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a b s t r a c t 

The main aim of the present paper is threefold. First, it aims at presenting an extended contact-based 

model for the description of the spread of contagious diseases in complex networks with consideration of 

asymptomatic evolutions. Second, it presents a parametrization method of the considered model, includ- 

ing validation with data from the actual spread of COVID-19 in Germany, Mexico and the United States of 

America. Third, it aims at showcasing the fruitful combination of contact-based network spreading mod- 

els with a modern state estimation and filtering technique to (i) enable real-time monitoring schemes, 

and (ii) efficiently deal with dimensionality and stochastic uncertainties. The network model is based on 

an interpretation of the states of the nodes as (statistical) probability densities samples, where nodes can 

represent individuals, groups or communities, cities or countries, enabling a wide field of application of 

the presented approach. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the appearance of the Corona Virus Disease 2019 

COVID19) in December 2019 gradually affecting all countries on 

arth, many mathematical models have been proposed in order to 

redict and estimate the spreading of the disease and its mech- 

nisms of transmission. As the disease is spreading, the public 

ealth systems have been compromised given that no completely 

ffective treatment exist until now and the number of deceased 

ave been increasing. These circumstances have made clear the 

rge of effective spreading surveillance and control or contention 

olicies, apart of lockdown, based on mathematical models that 

ot only predict the evolution of the epidemics as a whole but give 

nsight into the underlying contagion process and in consequence 

an serve as a basis for deciding, e.g., about the best vaccination 

olicies. 

A complete overview of the models presented so far goes far 

eyond the scope of the present paper, as descriptions of the dif- 

erent mechanisms have been studied taking into account very 

ifferent aspects (see, e.g., [1–3] and references therein), reveal- 

ng important insight and giving rise to different approaches for 

itigation. Thus we circumscrive ourselves to highlighting some 
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mportant milestones and mainstreams, relevant for the present 

tudy. From the perspective of model identification in general 

4] there exist three main approaches: the white–box approach in 

hich both the model structure and parameters are known a pri- 

ri , the gray–box approach , in which the structure is known a priori 

ut the parameters are unknown and need to be identified on the 

asis of available data, and the black–box approach , in which both 

tructure and parameters are unknown and are determined using, 

.g., time series analysis and regression methods. 

In the case of Covid-19 modeling, the white-box approach is 

learly unrealistic because many details of the spreading process 

re unknown. 

Within the black–box approach, recent models for the COVID 

preading analysis have been determined using different machine 

earning techniques as, e.g., in [5–8] , autoregression integrated 

oving average (ARIMA) models [8–12] , or Baysian inference ap- 

roaches [13] . Eventhough these models fit well to data about a 

nite horizon, they typically lack physical interpretation, tend to 

verfitting, and can thus hardly predict correctly the time evolu- 

ion over longer horizons. To mitigate this, e.g., different Kalman 

ilter approaches [14,15] have been combined with these mod- 

ls [9–11] , leading to an improved correspondence with available 

ata and thus a significantly improved starting value for predic- 

ion. Thus, this combination provides a powerful way of data–

ssimilation, but still lacks prediction capabilities over longer time 

https://doi.org/10.1016/j.chaos.2022.111887
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.111887&domain=pdf
mailto:alsc@tf.uni-kiel.de
https://doi.org/10.1016/j.chaos.2022.111887
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1 The model could be adapted to include the influence of the behavior of node j

on βi , yielding parameters βi j , but for the purpose at hand it is sufficient to make 

the stated assumption. 
orizons due to the missing physical meaning of the different 

echanisms in the model. 

Phenomenologically motivated models of epidemic spreading 

rocesses [16] have shown both prediction and interpretation po- 

ential and can normally be parameterized to show a good co- 

ncidence with the data [17–20] . Within this class of models, on 

ne side there are mean–field like models, describing macroscopic 

preading mechanisms in terms of statistical densities in the popu- 

ation, like the fraction of infected (I), exposed (E), susceptible (S), 

uarantined (Q), deceased (D) and recovered (R) people, among 

ther alternatives [18,19,21,22] . Some of these models, as well as 

he above mentioned ARIMA models have also been combined 

ith Kalman–Filtering techniques highlighting its big potential for 

ata–assimilation and state reconstruction [9–11,18] (see also the 

osts [23,24] ). In particular, in [22] a five compartment model for 

he dynamics of susceptibles (S), infectious (I), recovered (R), de- 

eased (D), daily confirmed (C) cases is proposed and coupled with 

n extended Kalman Filter to provide also estimates of the repro- 

uction number. 

On the other side contact–based models describe transmission 

echanisms on the scale of individuals or subgroups of the pop- 

lation and thus provide much more insight into the spreading 

echanism itselve, including depdencies on the underlying contact 

etwork specifications using graphs, contact rates and specific in- 

ection probabilities [17,25–27] . Clearly, the latter models involve 

ore parameters which have to be determined based on available 

ata. A methodological approach for data–assimilation and state 

econstruction using such types of models was considered in [28] , 

here only two states (susceptive and infected) and individual 

easurements of infection probabilities of a subgroup of network 

odes were considered. The consideration of explicit interconnec- 

ion structures in contact–based models allows further to dig into 

he effects of network properties, like connectivities, numbers of 

ontacts, shortest paths, or to include considerations on network 

nhomogenities with respect to spreading parameters, consider the 

ffects of social distancing, partial vaccinations, resource allocation, 

tc. 

In the present study the complex–network contact–based mod- 

lling approach is connected for the first time with the ensemble 

alman–Filter for state estimation and data assimilation, thus pro- 

iding model–based spreading process information that is hidden 

n the available data. For this purpose a new phenomenological 

odel is used that is based on a fixed, contact-based Markov chain 

rocess of a priori known structure that accounts for the hetero- 

eneity of the spreading process in a complex network and allows 

aking into account the important effect of the asymptomatic in- 

ectious individuals, among others. The model parameters depend 

n the particular connectivity among network members, represent- 

ng, e.g., countries, groups, or other structures, testing capacities, 

tc., that can be adapted for each data set. 

The paper is structured as follows. In Section 2 the proposed 

odel is introduced and some central properties are established. 

n Section 3 the parameter identification on the basis of data from 

he actual COVID19 spread in Germany, Mexico and the U.S.A. is 

arried out. In Section 4 the stochastic state estimation approach 

sing the ensemble Kalman Filter is applied to the model and val- 

dated for the three case scenarios over a considerably extended 

ime horizon. In Section 5 some potential extensions are discussed. 

he final conclusions are summarized in Section 6 . 

. The extended SEQIR model 

Following the line of reasoning of the contact-based discrete- 

ime Markov-chain modeling approach for epidemic spreading 

n complex networks, as introduced in particular in [25] an 

xtended susceptible-exposed-infectious-quarantine-recovered 
2 
 SEIQR ) model is derived in this section. For this purpose the 

nfection state is separated into two classes: symptomatic (I) and 

symptomatic (A). Additionally, a hospitalization state H, as well 

s a deceased state ( D ) are considered. Given that asymptomatic 

nfections are considered there are two groups of recovered: those 

ho were priorly identified as infected ( R 1 ) and those who are 

ot reported ( R 2 ). It is supposed that an individual node can 

otentially infect others through a contact if it is either in the 

tate I or in the state A . Thus the consideration of the additional 

tate A allows to model the observed effect of hidden infectious 

ndividuals that are not directly counted by typical epidemic mon- 

toring schemes. The resulting state transition diagram is shown in 

ig. 1 and will be further discussed below. 

The population is considered in form of a complex network of 

nodes represented as an undirected graph with a small–world 

opology [29] in which each node corresponds to a single person, 

 city, country of different type of group. The connection between 

eople correspond to the links in the network. Accordingly, the ad- 

acency matrix A describing the network connections has entries 

 i j = 

{
1 , if node i and j are connected 

0 , else. 

ach node of the network can be in either of the 9 states. This situ-

tion is modeled by assigning a probability for each node to be in a 

ertain state. Accordingly, denote by s i , e i , p i , q i , h i , a i , r i 1 , r i 2 , d i the

robability of node i ∈ { 1 , . . . , N} to be in state S, E, I, Q, H, A, R 1 , R 2 
nd D , respectively. A node i that is susceptible will have at least 

ne contact with its neighbor j during one time step with a prob- 

bility r i j . In case that node j is infected (either symptomatic or 

symptomatic) such a contact goes at hand with a probability βi 

f contagion that is considered as a property of node i only, and 

epends, e.g., on its immunity, mask wearing, etc. 1 Accordingly, on 

he one side the probability of being infected during one time step 

hrough interaction with node j is given by 

 i j r i j βi (p j + a j ) . 

n the other side, the probability of not being infected by node j

s given by 

 − a i j r i j βi (p j + a j ) . 

iven that all contacts are considered independent of each other, 

he resulting probability of not being infected during one time step 

s obtained by 

i = (1 − a i 1 r i 1 βi (p 1 + a 1 )) · · · (1 − a iN r iN βi (p N + a N )) 

= 

N ∏ 

j=1 

(1 − a i j r i j βi (p j + a j )) . (1) 

n this way, the probability that node i is infected by some neigh- 

or during this time step is given by 1 − ηi . An infected node first 

asses to the incubation (or exposed) state E. In contrary to the 

ransition probability from S to E the remaining transition proba- 

ilities are constant over time. In particular, it is supposed that a 

ode i remains in the state E with a probability εi . 

From E there are two possible ways that the illness proceeds. 

ith a probability αi the node i does not present symptoms and 

asses to the state A (asymptomatic), or with a probability 1 − εi −
i it presents symptoms and passes to the state I (ill). 

In both states A and I the node i can infect other nodes by con- 

acts, as discussed above. An infectious node in state I will either 
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Fig. 1. Underlying automaton for the spreading process. At a specific time each node of the network can be in any of these states with a given probability. 
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ass to quarantine (Q ) with a probability νi or require hospitaliza- 

ion (H) with probability δi . Accordingly, the probability of staying 

n state I is given by 1 − νi − δi . 

A state in quarantine ( Q) will present a positive evolution of 

he illness and recover, passing to the state R 1 with a probability 

i , present a negative evolution and get worse, so that it requires 

ospitalization with a probability ζi or remain in quarantine with 

 probability 1 − μi − ζi . 

From the state of hospitalization a node can recover with prob- 

bility πi and pass to the state R 1 or may pass away due to a very

ad evolution of the illness with a probability ψ i . Accordingly, it 

ill remain in H with probability 1 − πi − ψ i . 

An asymptomatic node will pass to the state of recovery R 2 
ith a probability ϕ i or pass to quarantine Q with a probability 

i . The transition from A to Q is an important detail in the model 

nd accounts for two possibilities: either the individual starts to 

resent symptoms and decides to stay in quarantine, or it is de- 

ected through official tests, e.g. because it turned out to have been 

n contact with an officially recognized infected neighboring node. 

his transition probability goes at hand with the money spend into 

dditional tests to individuals that do not present symptoms but 

ave a significant probability of having been infected or are key 

ubs in the network because of a large number of contacts or high 

robability of contacting others. As third option, the node can re- 

ain in the state A with a probability of 1 − ϕ i − θi . 

States in R 1 , R 2 (recovered) and D (deceased) remain there with 

robability 1. 

The distinction between two states of recovery is made to en- 

ble a comparison with official data, given that there is no record 

bout persons that have recovered but were asymptomatic. 

To model the associated dynamics of node i consider t ∈ N as 

 discrete time variable. Summarizing the above, for the time step 

etween t and t + 1 one obtains 

s i (t + 1) = η(t) s i (t) 

e i (t + 1) = (1 − η(t )) s i (t ) + εe i (t) 

a i (t + 1) = αe i (t) + (1 − ϕ − θ ) a i (t) 

p i (t + 1) = (1 − ε − α) e i (t) + (1 − ν − δ) p i (t) 

q i (t + 1) = νp i (t) + (1 − μ − ζ ) q i (t) + θa i (t) 

h i (t + 1) = δp i (t) + ζq i (t) + (1 − π − ψ) h i (t) 

 i 1 (t + 1) = μq i (t) + πh i (t) + r i 1 (t) 

 i 2 (t + 1) = ϕa i (t) + r i 2 (t) 

d (t + 1) = ψh (t) + d (t) (2a) 
i i i 

3 
ote that all states remain within the state-space [0 , 1] 9 as long as

he following restrictions for the transition probabilities are satis- 

ed (see Lemma 1 below): 

 ≤ 1 − ϕ − θ ≤ 1 

 ≤ 1 − ε − α ≤ 1 

 ≤ 1 − ν − δ ≤ 1 

 ≤ 1 − μ − ζ ≤ 1 

 ≤ 1 − π − ψ ≤ 1 (2b) 

n addition to the above 9 N difference equations for consistency 

he algebraic condition 

 i (t) + e i (t) + p i (t) + q i (t) + h i (t) + a i (t) + r i 1 (t) + r i 2 (t) + d i (t) = 1

(2c) 

ust hold true for all t ≥ 0 , i = 1 , . . . , N. In compact vector no-

ation this can be written as a discrete-time nonlinear first-order 

odel of the form 

x (t + 1) = �( x (t ) , p ) , x (t ) = 

[
x 1 (t) · · · x N (t) 

]
, 

x i (t) = 

[
s i (t) · · · d i (t) 

]
, (2d) 

or t > 0 , x (0) = x 0 and i = 1 , . . . , N with the parameter vector 

p = 

[
β, ε, α, φ, θ, ν, δ, μ, ζ , π, ψ, r 

]
. (2e) 

o identify the associated state and parameter spaces for which the 

odel is valid introduce 

X = { x ∈ [0 , 1] 9 N | 
9 ∑ 

k =1 

x k = 1 } , 

P = { p ∈ [0 , 1] 12 | (2 b) holds true, with p given by (2 e ) } . 
n the following the solution vector at time t ≥ 0 starting at x 0 at 

 = 0 with the parameter vector p is denoted by x (t) = x (t; x 0 , p ) . 

The following basic result presents an intrinsic and essential 

roperty of the model (2). 

emma 1. Consider the model (2) and let p ∈ P . Then the set X is

ositively invariant, i.e., for all x 0 ∈ X it holds true that x (t; x 0 , p ) ∈
 for all t ≥ 0 . 

roof. Consider that for some i ∈ { 1 , . . . , N} some state value x i,k ,

 ∈ { 1 , . . . , 9 } is zero at time t ≥ 0 and all other are greater or equal

o zero, i.e. x i,k (t) = 0 , x i,l (t) ≥ 0 , k, l ∈ { 1 , . . . , 9 } and let p ∈ P , so

hat the constraints (2b) hold true. It can be directly seen from 

2), that x i,k (t + 1) ≥ 0 , given that all other states satisfy x i,k (t) ≥ 0

nd the parameters satisfy the constraints (2b) . This shows that 

or all i = 1 , . . . , 9 N it holds true that x i,k (t) ≥ 0 for all k = 1 , . . . , 9
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nd t > 0 as long as x i,k (0) ≥ 0 . Further, let (2c) hold true for some

 ≥ 0 . A simple calculation shows that 

s i (t + 1) + e i (t + 1) + p i (t + 1) + q i (t + 1) + h i (t + 1) 

+ a i (t + 1) + r i 1 (t + 1) + r i 2 (t + 1) + d i (t + 1) 

= s i (t) + e i (t) + p i (t) + q i (t) + h i (t) + a i (t) + r i 1 (t) 

+ r i 2 (t) + d i (t) = 1 

s always ensured. In consequence, the constraint (2c) is satisfied 

or all t ≥ 0 if it is for t = 0 . As it also holds true that for all i =
 , . . . , 9 N one has 0 ≤ x i,k (t) for all k = 1 , . . . , 9 and t ≥ 0 it follows

hat x i,k (t) ≤ 1 . Thus x (0) ∈ X implies that x (t) ∈ X for all t ≥ 0 ,

.e., X is positively invariant. �

Note that even though the model (2) is probabilistic in nature, 

iven that the states indicate the probability of a node i to be in

ne of the 9 possible states, it has a strong deterministic compo- 

ent as it considers only known effects and no stochastic influ- 

nces. In particular this implies that the model corresponds to a 

losed system with no interaction with the surrounding. Further- 

ore, the parameters are considered homogeneous over the net- 

ork, i.e. all nodes have the same transition probability up to the 

robability of not getting infected ηi , which depends on the net- 

ork structure and thus mainly on the node degree. 

For real spreading processes these assumptions are quite un- 

atural. There are several ways of getting rid of these strong as- 

umptions. One way is to introduce different parameters satisfying 

 certain distribution, considering segmentation of the population 

n different groups, or taking into account stochasticity by means 

f additional stochastic inputs. 

Given that official data is available only for the total num- 

er of infected, hospitalized, recovered people as well as the de- 

eased ones, it makes sense to additionally consider the mean 

alue model associated to the statistical sample of the network. 

his is addressed in the next section. 

. Model evaluation 

In order to evaluate the model, official data in form of time 

eries of reported cases in specific countries have been used that 

re provided by the John Hopkins University through the github 

ite https://github.com/CSSEGISandData/COVID-19/tree/master/ 

sse _ covid _ 19 _ data/csse _ covid _ 19 _ time _ series . This data covers 

he cumulative numbers of confirmed cases n c , officially recovered 

ases n r 1 and deceased n d for each country. 

In combination with the total number of inhabitants n 0 of the 

espective countries, this data can be used to determine the statis- 

ical probability of being confirmed, recovered, or deceased, when 

electing an arbitrary group member, according to 

 c = 

n c 

n 0 

, y r 1 = 

n r 1 

n 0 

, y d = 

n d 

n 0 

. (3a) 

hese are referred to as measurements from now onwards. Re- 

alling the state automaton shown in Fig. 1 and accounted for in 

odel (2) it holds that the accumulative number n c is given by 

 c = n q + n h + n r 1 + n d , 

ith n q , n h being the number of people officially in quarantine 

nd in hospital due to the infection, respectively. In accordance, 

 fourth indirect (i.e., model-specific) measurement is at hand, 

amely 

 q + h = y c − y d − y r 1 = 

n q + n h 

n 

. (3b) 

0 b

4 
his yields a measurement vector of four independent values at 

ime t ≥ 0 

 (t) = 

⎡ 

⎢ ⎣ 

y c (t) 
y r1 (t) 
y d (t) 

y q + h (t) 

⎤ 

⎥ ⎦ 

. (3c) 

Introducing the first moments of the state distribution over the 

etwork according to 

ρs (t) = 

1 

N 

N ∑ 

n =1 

s n (t) , ρe (t) = 

1 

N 

N ∑ 

n =1 

e n (t) , 

ρa (t) = 

1 

N 

N ∑ 

n =1 

a n (t) , ρp (t) = 

1 

N 

N ∑ 

n =1 

p n (t) , 

ρq (t) = 

1 

N 

N ∑ 

n =1 

q n (t) , ρh (t) = 

1 

N 

N ∑ 

n =1 

h n (t) , 

ρr1 (t) = 

1 

N 

N ∑ 

n =1 

r n 1 (t) , ρr2 (t) = 

1 

N 

N ∑ 

n =1 

r n 2 (t) , 

ρd (t) = 

1 

N 

N ∑ 

n =1 

d n (t) (4) 

(t) = 

[
ρs (t) ρe (t) ρa (t) ρp (t) ρq (t) ρh (t) ρr 1 (t) ρr 2 (t) ρd (t) 

]�

= 

1 

N 

N ∑ 

n =1 

x n (t) , (5)

ne can obtain a model-based representation of the measured data 

 (t) given in (3c) in the form 

 (t) = H x (t) = C ρ(t) (6) 

ith the matrixes 

 := 

⎡ 

⎣ 

c � 1 
. . . 

c � 4 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

0 0 0 0 1 1 1 0 1 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 

0 0 0 0 1 1 0 0 0 

⎤ 

⎥ ⎦ 

, 

ank (C) = 4 , H = I N � C (7) 

ith the N × N identity matrix I N . For a given data set 

 y (t s ) , y (t f ) } of time series with 0 ≤ t s < t f consisting of data

oints at successive time instances t s = t 1 ≤ t 2 ≤ . . . ≤ t nm 

= t f , the

arameter estimation problem can be addressed e.g. using a robust 

eighted least squares approach [4] 

min 

p , x 0 

t f ∑ 

τ= t s 

4 ∑ 

k =1 

w k (τ ) L ((y k (τ ) − c � k ρ(τ ; t s , p , x 0 )) 
2 ) (8) 

ubject to p ∈ P, x 0 ∈ X 

ith the solution of (2d) starting at time t s with the value x 0 
nd running with parameter vector p denoted by x (τ ; t s , p , x 0 ) , 

ositive weights w k (t) > 0 , t ∈ [ t s , t f ] , and a nonlinear function

 ∈ C 1 (R 

n , R ) . For the present work, motivated by [30] , the sub-

inear function L = arctan has been employed. The reason for this 

hoice is that for small errors a similar behavior as the one of the 

bsolute error is obtained, implying a higher sensitivity in com- 

arison to the classical least squares approach whilst ensuring dif- 

erentiability at zero. The weights w k in (8) can be adapted, e.g., 

iving more influence to time intervals of high dynamic behavior. 

To provide an illustrative example the data for Germany (GER), 

exico (MEX) and the United States of America (USA) have been 

xtracted from the above database and a parameter identification 

as been carried out using the model (2). This choice was taken to 

e able to show the functioning for considerably different social, 

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
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Fig. 2. Comparison between official data and simulation results for Germany using (2) and (9a) . Official data (black, solid lines) and model prediction (green, dashed lines). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

h

i  

w  

P

r

o

c

b

n

n

A

a

i

v

t

t

a

M

u

t  

t  

d

d  

t

a

s

1

E

p

ealth-political and health-structural conditions. 2 For the compar- 

son a network of N = 200 nodes has been used with a small-

orld structure [29] , mean node degree k = 4 and build with the

ython algorithm networks.watts_strogatz_graph with a 

econnection probability of p = . 4 . Note that this particular choice 

f network is arbitrary and just serves to illustrate the adaptation 

apabilities of the model, as well as the combination with model- 

ased monitoring schemes addressed in the next section. The total 

umbers of inhabitants are approximated by 

 0 ,GER = 83 · 10 

6 , n 0 ,MEX = 126 . 2 · 10 

6 , n 0 ,USA = 328 . 2 · 10 

6 . 

s initial guess for the model parameter vector p the char- 

cteristic transient times and associated probabilities of stay- 

ng in a certain state of the automaton (see Fig. 1 ) pro- 

ided by the Robert Koch institute in Germany [31] [available 
2 Besides this reason, the three countries were chosen given that the first two are 

he countries of origin of the authors and that the case numbers in USA are among 

he highest ones globally speaking. 

t

m

w

a

a

5 
t https://www.rki.de/DE/Content/InfAZ/N/Neuartiges _ Coronavirus/ 

odellierung _ Deutschland.html (page 4, in German)] have been 

sed. To highlight the main idea behind this approach, consider 

hat it is known that a node i is in state A with probability 1 at

ime t , i.e., a i (t ) = 1 . The parameters provided in the mentioned

ocument state basically that this node will be recovered after 9 

ays with a probability of 95.5 % , i.e., a i (t + 9) = 0 . 045 . In terms of

he above parameters, this can be interpreted as follows: 

 i (t + 9) = 0 . 045 = (1 − φ − θ ) 9 a i (t) = (1 − φ − θ ) 9 

o that 

 − φ − θ = 0 . 045 

1 / 9 . 

mploying similar arguments for the remaining states using the 

rovided data and completing the missing data reasonably an ini- 

ial parameter vector is obtained. The initial value x 0 is deter- 

ined considering that only the first node with i = 1 in the net- 

ork is infectious with probability p 1 (t 0 ) = p 10 and all other nodes 

re susceptible. The adaptation of the parameters within reason- 

ble bounds contained in (0,1), satisfying the constraints (2b) and 

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Modellierung_Deutschland.html
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Fig. 3. Comparison between official data and simulation results for Mexico using (2) and (9b) . Official data (black, solid lines) and model prediction (green, dashed lines). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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roviding a solution of the mean squares minimization problem 

8) is carried out using scipy.optimize.minimize in Python 

hoosing t s = 50 , t f = 200 . The initial time is set to 50, given that

e decided to keep the time step of the original database while 

n the considered countries there were almost no cases during the 

rst weeks of the pandemic. This approach can be applied repeti- 

ively, varying the weights w k (t) between successive optimization 

uns. This yields the results shown in Figs. 2 - 4 with the parame-

er vectors 

p GER = [0 . 06114 , 0 . 42081 , 0 . 57891 , 0 . 59280 , 0 . 07341 , 0 . 00238 , 

0 . 0 0 019 , 0 . 02186 , 0 . 22082 , 0 . 06842 , 0 . 00485 , 0 . 93594] , 

(9a) 

p MEX = [0 . 02623 , 0 . 87733 , 0 . 10315 , 0 . 06991 , 0 . 30881 , 0 . 0 0 0 03 , 

0 . 0 0 072 , 0 . 10913 , 0 . 02888 , 0 . 40195 , 0 . 25909 , 0 . 45380] , 

(9b) 
6 
p USA = 

[
0 . 06121 , 0 . 86170 , 0 . 05789 , 0 . 90835 , 0 . 04509 , 0 . 00841 , 

0 . 00340 , 0 . 01956 , 0 . 06165 , 0 . 00550 , 0 . 00088 , 0 . 15876] . 

(9c) 

nd initial conditions p 10 ,GER = 0 . 68979 , p 10 ,MEX = 0 . 17363 ,

p 10 ,USA = 0 . 80265 , p k 0 = 0 , k = 2 , . . . , N. 

According to these simulation results the model shows a good 

apability to qualitatively and quantitatively describe the develop- 

ent of the reported numbers, i.e., the measurements. In the case 

f discontinous measurement data as, e.g., in Fig. 3 in the lower 

eft subfigure, it is typical that a parameter optimization yields 

he shown averaging behavior. To be able to better account for 

uch discontinuities in the next section an online data–assimilation 

cheme will be proposed. 

It should be noted that even though the presented simulation 

esults show in principle a good correspondence with the actual 

ata, there has been only few interpretation of the parameters in 

he sense of further constraints which are motivated by physical- 

hysiological or medical reasoning. Actually there exist different 

arameter sets for which a good correspondence with the observed 
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Fig. 4. Comparison between official data and simulation results for USA using (2) and (9c) . Official data (black, solid lines) and model prediction (green, dashed lines). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ata is achieved. In consequence, the presentation of the present 

arameters does not aim to claim that these are the most accu- 

ate ones. In particular, the optimized parameter set will always 

epend, e.g., on the particular network model used. Hence, the re- 

ults of this section only aim to show that the model can provide 

dequate predictions when it is adequately parameterized. 

It should be further mentioned that the nonlinearity and high- 

imension of the model implies a considerable parameter sen- 

itivity. Anyway, the strength of the model consists in the in- 

ight associated to the contact–based modeling approach. As men- 

ioned above, the accuracy of the prediction and the correspon- 

ence with the measurements will be improved in the next sec- 

ion by means of a Kalman–Filter based, real–time capable state 

stimation scheme. 

. Stochastic state estimation for epidemic spreading 

Given that spreading does normally not take place in isolated 

opulations and that parameters vary over time, e.g., due to an in- 

rease in contact limitations, increased wearing of masks, vaccina- 
7 
ion, etc., one has to account for unmodeled time varying effects 

nfluencing the dynamics of the underlying process. One way of 

ddressing such fluctuations consists in including stochastic varia- 

ions in the process model in form of additive white noise yield- 

ng 

 (t + 1) = �( x (t) , p ) + w (t) , t > 0 , w ∼ N ( 0 , Q ) (10a) 

 (t) = H x (t) + v (t) , v ∼ N ( 0 , R ) (10b) 

ith normally distributed initial state x (t 0 ) ∼ N ( x 0 , Q 0 ) and state

nd measurement covariance matrices Q 0 , Q, R � 0 . Note that this 

s the most simple form to account for unmodeled effects. The 

oise could also enter the dynamics with state dependent covari- 

nce, leading to so-called multiplicative noise [32–34] . It is know 

rom different studies, that additive and multiplicative noise has 

uite different effects, in particular for the time evolution of the 

ean and mode of the associated probability distributions [32,34] . 

or the purpose of illustrating the monitoring methodology ad- 

ressed in this work the setup with additive noise is sufficient and 

ields sufficiently convincing results. 
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Fig. 5. Evaluation of the ensemble Kalman Filter for the complete data set for Germany. Official data (black, solid lines) and predictions (green, dashed lines) and ( σ/ 2 ) 

confidence intervals (green shaded regions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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For monitoring purposes it is important to have information 

bout the unmeasured states. Besides the statistically relevant 

ean densities ρs , ρe , ρa , ρq , ρh , ρr 2 , the approach presented in the 

equel actually provides information down to the lowest level, i.e., 

he state probabilities of each node in the network. In particu- 

ar this includes information about the number of asymptomatic 

roups. This information can be obtained in form of a state esti- 

ate ˆ x (t) at time t ≥ 0 that is provided by an estimation scheme 

hich takes into account the stochastic model (10), i.e., the un- 

erlying process mechanisms together with the statistics coded in 

he covariances, in combination with the existing measurement 

pdates, i.e., the daily new reported data vector y (t) . Typical ap- 

roaches for such a task are known from systems and control the- 

ry and named observers or filters [14] . Given the intrinsic prob- 

bilistic nature of the uncertainties the Kalman Filter approaches 

eem suitable [14,15,35] and have already been exploited for sim- 

ler models for COVID-19 supervision [9–11,22] without consider- 

ng structural details of the underyling networks. The Kalman Fil- 

er provides a minimum state estimation error covariance, thus 
8 
roviding an optimal estimate of unmeasured states by combining 

he model prediction with the innovation based on the compar- 

son with the updated measurements. For nonlinear systems, the 

xtended Kalman Filter can be employed, which provides a local 

aussian approximation of the probability distribution along the 

stimated state trajectory [14] . It is also known, that, from a non 

ocal perspective, this approximation can potentially be misleading 

or nonlinear systems [15,35] . 

Both, the classical and extended Kalman Filters require the ex- 

licit calculation of the time varying covariance matrices. Note that 

ue to the typically high-dimensional dynamics of the presented 

odel with 9 N states, where N is the number of nodes in the net- 

ork, and the inherent nonlinear behavior, approaches based on 

he (classical or extended) Kalman Filter seem rather inappropri- 

te for the case at hand. In contrast to the mentioned monitoring 

chemes, the ensemble Kalman Filter (enKF) is based on a Markov 

hain Monte Carlo simulation with data assimilation (state innova- 

ion) by measurement injection [15,35] . The basic idea consists in 

mploying M different simultaneous simulations of the process for 
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Fig. 6. Evaluation of the ensemble Kalman Filter for the complete data set for Mexico. Official data (black, solid lines) and predictions (green, dashed lines) and ( σ/ 2 ) 

confidence intervals (green shaded regions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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redictions ˆ x 
k 
p , k = 1 , . . . , M and using the sample mean and co- 

ariances instead of the explicit calculation of the covariance dy- 

amics. 

The enKF is implemented as follows [14,35] : 

Given the estimated state ˆ x (t − 1) at time t − 1 , the following 

teps are carried out: 

• Prediction (model–based without using the actual measure- 

ments): 

ˆ x p (t) = �( ̂ x (t − 1) , p ) + w , t ≥ 1 , ˆ x (t 0 ) = 

ˆ x 0 , w ∼ N ( 0 , Q )
(11a) 

with 

ˆ x p (t) = [ ̂ x p, 1 (t ) , · · · , ˆ x p,N (t )] � 
• Determination of the prediction covariance and Kalman (correc- 

tion) gain: 

P (t) = 

1 

N − 1 

N ∑ 

n =1 

( ̂ x n − 〈 ̂ x p (t) 〉 ) 2 , 〈 ̂ x p (t ) 〉 = 

1 

N 

N ∑ 

n =1 

ˆ x k,p (t ) 

(11b) 
9 
K(t) = P (t) H 

� (HP (t) H 

� + R 

)−1 
, (11c) 

• Data assimilation (innovation by means of measurement–driven 

correction of the predicted values): 

ˆ x (t) = ( I − K(t) H ) ̂ x p (t) + K(t ) y (t ) (11d) 

ˆ ρ(t) = 〈 ̂ x (t) 〉 = 

1 

N 

N ∑ 

n =1 

ˆ x k (t) (11e) 

For the numerical evaluation of the ensemble Kalman Filter the 

arameter vectors provided in (9) are used, the covariance matrices 

, R are set as 

 = diag ([ 2 · 10 

−10 , 2 · 10 

−10 , 10 

−14 , 10 

−14 , 10 

−14 , 10 

−10 , 10 

−15 ]) , 

R = diag ([10 

−20 , 10 

−21 , 10 

−20 , 10 

−21 ]) 

nd an initial distribution over the ensemble with mean p 10 ,X from 

he parameter identification with X ∈ { GER, MEX, USA } , and vari- 

nce q = 10 −18 is considered. The evaluation is carried out over 
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Fig. 7. Evaluation of the ensemble Kalman Filter for the complete data set for the USA. Official data (black, solid lines) and predictions (green, dashed lines) and ( σ/ 2 ) 

confidence intervals (green shaded regions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he time interval t 0 = 50 to t f = 323 , i.e. 123 days more than used

o fit the initial parameter set with the results shown in Figs. 2 –4 . 

The results are illustrated in Figs. 5 - 7 showing the state esti- 

ates with variance-band ( σ/ 2 ) confidence intervals together with 

he measurements (3c) . It can be seen that the resulting state es- 

imates show a good correspondence with the measurements and 

dditionally provide model-based (and thus parameter dependent) 

stimates of the unmeasured states which can be further used for 

iagnosis or decisions for action plans. The different shapes of the 

onfidence intervals illustrate their different nonlinear interdepen- 

encies on the state estimates as well as the measurements due to 

he innovation step (11e) . The improvement in comparison to the 

odel predictions shown in Figs. 2 –4 can be most clearly seen in 

he case of Mexico, where discontinuities in the measurements are 

resent (see, e.g., the lower left subfigure in 3 and 6 ). The final de-

iations in the predictions of the fraction of deceased group mem- 

ers for Germany and the US reveal that a reparameterization after 

00 time units would be required to improve the model fit. As in- 
10 
ection parameters, as well as medical treatment varies over time, 

uch a reparameterization would be a necessary improvement for 

he use in the long run. This applies in particular for taking into 

ccount vaccinations which did not play a central rule during the 

hase of the pandemic shown in the figures. 

. Discussion 

As commented at the end of Section 3 , the purpose of the 

resent paper consists in presenting a new model which is capable 

o allow online monitoring using a model-based data assimilation 

nd state estimation scheme. The contribution is thus overall of 

ethodological nature. In order to adapt the model and approach 

urther for specific usage, the following measures can be consid- 

red: 

• Combination of the approach with online parameter adaptation 

schemes. As the parameters often vary over larger time inter- 

vals (see also the final discussion in the previous section), e.g., 
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due to different countermeasures in different moments, such an 

adaptation could improve the estimation performance and en- 

rich the usability of the proposed approach. For this purpose 

one can either consider a reparametrization over a receding 

horizon, i.e., taking into account the last k days, using either 

the presented approach, a moving horizon estimation technique 

[36] , or include some of the parameters in the state vector with 

a stochastic variation and adaptation by measurement injection 

approach. 
• Stratification of the population, i.e., considering, e.g., more vul- 

nerable groups with higher infection probabilities β , or higher 

probability of being asymptomatic, i.e., with larger α. Such an 

approach would enable to study in more detail the different 

consequences of parameter diversity. On the one side this can 

provide additional inside into the spreading process, but on the 

other side also implies a substantial blow-up in the number of 

parameters to be identified. Thus, particular local (i.e., on the 

basis of sub-networks) identification schemes should be em- 

ployed for such a task. 
• Consideration of local geographical, transport or travelling 

networks or individual network data evaluated from mobile 

phones, analysis of interchange between cities, regions or coun- 

tries. With such information further understanding the mutual 

influence and designing corresponding counter-measures would 

be explicitly possible. 

. Conclusions 

In this paper a contact–based Markov chain model for the 

pread of a virus in a complex network has been presented that 

articularly takes into account the asymptomatic group. The abil- 

ty of the model to fit with actual data over long term horizons has

een illustrated for three completely different case studies, namely 

ermany, Mexico and the U.S.A. The potential of adequately us- 

ng such models for data assimilation and reconstruction of hidden 

tates has been shown using the ensemble Kalman Filter. The re- 

ults show that this framework provides an efficient means that 

an be further exploited using more detailed insight about the 

nderlying contact network structure and parameters. The long- 

erm estimation model presented by the authors shows the fruit- 

ul combination of contact-based network spreading models with a 

odern state estimation and filtering technique to (i) enable real- 

ime monitoring and (ii) efficiently deal with dimensionality and 

tochastic uncertainties. Having such monitoring schemes, capable 

f fast adaptation to new parametric scenarios can provide an ad- 

itional basis for further decision making processes. 
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