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Atherosclerosis is the main underlying pathology for many car-
diovascular diseases (CVDs), which are the leading cause of
death globally and represent a serious health crisis. Atheroscle-
rosis is a chronic condition that can lead to myocardial infarc-
tion, ischemic cardiomyopathy, stroke, and peripheral arterial
disease. Elevated plasma lipids, hypertension, and high glucose
are the major risk factors for developing atherosclerotic pla-
ques. To date, most pharmacological therapies aim to control
these risk factors, but they do not target the plaque-causing
cells themselves. In patients with acute coronary syndromes,
surgical revascularization with percutaneous coronary inter-
vention has greatly reduced mortality rates. However, stent
thrombosis and neo-atherosclerosis have emerged as major
safety concerns of drug eluting stents due to delayed re-endo-
thelialization. This review summarizes the major milestones,
strengths, and limitations of current anti-atherosclerotic ther-
apies. It provides an overview of the recent discoveries and
emerging game-changing technologies in the fields of nanome-
dicine, mRNA therapeutics, and gene editing that have the po-
tential to revolutionize CVD clinical practice by steering it to-
ward precision medicine.
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ATHEROSCLEROSIS
Cardiovascular disease (CVD) is the leading cause of death globally.
In 2019, >17 million people died from CVDs; of these, 85% were
due to heart attack and stroke,1 which are mainly caused by athero-
sclerosis of the arteries. Atherosclerosis is a non-resolving chronic in-
flammatory disease that develops in the medium to large arteries of
the arterial tree at branching points with disturbed blood flow.2 Dys-
lipidemia, hypertension, and diabetes are the major risk factors for
atherosclerosis and are implicated in atherosclerotic plaque initiation,
progression, and rupture.3 In addition, the role of inflammation4,5

and the recent discovery of clonal hematopoiesis of indeterminate po-
tential (CHIP)6 have expanded CVD risk factors beyond traditional
ones (Figure 1).

Atherosclerosis begins with damage to the vascular endothelial cells
(ECs) that line the innermost layer of the vessels, which normally
regulate local vascular tone and protect the arteries against inflamma-
tion and thrombosis.7,8 Several conditions induce EC dysfunction,
including hypercholesterolemia,9 hypertension,10 and diabetes.11,12

EC dysfunction facilitates the deposition of lipids in the subendothe-
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lial space, triggering arterial inflammation. Resident patrolling mac-
rophages and infiltrating monocyte-derived macrophages start to
proliferate within the arteries and intake oxidized-low-density lipo-
protein (LDL), becoming foam cells.13 While resident macrophages
promote tissue repair and homeostasis, monocyte-derived macro-
phages can acquire either pro-inflammatory or pro-resolving pheno-
types, which are known as M1/classically activated or M2/alterna-
tively activated phenotypes, respectively.14,15 Macrophages thus
play a critical role in not only atherosclerosis progression but also pla-
que stability and regression by phagocytosis and clearance of
apoptotic cells, a process known as efferocytosis, as well as other
pro-resolving functions. In addition, in response to the inflammatory
cytokines released by macrophages, ECs and vascular smooth muscle
cells (VSMCs) contribute to atherosclerotic plaque progression
through the endothelial-mesenchymal transition (EMT)16,17 and
VSMC de-differentiation into migratory and macrophage-like foam
cells.18 The failure to resolve the inflammatory response leads to
enhanced inflammatory cell recruitment as well as macrophage and
foam cell death. Defective efferocytosis contributes to the formation
of the highly inflamed necrotic core of unstable plaques.2,19 Vulner-
able plaques with lipid-rich necrotic cores and thin fibrous caps are
at a higher risk of rupturing. Plaque rupture has historically ac-
counted for the majority of acute coronary syndromes and is one of
the biggest risks associated with myocardial infarctions.20 In contrast,
plaque erosion, which is more commonly associated with women and
younger individuals, involves the monolayer of ECs lining the arterial
intima to become denuded and occurs in 40% of patients with acute
coronary syndromes.20–23

STRENGTHS AND LIMITATIONS OF CURRENT
ATHEROSCLEROSIS TREATMENTS
The FraminghamHeart Study was the first to identify hyperlipidemia
and hypertension as major CVD risk factors.24 Since then, great prog-
ress has been made to develop therapies and interventions that have
led to better outcomes and lower mortality rates for CVD patients25

(Figure 2). In fact, from 1990 to 2019, the number of people with
ischemic heart disease decreased by 4.6% (age-standardized rate per
or(s).
tp://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Atherosclerosis: Disease progression and risk factors

Atherosclerosis begins with damage to the endothelium lining the arterial intima, initiated by risk factors. This leads to disease progression, lipid retention to the subendothelial

space, infiltration of inflammatory cells, and plaque formation. Plaques can form over many decades without manifesting any symptoms but can lead to chronic ischemic

heart disease or acute events such as plaque rupture, myocardial infarctions, and strokes. Made with Biorender.com.
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100,000), and from 2011 to 2017, the age-adjusted mortality for cor-
onary heart disease declined by 2.7% annually.26 Despite these ad-
vances, CVD remains the leading cause of death globally, and im-
provements to current treatments and novel therapeutic strategies
are needed.

Lipid management therapies

A 30-year follow-up to the Framingham Heart Study showed that for
those younger than age 50, cholesterol levels were directly related to
9% of CVD death for each 10 mg/dL.27 Since then, an abundance
of clinical, genetic, and epidemiological studies has established that
elevated LDL levels are major contributors to the development of
atherosclerotic plaques and subsequent CVDs.28–30 Thus, lowering
total and LDL-cholesterol has been a mainstay in the treatment of
atherosclerosis, with statin therapy becoming the foundation of lipid
management. Statins are competitive inhibitors of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting
enzyme in cholesterol synthesis.31 Statins also increase LDL clearance
from circulation by increasing the expression of hepatic LDL recep-
tors. The 4S clinical trial (Scandinavian Simvastatin Survival Study)
was one of the first long-term clinical trials to show that statin therapy
increased survival rates and decreased the need for revascularization
procedures in patients with coronary heart disease.32 Moreover, sta-
tins exert protective pleiotropic effects that are independent of
LDL-cholesterol lowering. Several pre-clinical and clinical studies
have shown that statins reduce inflammation and slow the progres-
sion of atherosclerotic plaques.33 The anti-inflammatory effects of
statins stem from their ability to enhance efferocytosis,34 activate
transcription factors such as peroxisome proliferator-activated recep-
tors (PPARs) to increased lipid metabolism,35 suppress oxidative
stress,36 decrease thrombotic and platelet activity,37 and enhance
angiogenesis and EC function.38

Despite these broad benefits, statins may not sufficiently reduce LDL
levels in all patients, and many patients do not tolerate statin therapy
due to side effects such as myopathy or rare cases of rhabdomyolo-
sis.39 To meet target LDL levels, several agents have been used indi-
vidually or in combination with statins, including ezetimibe, fibrates,
niacin, and bile acid-binding resins, which have shown modest ben-
efits in dyslipidemia management and cardiovascular events.40,41

After the discovery of the proprotein convertase subtilisin/kexin type
9 (PCSK9) gain- and loss-of-function mutations, associated with fa-
milial hypercholesterolemia42 and with lower LDL-cholesterol
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Figure 2. Available anti-atherosclerotic drugs and interventions
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levels,43 respectively, it quickly became one of the most promising tar-
gets for the management of LDL-cholesterol levels. PCSK9 is a serine
protease that is synthesized in the liver and secreted into the blood-
stream and exerts its effects on cholesterol homeostasis by binding
LDL receptors both intra- and extracellularly to cause their degrada-
tion.44 Thus, PCSK9 inhibition increases hepatic LDL receptors, re-
sulting in a significant reduction in LDL-cholesterol levels and the
rate of major adverse cardiovascular events.45,46 In 2015, the US
Food and Drug Administration (FDA) approved a new class of
lipid-lowering therapies that consisted of humanized monoclonal an-
tibodies (mAb) that inactivate PCSK9, alirocumab, and evolocu-
mab.47 However, PCSK9 mAb treatment requires frequent injections
due to their short half-lives and are very expensive, so they are pre-
scribed for high-risk patients who are intolerant to statins or who
have failed to reduce LDL-cholesterol levels despite taking the
maximum tolerated dose of a statin and ezetimibe. In December
2021, the FDA approved Leqvio (inclisiran), a small interfering
RNA (siRNA) therapy that targets PCSK9 mRNA to reduce its syn-
thesis in the liver and decrease LDL-cholesterol levels by �50% after
subcutaneous administration every 6 months.48,49 Given the need for
more affordable and effective lipid-lowering therapies, several other
innovative approaches are under development.

Hypertensive management therapies

Hypertension is another significant risk factor for developing
atherosclerosis and subsequent CVDs and is a major cause of pre-
mature death worldwide.50 Hypertension induces EC dysfunction
and exacerbates the formation of atherosclerotic plaques while
decreasing their stability.51 Effective management of hypertension
has been a major step forward in reducing risks associated with
CVDs in patients. A meta-analysis of >48 randomized clinical trials
found that a reduction of just 5 mmHg in systolic blood pressure
reduced the risk of patients experiencing an adverse cardiac event
by 10%.52

Most clinical guidelines for antihypertensive drugs consist of fourma-
jor classes: b-receptor blockers, calcium channel blockers, renin-
angiotensin-aldosterone system (RAAS) blockers, and thiazide-like
diuretics. A head-to-headmeta-analysis showed that all antihyperten-
3108 Molecular Therapy Vol. 30 No 10 October 2022
sive drugs have a similar effect on major CVD outcomes.53 However,
there are limitations to these drugs and patient medical history needs
to be carefully examined before prescribing. For example, non-selec-
tive b-receptor blockers should not be prescribed to asthmatics as the
b2-receptor blockade on the respiratory system can worsen asthma
symptoms.54 RAAS blockers may also cause dangerous hyperkalemia
in at-risk patients with renal disease and should not be prescribed to
those with bilateral renal arterial stenosis, as the renal perfusion of
these patients is highly dependent on RAAS.55 In addition, RAAS
blockers are contraindicated during pregnancy for their possible tera-
togenic effects,56 while their effects on newborn infants are largely un-
known, so nursing mothers should be educated on the possible risks
and alternative antihypertensive treatments. Consequently, methyl-
dopa (a2-receptor blocker), labetalol (b-receptor blocker), and nifed-
ipine (calcium channel blocker) are considered first-line treatments
for pregnant women with hypertension.57 A prospective observa-
tional cohort study reported that pregnant women treated with meth-
yldopa during the first trimester of pregnancy did not have a signifi-
cantly increased risk of birth defects, but there was a significant
increase in pre-term births.58 Furthermore, a randomized controlled
trial evaluated the use of labetalol versus nifedipine in pregnant
women, and both were found to be effective in controlling blood pres-
sure to therapeutic targets.59

To achieve contemporary blood pressure targets, combinational ther-
apy is often required. Thus, several single-pill combination therapies
have been widely used, and these antihypertensive treatments are
among the most remarkable achievements in modern clinical medi-
cine. Even with these accomplishments, resistant hypertension,
defined by uncontrolled blood pressure despite the use of a diuretic
andR2 antihypertensives drugs at the maximum tolerated dose, per-
sists in 12%–14% of treated hypertensive patients.60,61 It has been re-
ported that patients with resistant hypertension experience higher
rates of target organ damage compared to those with well-controlled
blood pressure.62 Moreover, 3% of these patients who do not achieve
blood pressure control even with R5 antihypertensive therapies are
defined as refractory hypertensive, and those with refractory hyper-
tension were found to have higher prevalence ratios for Black race,
diabetes mellitus, and albuminuria, compared to those with resistant
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hypertension.63–65 Thus, novel therapeutic strategies are still needed
to combat resistant and refractory hypertension.

Diabetes mellitus therapies

Diabetes mellitus (DM) is one of the fastest-growing global health
conditions that is a major cause of heart attack, stroke, lower limb
amputation, kidney failure, and blindness.66 DM is a chronic meta-
bolic disease characterized by hyperglycemia. Type 1 DM (T1DM)
is an autoimmune disorder that affects young people (younger than
30 years of age), which leads to the destruction of the insulin-produc-
ing pancreatic beta cells, and patients require lifelong insulin replace-
ment therapy.67 Type 2 DM (T2DM) is a progressive metabolic dis-
ease characterized by insulin resistance that progresses into the
functional failure of pancreatic beta cells.68 It is vital for patients to
control their diabetes diagnosis as they are at higher risk for devel-
oping CVD. In fact, a 20-year observation of the Framingham cohort
that had prior evidence of diabetes had a 2- to 3-fold increased risk of
clinical atherosclerotic disease and subsequent cardiovascular
events.69 In addition to insulin replacement therapies for T1DM,
there are nearly 60 FDA-approved drugs for T2DM. These include bi-
guanides, sulfonylureas, meglitinides (glinides), a-glucosidase inhib-
itors, thiazolidinediones, sodium-glucose cotransporter type 2 inhib-
itors, and incretin-dependent therapies. These therapies have various
mechanisms of action such as increasing insulin sensitivity and secre-
tion, decreasing renal glucose reabsorption, inhibiting hepatic glucose
production, or inhibiting carbohydrate absorption from the small in-
testine.70 The recent Cardiovascular Outcomes Trials (CVOTs) and
several other studies have shown that over the years, improving
T1DM and T2DM management gradually decreased the rates of ma-
jor cardiovascular events.71–73 However, despite improved survival,
diabetic patients still have a 2.32 hazard ratio for death from CVD
compared to the general population, especially among women and
African Americans.74–76

Revascularization intervention

In addition to pharmacological agents to treat risk factors associated
with atherosclerosis, surgical interventions such as coronary artery
bypass grafting (CABG), endarterectomy, and percutaneous coronary
intervention (PCI) have been widely used to treat arterial stenosis.
Approximately 371,000 CABG, 480,000 PCI, and 86,000 carotid end-
arterectomy procedures were performed in the United States in
2014.26 Several randomized trials have shown that in patients with se-
vere coronary artery disease (CAD) and DM, CABG was superior to
PCI.77,78 PCI originally started with simple balloon angioplasty to
open up occluded vessels and restore blood flow.79 This procedure
had a high incidence of acute occlusion caused by the elastic recoil
of the arteries, as well as thrombosis and subsequent restenosis.80,81

To overcome acute occlusion, improvements were made to PCI to
include the deployment of bare-metal stents (BMSs) and antiplatelet
therapies to prevent elastic recoil and thrombosis, respectively. How-
ever, in-stent restenosis persisted.82 To overcome in-stent restenosis,
drug-eluting stents (DESs) that locally release antiproliferative agents
such as sirolimus to the diseased vessel segment were developed.
Initial clinical trials comparing DESs to the standard BMSs were high-
ly promising, with those receiving DESs having less frequent neoin-
tima hyperplasia and less commonly needing revascularization pro-
cedures.83 Nevertheless, the deployment of stents into the arteries
inevitably leads to the disruption of the already damaged vascular
endothelium. In addition, the compounds released by DESs into ves-
sels are not cell-selective, preventing re-endothelialization of the
vasculature.7,81 Thus, stent thrombosis (ST) and neo-atherosclerosis
emerged as major safety concerns with the first generation of
DESs.84,85 Although ST is uncommon, it is a serious complication
of PCI that can cause myocardial infarction in 60%–70% of the cases
and increases the risk of mortality by 20%–25%.86 Endarterectomy is
another effective revascularization procedure to treat carotid artery
stenosis, and long-term studies have shown its efficacy equivalent
to that of stenting.87

Newer generations of DESs have been developed to combat their
associated risks, consisting of thinner struts and biocompatible poly-
mers.88 However, these DESs still deploy the same non-selective drugs
into the arteries and are associated with a similar risk of ST compared
to BMSs.89 Therefore, patients must comply with dual antiplatelet
therapy when a DES is implanted, despite the increased bleeding
risks.90 The lessons learned from PCI is that treatment options for
atherosclerosis need to prioritize the protection of the vascular endo-
thelium while also targeting the disease-causing cells that contribute
to plaque formation.81 Delivery methods involving site- and cell-se-
lective nanotherapies may provide the answer to this problem.

EMERGING ANTI-ATHEROSCLEROTIC THERAPIES
Despite remarkable advances in systemic anti-atherosclerotic thera-
pies, which manage CVD risk factors and revascularization interven-
tions that restore blood flow after plaque formation, heart disease has
remained the leading cause of death globally for the last 20 years.26

This may be due to the increase in the aging population, along with
an increased prevalence of obesity and DM. Thus, numerous novel
therapeutic targets have been investigated pre-clinically and tested
in large-scale clinical trials. Here, we summarize some of the most
salient approaches that have the potential to advance the fight against
atherosclerosis.

Targeting inflammation

For the last 2 decades, the role of innate and adaptive immunity in
atherogenesis has become prominent.4,91 In fact, measuring inflam-
matory markers, such as C-reactive protein (CRP), is now used
clinically to identify high-risk patients and to monitor their treat-
ment.33,92,93 However, targeting inflammation to treat atherosclerosis
and decrease adverse cardiac events has only recently been clinically
tested.94–96

Inflammasomes are multimeric protein complexes with key roles in
innate immunity and vascular inflammation during atherosclerotic
plaque initiation, progression, and rupture.97,98 To date, several stim-
uli have been shown to activate inflammasomes, including cholesterol
crystals,97 oxidized LDL,99 disturbed blood flow,100 hypoxia,101,102

neutrophil extracellular traps,103 and somatic mutations in tet
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methylcytosine dioxygenase 2 (TET2).104 Activated inflammasomes
convert pro-caspase 1 into active caspase-1, which then cleaves pro-
interleukin-1b (IL-1b) and pro-interleukin-18 (IL-18) into their
active forms. Concurrently, another substrate of active caspase-1, gas-
dermin D (GSDMD), is cleaved and its N-terminal domain localizes
to cell membranes to form pores through which the pro-inflamma-
tory cytokines can escape and further stimulate inflammatory
responses.105

IL-1b is a potent pro-inflammatory cytokine that stimulates the pro-
duction of other cytokines, including tumor necrosis factor (TNF)
and interleukin-6 (IL-6) in ECs, VSMCs, macrophages, and hepato-
cytes.106 Classical IL-6 signaling occurs when the secreted form binds
to the IL-6 receptor (IL-6R) on cell membranes. This interaction on
its own has no signaling ability, and the IL-6/IL-6R complex requires
interaction with the membrane protein gp130 to activate intracellular
signaling.107 The IL-6R is mainly found on hepatocytes and leuko-
cytes, but is absent in most other cell types, making them incapable
of responding to IL-6 through classical signaling. However, an alter-
native trans-signaling pathway exists in cells that do not have IL-6R in
their membranes, involving a soluble form of the receptor (sIL-6R),
which can then bind IL-6. Together they bind membrane bound
gp130 to activate an intracellular signal cascade, as gp130 is expressed
in all cell types.108 IL-6 has been shown to contribute to atherogenesis
by releasing the acute-phase response through the reactants fibrin-
ogen and plasminogen activator inhibitor 1, which are involved in
causing blood clots and inhibiting fibrinolysis, respectively, aggra-
vating atherothrombosis.95

Targeting the inflammation component of atherosclerosis started a
new era of therapeutic strategies. Numerous clinical trials have been
launched to test the efficacy of several anti-inflammatory agents.
For example, recent results from the Low-Dose Colchicine 2
(LoDoCo2) trial demonstrated that patients treated daily with
0.5 mg colchicine, an anti-inflammatory drug commonly prescribed
to treat gout,109 was effective in reducing the risk of adverse cardiac
events in patients, regardless of history of acute coronary syn-
dromes.110 In addition, another study using colchicine evaluated pla-
ques using computed tomographic coronary angiography and
showed a decrease in low-attenuation plaque volume and CRP levels
in patients at a 1-year follow-up.111

CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes
Study) was the first large-scale, randomized, placebo-controlled,
double-blinded clinical trial to show the effectiveness of targeting
inflammation to prevent adverse cardiac events.112 This study was
specifically designed to test the inflammation hypothesis of athero-
thrombosis, doing so by testing the efficacy of a mAb targeting
IL-1b, canakinumab, at reducing recurrent cardiovascular events in
patients with a history of acute myocardial infarctions and residual
inflammatory risk despite standard-of-care treatment. Although can-
akinumab treatment did not reduce lipid levels from baseline, it
significantly reduced the plasma marker of inflammation, CRP, and
lowered the rate of recurrent cardiovascular events. Outcomes from
3110 Molecular Therapy Vol. 30 No 10 October 2022
CANTOS resulted in a paradigm shift in our understanding of the
treatment of atherosclerosis, as standard-of-care treatment has
focused primarily on lowering LDL-cholesterol levels to reduce the
risk of adverse cardiac events.112,113 Despite these favorable results,
patients treated with canakinumab also had an increased risk of fatal
infections due to the systemic immune suppression, demonstrating
the need for more targeted therapy.

After the success of CANTOS, other inflammation targets have been
investigated. RESCUE was a recent Phase II clinical trial that aimed to
inhibit IL-6 systemically in patients with chronic kidney disease at
high atherosclerotic risk.114 The investigators hypothesized that
IL-6 may be a more favorable target than IL-1b, as it has been directly
implicated in the progression of coronary heart disease.115 Strikingly,
treatment with a mAb to neutralize IL-6, ziltivekimab, reduced levels
of both pro-inflammatory and thrombotic markers relevant to
atherosclerosis.114 Based on these encouraging results, a large-scale
cardiovascular outcomes trial is ongoing, and the results are greatly
anticipated.

Immunomodulating therapies

In parallel to the promising anti-inflammatory strategies to treat
atherosclerosis, several resolution-inducing therapeutic approaches
are being tested. Efferocytosis is a process in which macrophages nor-
mally recognize and clear apoptotic tissue from plaques. Dysregula-
tion of this process is now recognized as a hallmark of atherosclerosis
that increases its pro-inflammatory state.116,117 Plaque cells highly ex-
press an antiphagocytosis ligand, Cluster of Differentiation 47
(CD47), on their surfaces, which inhibits them from being cleared
by efferocytosis.118 In fact, mice treated with anti-CD47 antibodies
restored efferocytosis and prevented atherosclerosis.119 However,
these mice also developed anemia due to the antibody’s effects of
off-target clearance of red blood cells in the spleen. To overcome
off-target toxicity, a single-walled PEGylated carbon nanotubule car-
rying a small-molecule inhibitor of the CD47 signaling cascade was
designed.120 When tested in mouse models, they were preferentially
taken up by lesion macrophages and prevented atherosclerosis.

In addition, Fredman et al. used a nanoparticle containing the pro-
resolving peptide Ac2-26 that activates the annexin A1 receptor on
myeloid cells and stabilized advanced atherosclerotic lesions.121

Another study injected atherosclerotic mice with the potent polarizer
IL-13 to induce theM2 state inmacrophages and showed reduction in
plaque inflammation and atherosclerosis burden.122 In another case,
Geng et al. developed an immunomodulatory approach that aimed to
reprogram monocytes for atherosclerosis treatment.123 Since
oxidized-LDL as well as endotoxemia contribute to the polarization
of monocytes toward a non-resolving, constant pro-inflammatory
state through TLR4 pathways that involve either Mal/MyD88 or
TRIF-related adaptor molecule (TRAM)/TRIF pathways, they
showed that the genetic knockout of TRAM in monocytes of
ApoE�/� mice had less atherosclerotic plaque development.123 The
TRAM-deficient monocytes exhibited a pro-resolving phenotype
characterized by both a reduced inflammatory response and a higher
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expression of anti-inflammatory mediators.123 In addition, several
pro-resolving lipid mediators, including omega-3 fatty acids and
12/15-lipoxygenase products, are potent regulators of local inflamma-
tory responses of macrophages and ECs.124,125 These studies show
that therapies that induce the pro-resolving macrophage phenotype
hold great promise for the treatment of atherosclerosis and preven-
tion of CVDs.

Anti-atherosclerotic nanomedicine

Recent advances in the field of nanotechnology have the potential to
revolutionize both diagnostic and therapeutic strategies to treat
atherosclerosis.126 There are many advantages to using nanotech-
nology compared to traditional drug delivery methods. Nanomedi-
cine increases blood circulation time, allowing for lower drug concen-
trations and less systemic toxicity.127,128 Nanomedicine facilitates the
delivery of water-insoluble drugs or the co-delivery of two or more
types of combination therapies in a localized manner. More impor-
tant, nanomedicine facilitates the intracellular delivery of a vast array
of small molecules, peptides, proteins, and nucleic acids such as
siRNA and messenger RNA (mRNA) therapeutics. A wide range of
materials have been used to formulate nanomedicines, including lipo-
somes, polymers, organic, inorganic, and biomimetic materials.129 Of
these, liposomes and polymers compose the majority of nanoparticles
that are FDA approved or in clinical development.130 Importantly,
nanomedicine approaches can be used simultaneously as diagnostics
and therapeutics.131

In the last 2 decades, numerous diagnostic nano-sensing materials
and anti-atherosclerotic nanotherapeutic approaches have been
tested preclinically.129 Some of these strategies leverage the structure
and function of high-density lipoprotein (HDL),132–135 the phago-
cytic activities of macrophages,13,120,136–138 and immune cells as car-
riers of nanotherapeutics to the diseased vascular wall,139 while others
targeted thrombosis,140 inflammation,141 defective efferocytosis,120

EC adhesion molecules,142,143 or the extracellular matrix.121 To better
protect nanoparticles from innate immune responses, namely the
mononuclear phagocyte system (MPS), which can readily opsonize
and destroy foreign nanoparticles, biomimetic nanotherapies were
designed, in which membranes of red blood cells144 or macro-
phages145 were used to coat the nanomedicines. These biomimetic
nanomedicines offer a favorable strategy to evade the body’s immune
response and bypass standard drug elimination.

mRNA therapeutics

mRNA-based therapeutics represent a game-changing technology
that has transformed the vaccine field and is rapidly expanding,
with the potential to treat chronic diseases, including CVD.146 There
are many advantages to mRNA-based therapeutics since they can be
produced quickly, cost-effectively, and in a cell-free system.147 Since
mRNA is non-replicative, it is considered a very safe biomolecule
that allows for transient protein expression in virtually all cell types,
including non-dividing cells. Furthermore, coding sequences of any
length can be synthetically produced with no nuclear localization,
promoter elements, or transcription required, unlike recombinant vi-
rus vectors, making the probability of genomic integration nearly
nonexistent.148 Importantly, pioneering work by Karikó et al.149

and later by others150,151 showed that replacing uridine residues
with the naturally occurring modified nucleoside pseudouridine or
N1-methylpseudourdine not only decreases activation of the innate
immune pathway but also improves stability and enhances transla-
tion levels, making mRNA therapeutics for gene editing, base editing,
or protein replacement therapies possible.

Several preclinical studies have shown that synthetic, chemically
modified mRNA (modRNA) encoding VEGF-A delivered by direct
intracardiac and intramuscular injection without lipid-based carriers
resulted in a strong pulse of VEGF-A protein expression that was suf-
ficient to reduce infarct size, enhance vascular regeneration and
myocardial perfusion, improving survival after myocardial infarction
in mice152 and pigs153 and accelerated wound healing in mice.154

These promising results drove a first-in-human, randomized, dou-
ble-blind, placebo-controlled Phase I study in men with T2DM,
which showed that intradermal delivery of VEGF-A modRNA was
well tolerated and produced local functional VEGF-A protein that
enhanced transient skin blood flow.155 Based on these positive results,
the EPICCURE Phase IIa randomized, double-blind, placebo-
controlled clinical trial was designed, which sought to inject
VEGF-AmodRNA into the myocardium of patients undergoing elec-
tive CABG surgery.156,157 The trial was recently completed, and out-
comes on the safety, tolerability, and exploratory efficacy are
anxiously being awaited.

Other pre-clinical studies have used modRNA encoding insulin-like
growth factor-1 (IGF1) as a possible strategy to increase cytoprotec-
tion in cardiomyocytes after hypoxia or myocardial infarction,158 or
phosphatidylinositol-5-phosphate-4-kinase type 2-gamma (Pip4k2c),
which reversed cardiac hypertrophy and fibrosis in a mouse model.159

Research has also been done in primates using lipid nanoparticles
(LNPs) to deliver modRNA encoding CRISPR base editors that intro-
duce a precise PCSK9 loss-of-function mutation, with no off-target
mutations in genomic DNA. One single infusion of this LNP resulted
in nearly a complete knockdown of PCSK9 in the liver, leading to
remarkable reductions in the serum levels of both PCSK9 protein
and LDL-cholesterol, which lasted for at least 8 months.160,161 Based
on these promising results, the first-in-human investigational trial
was recently launched testing the safety and efficacy of PCSK9 base
editing in patients with familial hypercholesterolemia and CVD.162

Recently, a microRNA (miRNA)-switch strategy was used to achieve
cell-selective, antirestenosis therapy.163–165 This strategy consists of
modRNA encoding the cyclin-dependent kinase inhibitor p27Kip1

that contains an EC-specific miRNA target site in its 50 UTR or 30

UTR. Thus, exploiting the EC-specific miR-126 allowed the discrim-
ination between proliferating inflammatory cells and VSMCs while
sparing ECs to carry on their vital functions. By adding the cationic
amphipathic cell-penetrating peptide (p5RHH) to the miRNA switch,
it self-assembles into compacted, endonuclease-resistant nanopar-
ticles, which were rapidly taken up by cells and effectively released
Molecular Therapy Vol. 30 No 10 October 2022 3111
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from the endosomes without inducing cytotoxicity or apoptosis of the
transfected cells.163 Systemic administration of modRNA encoding
near-infrared fluorescent protein (niRFP) nanoparticles to a wire
injury mouse model showed specific expression at endothelial
denuded regions, whereas no synthetic mRNA or protein products
were detected in other organs, including the liver, spleen, lungs, heart,
or kidneys. Strikingly, the repeated administration of nanoparticles
containing the p27 Kip1 miR-126 switch reduced neointima formation
after wire injury and allowed for vessel re-endothelialization.163

While numerous other therapeutic strategies have aimed to either
inhibit inflammation, reduce neointimal hyperplasia, accelerate re-
endothelialization, or inhibit thrombosis, the miRNA-switch nano-
therapy achieved all of these objectives in a single, comprehensive
treatment.163,165 Although the transient nature of the miRNA-switch
requires multiple injections to achieve a therapeutic effect, once the
EC integrity is restored, the p5RHH nanoparticle will no longer be
able to penetrate the EC layer and will be quickly eliminated.

Precision medicine in anti-atherosclerotic therapies

As our knowledge of the human genome advances, precision medi-
cine approaches are becoming more attainable. Precision medicine
takes into account not only a patient’s lifestyle, medical history, and
environment but also their genetic background and, if known, the
molecular defects underlying their disease.166 Precision medicine
has been successfully leveraged to treat those with cystic fibrosis, a dis-
ease caused by various mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene. Knowing the exact type of mu-
tation in the CFTR gene has allowed for the targeted treatment of pa-
tients based on their specific CFTR mutation, making patient out-
comes more favorable.167 Similarly, with the discovery of CHIP and
its role in the development of CVD, precision medicine likely has a
future in CVD treatment as well. As we age, we accumulate somatic
mutations in our tissues, and some of these mutations confer advan-
tages that allow one clonal cell to propagate itself over others.168 This
process is common in hematopoietic stem cells, with many of the
genes harboring mutations in epigenetic regulators such as TET2.
Recent groundbreaking studies have shown that atherosclerosis-
prone mice harboring TET2-mutant cells had increased NLRP3 in-
flammasome-mediated IL-1b secretion and increased atherosclerotic
plaque size.104 Importantly, an NLRP3 inhibitor decreased athero-
sclerotic plaque size in the mice, demonstrating that small-molecule
therapeutics may greatly benefit patients with CHIP mutations.
Knowing the genetic profile of patients with CVDs and whether
they harbor CHIP mutations may allow clinicians to tailor treatment
options in a precise and personalized manner.

CONCLUSIONS AND FUTURE PERSPECTIVES
During the last decade, we have witnessed remarkable advances in un-
derstanding the fundamental causes of atherosclerosis to include
inflammation, impaired efferocytosis, and CHIP. Moreover, new dis-
coveries and therapeutic targets are regularly being made. In parallel,
transformative new technologies such as nanomedicines, mRNA
therapeutics, DNA base editing, and miRNA-switches are being
developed to combat this global health crisis. Some of these technol-
3112 Molecular Therapy Vol. 30 No 10 October 2022
ogies are still in early stages of development while others are being
tested in clinical trials. In fact, there are >500 active clinical trials
focused on treating atherosclerosis.169 The technological innovations
range from coupling diagnostics with therapeutics, delivering mRNA
to edit or encode desired genes, or incorporating miRNA recognition
sequences for cell-selective expression of therapeutics. To successfully
translate these technologies into clinical settings, there are still many
limitations that need to be overcome. First, to limit off-target delivery
and toxicity, the delivery methods associated with mRNA therapeu-
tics and nanomedicines need to specifically target regions of athero-
sclerotic plaques. Second, the transient nature of mRNA therapeutic
expression in cells, while beneficial in reducing off-target gene editing,
may be disadvantageous for the miRNA-switch approach, which re-
quires multiple treatments to achieve therapeutic effects. Finally, to
truly have a significant impact on human health and decrease the
mortality and morbidity associated with atherosclerosis, these thera-
pies must be made affordable and available to the general population
to not increase already prevalent global health disparities.
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