Skip to main content
. 2022 Aug 23;4(20):4210–4236. doi: 10.1039/d2na00367h

Application of zirconia-based nanomaterials in sensing.

Sensor Synthesis method Analyte Working temperature Recovery time, response time Sensing technique Limit of detection/linear response Ref.
ZrO2 on a silicon substrate Humidity 10–30 °C 60 s, 130 s Measurement of impedance 134
ZrO2 NP decorated graphene nanosheets Electrochemical approach Methyl parathion –, – Square-wave voltammetry 0.6 ng mL−1 135
Zirconia nanocubes Hydrothermal method Arsenic(iii) –, below 2 s Cyclic voltammetry 5 ppb 29
Zirconia NPs Precipitation method Dimethyl amine 330 °C –, less than 50 s Cataluminescence 6.47 × 10−4 ng mL−1 138
ZrO2 5%Y/ZrO2 Ag-5% Y/ZrO2 Hydrothermal method CO2 300–400 °C 22 s, – Measurement of current 139
Polyaniline zirconia nanocomposite Polymerization method Esomeprazole –, 9 s Electrochemical impedance spectroscopy and cyclic voltammetry 97.21 ng mL−1 140
Au-NPs/ZrO2 nanofiber Nonthermal spin-coated sol–gel method Pesticide –, – Surface-enhanced Raman scattering 10−6 to 10−8 M 137
GQDs@La3+@ZrO2 nanoparticles Bottom-up and sintering approach Flutamide Room temperature Electrochemical signal 0.00082 μM 136
ZrO2 NP modified carbon paste electrode Hydrothermal method Gallic acid Room temperature Differential pulse voltammetry (DPV) 1.24 × 10−7 mol L−1 133
SiO2ZrO2 composite Sol–gel method NO2 25 °C Varied Measurement of resistance 141