify response to anti–PD-L1 therapy in BCa and
NSCLC.

Methods

Institutional Review Board Approval

All human data were obtained from previously reported sources
and references in publications.

Statistical Analysis

We performed a secondary analysis of existing published tran-
scriptome datasets from The Cancer Genome Atlas (TCGA) and
IMvigor210 studies, which are publicly available. Signature score
computation using deidentified transcriptome data to validate
the signature performance without direct access to identifiable
patient clinical data on 2 NSCLC datasets (from authors from
Caris and Tempus) and CheckMate 275 dataset (from authors
from Icahn School of Medicine) was performed. A v2 test was
used to test inverse relationship of DDR1 and DDR2 (DDR1/2)
gene expression in BCa. Association of clinical outcomes was
assessed using Kaplan-Meier survival curves and log-rank and/
or Cox statistics. To test whether DDR signature performance
was prognostic independent of other clinical variables, multi-
variable analyses were performed adjusting for the age, sex,
grade, and stage when it is available. A P value less than .05 was
considered statistically significant. We used the MATLAB pack-
age including the Statistics toolbox (Mathworks, Natick, MA,
USA), the R package (v.4.1 http://www.r-project.org/) for all sta-
tistical tests, and computational analysis.

Results

Gene Expression of DDR1/2 in BCa

We have reported the roles of the DDR family, DDR1/2, in modu-
lating BCa metastasis and ICT response (10,11). Unsupervised
clustering of DD1/2 expression from the TCGA-BCa cohort
(n¼ 259) (Table 1) (12) suggested that tumors could be divided
into DDR1highDDR2low and DDR1lowDDR2high groups (Figure 1, A;
v2 P< .001), with DDR1/2 expression exhibiting an inverse rela-
tionship (Figure 1, B; Spearman q¼�0.27).

Because gene expression–based BCa subtypes associate with
different clinical behaviors (12,13), we investigated the distribu-
tion of high DDR1 and DDR2 tumors among luminal papillary
(LumP), basal and squamous (Ba/Sq), luminal unstable, stromal-
rich, luminal nonspecified, and neuroendocrine-like subtypes
(Figure 1, C). The LumP subtype has a high proportion of
DDR1high tumors and overall DDR1 expression (Figure 1, C, D; v2

P¼ .002), whereas the stroma-rich subtype has a higher propor-
tion of DDR2high tumors (Figure 1, C, E). The stark difference be-
tween these 2 subtypes is intriguing and may reflect the
expression of DDR2 in both cancer cells and stromal fibroblasts
in the tumor microenvironment (TME) (14).

These findings suggest that the classical BCa subtypes are
more heterogeneous than previously thought, and their clinical
behavior may in part be driven by DDR1/2 expression. Given
this, we examined if DDR1/2 expression stratified patient out-
comes in TCGA-BCa. DDR1high tumors trended toward a better
overall survival (OS), but this was not statistically significant
(hazard ratio [HR]¼ 0.96, 95% confidence interval [CI]¼ 0.74 to
1.46; P¼ .73), whereas DDR2high tumors had statistically signifi-
cantly poorer OS (HR¼ 1.55, 95% CI¼ 1.04 to 2.26; P¼ .02;
Figure 1, F).

The Bladder Tumor Microenvironment in DDR1high and
DDR2high Tumors

Gene set enrichment analysis (GSEA) identified 16 statistically
significantly enriched cellular processes in DDR2high compared
with DDR2low tumors, which were not enriched in DDR1high

tumors (Figure 2, A). Epithelial mesenchymal transition (EMT)
and Extracellular matrix (ECM) receptor interaction were statis-
tically significantly enriched in DDR2high tumors (Figure 2, A),
echoing the higher prevalence of DDR2high tumors in the
stroma-rich subtype (Figure 1, C). Intriguingly, transforming
growth factor–b signaling pathway and wingless/integrated
(WNT) signaling pathway were enriched in both DDR1high and

Table 1. Clinicopathological characteristics of TCGA BCa cohort by
DDR expression levels (n¼ 259a)

Characteristics

Level of DDR1 and DDR2 gene expression

DDR1high

and
DDR2high

DDR1high

and
DDR2low

DDR1low

and
DDR2high

DDR1low

and
DDR2low

Sex
Female 10 22 26 12
Male 39 58 54 38

Pathologic stage
II 10 34 12 12
III 17 27 37 24
IV 22 19 31 14

T stage
T2 11 39 13 14
T3 28 33 54 28
T4 10 8 13 8

Recurrent
No 17 40 28 18
Recurrent 2 10 5 5
Not specified 30 30 47 27

Overall survival
Living 24 53 40 29
Deceased 25 27 40 29

Histological grade
High grade 49 80 80 50
Low grade 0 0 0 0

aFrom a total of 407 samples, 259 samples were selected by filtering with the fol-

lowing criteria: 1) any stage other than T2-T4; 2) 52 (13%) had urothelial carci-

noma with variant histology, including 42 squamous, 4 small cell and/or

neuroendocrine, 2 micropapillary, and 4 plasmacytoid; 5 additional tumors that

met screening criteria were included: 3 pure squamous cell bladder carcinomas,

1 squamous cell carcinoma of nonbladder origin and 1 bladder adenocarcinoma;

3) from a total of 57 patients, 35 had received prior intravesical immunotherapy

with Bacille Calmette-Guerin; 4) 12 patients had received neoadjuvant chemo-

therapy. BCa ¼ bladder cancer; DDR ¼ discoidin domain receptor; TCGA ¼ The

Cancer Genome Atlas.
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Figure 1. Expression of DDR genes in human bladder tumors as a function of molecular subtype and clinical outcome. A) Heatmap depicts expression pattern of DDR1

and DDR2 in the TCGA-BCa cohort described in “Materials” and “Methods” (n¼ 259). B) Scatter plot and regression line (red) shows an inverse relationship between

DDR1 and DDR2 expression. Hierarchical clustering was performed using the Manhattan distance and ward linkage method. C) Stacked bar graphs depict the distribu-

tion of tumors from the TCGA-BCa cohort by bladder cancer consensus subtypes (13). Tumor samples in each subtype were stratified into 3 groups by DDR expression

at tercile values. D and E) Box plots show DDR1 (D) and DDR2 (E) expression in BCa consensus subtypes. F) Kaplan-Meier survival curves for DDR1 and DDR2 expression

in the TCGA BCa cohort. Tumors were stratified into high and low groups at median expression of DDR. Statistical significance of differential survival between the

groups were tested by log-rank test. Ba/Sq ¼ basal and squamous; BCa ¼ bladder cancer; CI ¼ confidence interval; DDR ¼ discoidin domain receptor; HR ¼ hazard ratio;

LumNS ¼ luminal nonspecified; LumP ¼ luminal papillary; LumU ¼ luminal unstable; NE ¼ neuroendocrine; TCGA ¼ The Cancer Genome Atlas.

A
R

T
IC

LE

1382 | JNCI J Natl Cancer Inst, 2022, Vol. 114, No. 10



GEP low
GEP high

HR = 0.79 (95% CI = 0.54 to 1.16)
Log-rank P = .23

Bladder cancer (n = 259)

Bladder cancer (n = 259)

TCGA all (n = 10323)

TCGA all (n = 10323)

Bladder cancer (n = 259)

DDR1 low & GEP low
DDR1 high & GEP low

DDR1 low & GEP high
DDR1 high & GEP high

DDR2 low & GEP low
DDR2 high & GEP low

DDR2 low & GEP high
DDR2 high & GEP high

Bladder cancer (n = 259)

C

E

F

G H I

A
Epithelial mesenchymal transition

ECM receptor interaction
Cytokine-cytokine receptor interaction

Inflammatory response
JAK-STAT signaling pathway

IL6-JAK-STAT3 signaling
Leukocyte transendothelial migration

Graft versus host disease
Chemokine signaling pathway

MAPK signaling pathway
T GF BETA signaling pathway

Il2 stat5 signaling
Antigen processing and presentation

Natural killer cell mediated cytotoxicity
WNT signaling pathway

T cell receptor signaling pathway

DDR1high

B -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Memory B cell

Naïve B cell
Memory CD4 T cell

Activated Memory CD4 T cell
Naïve CD4 T cell

CD8 T cell
Cytotoxic T lymphocytes
Activated dendritic cells

Eosinophil
M0 Macrophage
M1 Macrophage
M2 Macrophage

Activated mast cell
Monocyte

Activated NK cell
Neutrophil

Plasma cell
Activated dysregulated T cell

dysregulated T cell
Exhausted T cell

Folicular helper T cell
Gamma delta T cell

Regulatory T cell

Correlation coefficient

DDR1 DDR2

DDR2high

Bladder cancer (n = 259)D

130 25 10 0 0
128 27 8 4 2

Numbers at risk

Spearman’s Rho = -0.23

Spearman’s Rho = -0.31

Spearman’s Rho = 0.11

Spearman’s Rho = 0.38

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

Time to death, mo Time to death, mo Time to death, mo

53 8 3 0 0
77 17 7 0 0
76 16 7 4 2
52 11 1 0 0

83 18 5 0 0
47 7 5 0 0
47 12 2 0 0
81 15 6 4 2

Figure 2. Impact of DDR expression on gene set enrichment analysis, molecularly defined cellular composition, and T-cell–inflamed GEP in human bladder tumors. A)

Heatmap displays differentially enriched hallmark gene sets between DDR1high and DDR2high bladder tumors. Color bar represents the log-twofold change of the DDR1

or DDR2 high group compared with the DDR1 or DDR2 low group. B) Bar graphs depict Spearman correlation coefficient of DDR1/2 expression and 23 immune infiltra-

tion scores described in “Materials” and “Methods.” C-F) TCGA pan-cancer patients (n¼10,323) and TCGA-BCa patients (n¼259) analysis of DDR1/2 expression and T-

cell–inflamed GEP score shows negative correlation with DDR1 expression (C, D) and positive correlation with DDR2 expression (E, F). Spearman method was used to es-

timate the correlation coefficient. The red line indicates the regression line. G) Tumors were stratified by T-cell–inflamed GEP score at the median of the TCGA-BCa

patients (n¼259). H) Survival curves shows survival patterns of the 4 groups by DDR1 expression and T-cell–inflamed GEP score. Multiple log-rank tests were performed

with the DDR1low and GEPlow group as a base line. I) Survival curves show survival patterns of the 4 groups by DDR2 and T-cell–inflamed GEP score. BCa ¼ bladder can-

cer; CI ¼ confidence interval; DDR ¼ discoidin domain receptor; GEP ¼ gene-expression profile; HR ¼ hazard ratio; TCGA ¼ The Cancer Genome Atlas; ECM ¼ extracellu-

lar matrix; JAK ¼ Janus kinase; STAT ¼ signal transducer and activator of transcription; IL6 ¼ interleukin 6; NK ¼ natural killer; MAPK ¼ mitogen-activated protein

kinase; TGF ¼ transforming growth factor; IL2 ¼ interleukin 2; WNT ¼wingless/integrated.
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DDR2high tumors (Figure 2, A). Another key finding is the enrich-
ment of immune cell–related processes, such as cytokine-
cytokine receptor interaction, inflammatory response, and T-
cell receptor signaling in DDR2high tumors (Figure 2, A), indica-
tive of a DDR2 role in immune regulation and suggesting a T-
cell–inflamed phenotype that is ineffectual in immune rejection
of the tumors (15). In contrast, DDR1high tumors have statisti-
cally significant enrichment in P53 pathway (Normalized
Enrichment Score [NES]¼ 1.51; P¼ .003), estrogen response early
(NES¼ 1.48; P¼ .002), and protein secretion (NES¼ 1.45; P¼ .009).
This suggests that DDR1high tumors are positive in distinct cellu-
lar functions from DDR2high tumors and negatively associated
with these immune cell–related processes (Figure 2, A), propos-
ing that they are non–T-cell inflamed.

Next, we assessed the correlation between DDR1/2 expres-
sion levels and 23 immune cell signatures (Supplementary
Table 1, available online). Consistent with the GSEA results
(Figure 2, A), the correlation coefficients of immune cell types
demonstrated reciprocal values between DDR1high and DDR2high

tumors in TCGA-BCa (Figure 2, B). DDR2high tumors were posi-
tively correlated with 19 immune cells (Figure 2, B), indicative of
an immunologically “hot” TME. Conversely, DDR1high tumors
were negatively correlated with most immune cells (Figure 2, B),
indicative of an immunologically “cold” TME. These indicate
that distinct TMEs are present in DDR1high and DDR2high BCa,
suggesting these 2 genes have differential biological roles de-
spite their structural similarity (16-18).

We also found that DDR1 expression was inversely corre-
lated with the T-cell–inflamed gene-expression profile (GEP)
score in both the TCGA–pan-cancer cohort (n¼ 10 323) (Figure 2,
C; q ¼ �0.23, P< .001) and TCGA-BCa (Figure 2, D; q¼�0.31,
P< .001), whereas DDR2 expression was positively correlated
(Figure 2, E; q¼ 0.11, P< .001; Figure 2, F; q¼ 0.38, P< .001). DDR2
expression was also statistically significantly correlated with
the presence of CD8þ T cells (q¼ 0.29, P< .001) and cytotoxic T
lymphocytes (q¼ 0.31, P< .001) in the TCGA-BCa (Figure 2, B).

Because GEP score is known to be associated with ICT re-
sponsiveness, we tested whether DDR expression in addition to
GEP score has an additional benefit in identifying patients with
distinct survival. GEP score alone had no statistically significant
association with OS in TCGA-BCa (Figure 2, G). However, GEP
scores stratified by DDR1/2 expression exhibited differences.
The DDR1lowGEPlow group showed worse OS compared with the
DDR1highGEPlow and DDR1lowGEPhigh groups (Figure 2, H, Table 2).
Additionally, the DDR2low groups (ie, DDR2lowGEPlow,
DDR2lowGEPhigh) exhibited better OS compared with DDR2high

groups (ie, DDR2high and GEPlow and DDR2high and GEPhigh)
(Figure 2, I; Table 2). This indicates that DDR expression offers
better predictive information compared with GEP scores.

Association of DDR Expression and Response to ICT

DDR1high and DDR2high tumors appear to associate with immu-
nologically cold and hot TMEs, respectively, whereas DDR2high

tumors have worse patient outcome following surgery. Given
these associations, we investigated the relationship of DDR1/2
expression in patients undergoing ICT (19). Using the
IMvigor210 dataset, where BCa patients were treated with ate-
zolizumab anti–PD-L119, we assessed if DDR1/2 expression asso-
ciates with immune infiltration. Consistent with the TCGA-BCa
results, IMvigor210 showed similar patterns of correlation be-
tween DDR1/2 expression and immune infiltration scores of im-
mune cells (Figure 3, A). Unsupervised clustering analysis of

DDR1/2 expression showed separation of DDR1highDDR2low vs
DDR1lowDDR2high tumors with an inverse linear relationship
(q¼ -0.45, P< .001) (Figure 3, B). DDR1/2 expression had no corre-
lation with ICT response (Figure 3, C-F) or patient survival
(Figure 3, G, H), even when DDR expression was further stratified
by GEP scores (Figure 3, I and J; Table 2).

Development of DDR-Driven Gene Signatures

The lack of outcome stratification by DDR1/2 expression led us
to explore a broader evaluation of DDR-regulated gene expres-
sion. We hypothesized expression changes would represent bio-
logically active DDR signaling rather than just high DDR
expression with minimal downstream transcriptional conse-
quences. We developed gene signatures that were sensitive to
changes in DDR1/2 expression (20). We either overexpressed
DDR1 (DDR1-OE) or depleted DDR2 (DDR2-KD) in BCa models.
Subcutaneous tumors in mice generated from either DDR1-OE
T24 human BCa cells and controls. In these experiments, female
Rag2 and Il2rg double-knockout mice (Taconic) were used. Four
mice per group were used with tumors removed 6 weeks after
initial tumor cell inoculation and profiled. The details of the
DDR2 experiments were described in our prior publication
(10,21) and carried out on tumors derived from a murine cell
line NA13 BCa (10,21) transduced with shDDR2 or scrambled
shRNA, subjected to RNA-sequencing (Supplementary Figure 1,
A, available online). Differential expression analysis was per-
formed (Supplementary Figure 1, B, C, available online). A total
of 225 upregulated and 367 downregulated genes
(Supplementary Table 2, available online) by DDR1-OE, and 211
upregulated and 69 downregulated genes (Supplementary Table

Table 2. Multiple log-rank tests were performed with DDRlow and
GEPhigh group as baseline in TCGA BCa and IMvigora

Comparison HR (95% CI) P Cohort

DDR1high and GEPlow vs
DDR1low and GEPlow

0.65 (0.39 to 1.10) .11 TCGA BCa

DDR1low and GEPhigh vs
DDR1low and GEPlow

0.58 (0.35 to 0.97) .04 TCGA BCa

DDR1high and GEPhigh vs
DDR1low and GEPlow

0.73 (0.42 to 1.27) .26 TCGA BCa

DDR2low and GEPlow vs
DDR2low and GEPhigh

1.86 (0.98 to 3.53) .06 TCGA BCa

DDR2high and GEPlow vs
DDR2low and GEPhigh

2.61 (1.33 to 5.12) .005 TCGA BCa

DDR2high and GEPhigh vs
DDR2low and GEPhigh

2.19 (1.16 to 4.13) .02 TCGA BCa

DDR1high and GEPlow vs
DDR1low and GEPlow

0.79 (0.55 to 1.14) .20 IMvigor

DDR1low and GEPhigh vs
DDR1low and GEPlow

0.76 (0.53 to 1.10) .15 IMvigor

DDR1high and GEPhigh vs
DDR1low and GEPlow

1.13 (0.80 to 1.60) .48 IMvigor

DDR2low and GEPlow vs
DDR2low and GEPhigh

0.76 (0.53 to 1.12) .17 IMvigor

DDR2high and GEPlow vs
DDR2low and GEPhigh

1.05 (0.74 to 1.51) .78 IMvigor

DDR2high and GEPhigh vs
DDR2low and GEPhigh

0.89 (0.62 to 1.29) .53 IMvigor

aBCa ¼ bladder cancer; CI ¼ confidence interval; DDR ¼ discoidin domain recep-

tor; GEP ¼ gene-expression profile; HR ¼ hazard ratio; TCGA ¼ The Cancer

Genome Atlas.
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Figure 3. Association of DDR expression with TME features and immune checkpoint therapy response in human BCa. A) Bar graph depicts Spearman correlation coeffi-

cients of DDR1 and DDR2 expression with immune cell type scores (n¼23). B) Heatmap and scatter plot show an inverse relationship of DDR1 and DDR2 expression in

the IMvigor cohort. Color bar represents the z score of gene expression. C, D) Box plots depict expression distribution of DDR1 by immunotherapy response groups in

the IMvigor210 cohort (n¼298). E, F) Box plots depict expression distribution of DDR2 by immunotherapy response groups in IMvigor (n¼298). G, H) Kaplan-Meier (KM)

survival curves for DDR1 (G) and DDR2 (H) expression in IMvigor. Tumors were stratified into high and low groups at median expression of DDR. Significance of differen-

tial survival between the groups was tested by log-rank test. I) KM curves show survival patterns of the 4 groups by DDR1 expression and T-cell–inflamed GEP score.

Multiple log-rank tests were performed with DDR1low and GEPlow group as a baseline. J) KM curves show survival patterns of the 4 groups by DDR2 and T-cell–inflamed

GEP score. Multiple log-rank tests were performed with DDR2low and GEPhigh group as a baseline. Table 2 show hazard ratio, significance level (P value), and confidence

interval for each comparison. BCa ¼ bladder cancer; CI ¼ confidence interval; CR ¼ complete response; DDR ¼ discoidin domain receptor; GEP ¼ gene-expression profile;

HR ¼ hazard ratio; PD ¼ partial disease; PR ¼ partial response; SD ¼ stable disease; TCGA ¼ The Cancer Genome Atlas; TGF ¼ transforming growth factor; TME ¼ tumor

microenvironment.
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3, available online) by DDR2-KD were identified with a false dis-
covery rate less than .05 and log2-fold-change of at least 1.
Functional enrichment analysis using DAVID (22) of 225 upregu-
lated genes by DDR1-OE and 69 downregulated genes by DDR2-
KD revealed statistically significant and specific enrichment of
epithelial development and excretion by DDR1-OE
(Supplementary Figure 1, D, available online) and chemokine
signaling and immune and/or inflammatory responses by
DDR2-KD (Supplementary Figure 1, E, available online).
Regulation of cell proliferation and wound response were simi-
larly enriched by both DDR1 and DDR2 manipulations
(Supplementary Figure 1, F, available online).

From the 225 upregulated genes by DDR1-OE and 69 downre-
gulated genes by DDR2-KD (Supplementary Figure 2, A, available
online), we first selected the top 50 most differentially
expressed genes (Supplementary Figure 2, B, available online)
because recent data from a large-scale transcriptome analysis
revealed that the top 50 ranked genes usually provided markers
that discriminate between experimental groups with high confi-
dence (23,24). These 2 sets of genes had no overlap. We used
them to compute DDR1/2 activity scores and examined their as-
sociation with molecular functions, clinical, and therapeutic
outcomes (Supplementary Figure 2, B, available online).

Next, we stratified IMvigor210 patients into DDR1/2–high
and –low median score groups (25). GSEA were performed, and
the top 10 KEGG pathways statistically significantly enriched in
DDR1- or DDR2-high score tumors are presented in Figure 4, A
and B. Consistent with the enriched gene sets in Figure 2, A,
DDR2high tumors exhibited statistically significant enrichment
of immune-related pathways (Figure 4, A), whereas DDR1high

tumors enriched for metabolic pathways (Figure 4, B). LumP and
Ba/Sq subtypes had the largest fractions of tumors with high
DDR1/2 scores (Figure 4, C).

Evaluation of DDR Signature Scores as Predictors of
Anti–PD-L1 Response in Patients

Next, we examined the ability of the DDR signature scores to
stratify ICT response and survival from IMvigor210. DDR scores
were statistically significantly different between stable disease
or partial disease and complete response or partial response
(P< .001 for DDR1 and P< .001 for DDR2) (Figure 5, A and B).
Furthermore, tumors with high DDR1 (HR¼ 1.51, 95% CI¼ 1.16 to
2.06; P¼ .003) (Figure 5, C) or high DDR2 (HR¼ 1.42, 95% CI ¼ 1.01
to 1.92; P¼ .04) (Figure 5, D) scores had poorer OS, suggesting
that DDR scores have the potential to discriminate between
patients with differential responses to anti–PD-L1 therapy.

To optimize the composition of the DDR gene signature, we
selected core genes among the 50 that were highly associated
with OS in IMvigor210 through a statistical framework (Figure 6,
A; see Supplementary Methods, available online), resulting in
gene signatures for risk stratification of patients: a 10-gene sig-
nature based on a z score model (CS-10) and a 19-gene signature
based on a Cox model (CS-19) for DDR1 and a 4-gene signature
based on a z score model (CS-4) and a 25-gene signature based
on a Cox model (CS-25) for DDR2.

We also surveyed optimal cut points of the signature score
using IMvigor210 data by assessing hazard ratios across all DDR
signature scores for OS. We identified optimal cut points of CS-
10, CS-19, CS-4, and CS-25, which are �0.77, �0.079, 0.039, and
�0.059, respectively. Survival differences at these cut points are
all statistically significant (Figure 6, B, C). We also assessed sur-
vival association of the DDR signature scores in BCa consensus

subtypes. The LumP and Ba/Sq subtypes with high CS-10
(Figure 6, D) and CS-19 (Figure 6, E) scores were associated with
worse OS, whereas the stroma-rich subtype with high CS-4
(Figure 6, F) or high CS-25 (Figure 6, G) scores were associated
with worse OS. Of note, CS-25 showed the best performance in
the stroma-rich subtype and statistically significant stratifica-
tion of OS in all subtypes. We further made 2 combined models
by union of CS-10 and CS-4 models for combined DDR z score
model (CS-14) and union of CS-19 and CS-25 Cox models for
combined DDR Cox model (CS-44). CS-14 and CS-44 gene models
have better association with OS compared with DDR1 or DDR2
models before combining with a better hazard ratio of 2.03 (95%
CI¼ 1.53 to 2.71; P< .001) and 2.48 (95% CI¼ 1.85 to 3.33; P< .001),
respectively (Supplementary Figure 3, available online).

Next, we identified RNA-sequencing and outcome data from
2 NSCLC cohorts (ie, Tempus and Caris) treated with anti–PD-L1
in routine practice. We applied our scoring of the 4-gene signa-
tures to these. This analysis was done in a double-blinded fash-
ion. The survival curves were computed by investigators with
the patient DDR signature scores but no information on gene
composition or how the score was derived. Clinical characteris-
tics are described in Supplementary Table 4 (available online).
Notably, the 2 NSCLC cohorts had differences in the proportion
of PD-L1–stained tumor-infiltrating lymphocyte (TIL) immune
cells, with 29% of tumors (n¼ 59) in the Tempus cohort having
more than 5% of PD-L1–positive cells compared with 50% of
tumors (n¼ 129) in the Caris cohort. This may explain why CS-4
high and low groups exhibited statistically significant survival
differences in the Tempus cohort (HR¼ 1.47, 95% CI ¼ 1.03 to
2.10; P¼ .04; Figure 6, H), whereas CS-25 high and low groups
exhibited statistically significant survival differences in the
Caris cohort (HR¼ 2.55, 95% CI ¼ 1.28 to 5.09; P¼ .008; Figure 6, I).
Both CS-4 and CS-25 are DDR2 signature scores, and the survival
difference with CS-4 shows a higher hazard ratio compared
with CS-25 in the stroma-rich subtype (Figure 6, F and G). We
also evaluate the performance of CS-4 with an independent co-
hort from CheckMate 275 study (26), a dataset comprised of
patients with metastatic urothelial cancer treated with the PD-1
inhibitor nivolumab, and found statistically significant poorer
survival in CS-4 high tumors (HR¼ 1.77, 95% CI¼ 1.05 to 3.00;
P¼ .046; Figure 6, J) consistent with the statistically significant
difference of CS-4 scores between complete response or partial
response and stable disease or partial disease groups (P¼ .02;
Figure 6, K). Along with this, we further assessed DDR2 signa-
ture scores in 6 independent cohorts (4 melanoma, 1 glioblas-
toma, and 1 with metastatic urothelial carcinoma) with
checkpoint inhibitors responses (Supplementary Figure 4, avail-
able online).

Discussion

Biomarkers for stratifying ICT responses can be broadly catego-
rized into 2 subsets: biomarkers indicative of a T-cell–inflamed
TME and genomic biomarkers. The expression of PD-L1 is asso-
ciated with clinical response to ICT in multiple cancers includ-
ing melanoma, NSCLC, renal cell carcinoma, and colon cancer
(27-30). However, PD-L1 can be expressed on tumor and im-
mune cells, and the predictive value of PD-L1 expression on ei-
ther tumor or immune cells differs based on the cancer type
(29,31-33). Additionally, challenges exist interpreting PD-L1 ex-
pression by immunohistochemistry, because of variability in
antibodies and scoring methods (34). More important, some
studies show that patients with PD-L1–negative tumors can also
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benefit from ICT (35,36), suggesting the presence of biological
drivers of response unrelated to PD-L1.

Other parameters evaluated as predictors of ICT response in-
clude 1) the presence of TILs (29), 2) T-cell–inflamed GEP (37),
and 3) interferon (IFN)–c gene signature (38). In general, high
densities of TILs (ie, CD8þ T cells) have been associated with
better clinical outcome after surgical removal of primary tumors
(39). In the context of ICT, targeting PD-1 and PD-L1 signaling is

thought to reinvigorate preexisting antitumor response of TILs,
which express immune checkpoint molecules (40). IFN-c is a cy-
tokine released by activated T cells, nature killer cells, and natu-
ral killer T cells and is important for both antitumor response
and adaptive immune resistance mechanisms. IFN-c signaling
also upregulates expression of PD-L1 on tumor, stromal, and
other immune infiltrating cells, which can interact with PD-1 on
TILs (41). Genomic biomarkers such as TMB and microsatellite
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Figure 4. Relationship of DDR gene signature scores with molecular pathways and tumor subtypes in bladder cancer. A, B) Bar plots depict enrichment of KEGG path-

ways by DDR2 (A) or DDR1 (B) active tumors. DDR1/2 gene expression score was computed by a z score method and used to stratify tumors into 2 groups with high and
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instability have also been associated with ICT response (42).
High TMB has been associated with improved clinical outcome
in NSCLC (43), melanoma (44), bladder, and colorectal cancers
(42,45-47). The TCGA-BCa and pan-cancer cohorts have shown
that DDR2 gene expression has positive association with PD-L1
gene expression, whereas DDR1 gene expression does not
(Supplementary Figure 5, available online). Association of DDR
gene expression with human leukocyte antigens (HLA) gene
mutation could not be confirmed to be statistically significant
because of the small number of tumor samples harboring HLA
defects in the TCGA data (Supplementary Figure 6 and 7, avail-
able online). We also checked the association of DDR gene ex-
pression with TMB, resulting in no statistical significance in the
TCGA data (Supplementary Figure 8, available online).

The above markers have pan-tumor US Food and Drug
Administration approval; however, further improvements are
needed in BCa, which motivated the current study. Our work
indicates that DDR2 and DDR1 scores have value in stratifying
PD-L1 response not only in BCa but also other tumor types, in-
dicating possibly broader utility. These findings reveal intrigu-
ing differential biology of DDR1/2 high expression BCa,
exhibiting a non–T-cell–inflamed and a T-cell–inflamed phe-
notype, respectively. Although these are from the same fam-
ily, our findings revealed their differential involvement
regulating immune cell infiltration and a role in the stromal
microenvironment in BCa. For instance, in the CheckMate 275

BCa cohort, a high CD8þ T-cell infiltration together with a low
EMT and stromal core signature was associated with the high-
est response and longest progression-free survival and OS fol-
lowing treatment with nivolumab (26). Conversely, patients
with a high CD8þ T-cell infiltration but also a high EMT and
stromal core signature showed a statistically significantly
worse progression-free survival and OS (26), implicating a role
of the stromal microenvironment in impeding T-cell function
and driving ICT resistance (48,49). Future studies will be im-
portant to validate the utility of the DDR scores in predicting
ICT response in prospective clinical trials. In these studies,
when tumor tissues are evaluated, it is particularly important
to do so using single cell technologies. Recently, it has been
shown that single cell expression profiling of human bladder
cancer provides striking novel information that will likely
change how we classify tumor subtypes and other established
markers in the future (50). If such gene expression scores are
predictive, it would be important to determine if this trans-
lates to superior outcomes for patients with high DDR1 and/or
DDR2 scores treated with DDR1/2 inhibitors such as sitravati-
nib (48) and dasatinib (10) in combination with ICT in bladder
(NCT03606174) and other cancers (lung: NCT02750514, hema-
tologic NCT02819804, NCT02011945).

In conclusion, these results suggest that DDR gene signa-
tures define differential T-cell tumor-infiltration biology and
stratify patient survival following PD-L1 checkpoint inhibitor
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Figure 5. Association of DDR gene signature scores with immune checkpoint therapy response of bladder cancer patients. A, B) Boxplots depicts DDR1 (A) and DDR2 (B)

scores as a function of the clinical response (stable disease [SD], progressive disease [PD], partial response [PR] and complete response [CR]) from IMvigor. C, D) Survival

curves for DDR1 (C) and DDR2 (D) scores in IMvigor. Tumors were stratified into high and low groups at median score levels of IMvigor. Statistical significance of differ-

ential survival between the groups was tested by log-rank test. CI ¼ confidence interval; DDR ¼ discoidin domain receptor; HR ¼ hazard ratio.
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Figure 6. Optimization and validation of DDR gene signature scores as predictors of tumor response to anti–PD-L1 therapy. A) Schematic diagram of the gene selection

process for model construction. Given the upregulated or downregulated genes from DDR murine models, 2 branches of subtractive approaches were employed to

make 2 different gene models based on the gene signatures for DDR1 and DDR2, respectively, which correspond to the z score model and Cox model. B) Clinical associa-

tion of DDR1 gene models. Left and right graphs show survival analysis results for 10-gene DDR1 z score model (CS-10) and 19-gene DDR1 Cox risk score model (CS-19),

respectively. C) Clinical association of DDR2 gene models. Left and right graphs show survival analysis results for 4-gene DDR2 z score model (CS-4) and 25-gene DDR2

Cox risk score model (CS-25), respectively. D) Survival curves of CS-10 high and low groups in LumP and Ba/Sq subtypes in IMvigor. E) Survival curves of CS-19 high and

low groups in LumP and Ba/Sq subtypes in IMvigor. F) Survival curves of CS-4 high and low groups in stroma-rich subtype in IMvigor. G) Survival curves of CS-25 high

and low groups in stroma-rich subtype in IMvigor. H) Survival curves of CS-4 high and low groups in NSCLC cohort treated with anti–PD-L1 therapy from the Tempus

cohort. I) Survival curves of CS-25 high and low groups in the NSCLC cohort treated with anti–PD-L1 therapy from the Caris cohort. J) Survival curves of CS-4 high and

low groups in the cohort treated with anti–PD-L1 therapy from the CheckMate 275 cohort. K) Boxplots depict CS-4 scores as a function of the clinical response as de-

fined in Figure 5, A, from the CheckMate 275 cohort. Ba/Sq ¼ basal and squamous; CI ¼ confidence interval; CR ¼ complete response; DDR ¼ discoidin domain receptor;

HR ¼ hazard ratio; LumP ¼ luminal papillary; NSCLC ¼ non-small cell lung carcinoma; OS ¼ overall survival; PD ¼ partial disease; PD-L1 ¼ programmed cell death

ligand 1; PR ¼ partial response; SD ¼ stable disease.
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therapy in urothelial cancer. Notably, some signatures also
stratified outcome of other cancer types such as melanoma.
Further research is needed to understand the importance of tu-
mor type in the utility of these various DDR-based signatures.
Overall, our findings suggest that the DDR2- and DDR1-depen-
dent transcriptional program defines differential tumor biology,
intriguingly, both linked with immunotherapy response.
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