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Aim: We examined the relationships between visfatin/NAMPT and nitrite concentrations (a marker of
nitric oxide [NO] formation) or sFlt-1 levels in 205 patients with preeclampsia (PE) responsive or nonre-
sponsive to antihypertensive therapy, and whether NAMPT SNPs rs1319501 and rs3801266 affect nitrite
concentrations in PE and 206 healthy pregnant women. Patients & methods: Circulating visfatin/NAMPT
and sFlt-1 levels were measured by ELISA, and nitrite concentrations by using an ozone-based chemilu-
minescence assay. Results: In nonresponsive PE patients, visfatin/NAMPT levels were inversely related to
nitrite concentrations and positively related to sFlt-1 levels. NAMPT SNP rs1319501 affected nitrite concen-
trations in nonresponsive PE patients and was tightly linked with NAMPT functional SNPs in Europeans.
Conclusion: NAMPT SNP rs1319501 and visfatin/NAMPT affect NO formation, sFlt-1 levels and antihyper-
tensive therapy response in PE.
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Preeclampsia (PE) presents with new-onset hypertension that can lead to multiple maternal organ dysfunction,
which is a major contributor to maternal and fetal morbidity and mortality [1]. Despite the advances in understanding
the pathogenesis of PE, the underlying mechanisms remain unclear [2,3]. However, impaired placental perfusion
is thought to stimulate the release of antiangiogenic factors such as the soluble variant of the VEGFR1 (sFlt-1)
into the maternal circulation, which may lead to systemic maternal endothelial dysfunction, a hallmark of PE [4].
Notably, there is clinical evidence for diminished nitric oxide (NO) formation in PE [5–7], and sFlt-1 was inversely
related to NO formation in PE [6].

The role of visfatin, which is also known as NAMPT, is not fully known in pregnancy complications, including
PE [8,9]. Visfatin was shown to upregulate NOS3 enzyme expression and function in endothelial cells [10], and to have
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a vasodilating effect mediated via endothelium-derived NO on isolated blood vessels [11]. However, visfatin has also
been shown to impair endothelium-dependent relaxation by stimulation of NADPH oxidase [12], and to produce
in vivo endothelial dysfunction in mice, which support its role as a mediator of vascular damage [13]. Interestingly,
plasma visfatin/NAMPT levels were positively related to nitrite concentrations (a marker of endogenous NO
formation) and inversely related to sFlt-1 levels in healthy pregnancy, but inversely related to nitrite concentrations
and positively related to sFlt-1 levels in PE [14]. Therefore, it was suggested that visfatin/NAMPT inhibits NO
formation and upregulates sFlt-1 in PE [14]. However, no previous study has examined the relationships between
visfatin/NAMPT levels and nitrite concentrations or sFlt-1 levels in patients classified as responsive or nonresponsive
to antihypertensive drugs commonly used to treat PE.

The lack of effective pharmacological therapy for PE is a major health concern, and mechanisms and potential
therapies targeting the endothelial dysfunction have been proposed for management or treatment of PE [15].
Visfatin/NAMPT arises as a novel therapeutical target for clinical conditions linked to endothelial dysfunction
and vascular damage [13,16,17], and therefore, may potentially have a role in PE. We previously evaluated whether
the SNPs rs1319501 and rs3801266 of the NAMPT gene affect plasma visfatin/NAMPT levels in PE [18] and
antihypertensive therapy responsiveness in PE [19]. Notably, we found that the SNP rs1319501 in the NAMPT
promoter was associated with PE [18] and affected visfatin/NAMPT levels only in the nonresponsive patients with
PE [19]. Since visfatin was shown to modulate NO production [10], it is possible that functional NAMPT SNPs
affecting visfatin/NAMPT levels may interfere with NO formation. However, no previous study has examined
whether NAMPT SNPs affect NO formation during pregnancy or in patients with PE, including the groups
classified as responsive or nonresponsive to antihypertensive therapy in PE.

In the present study, we examined the relationships between visfatin/NAMPT levels and nitrite concentrations
or sFlt-1 levels in patients with PE classified as responsive and nonresponsive to antihypertensive therapy. We
also examined whether NAMPT SNPs (rs1319501 T>C and rs3801266 A>G) affect nitrite concentrations in
healthy pregnant (HP) and in patients with PE, including the groups classified as responsive and nonresponsive to
antihypertensive therapy. In order to identify the mechanisms by which these NAMPT SNPs may affect plasma
visfatin/NAMPT levels, we further assessed the pairwise linkage disequilibrium with other functional SNPs located
in the NAMPT promoter.

Patients & methods
Subjects
The Institutional Review Board at the Ribeirao Preto Medical School of University of Sao Paulo approved the
use of human subjects. All subjects were consecutively enrolled in the Department of Obstetrics and Gynecology,
University Hospital at the Ribeirao Preto Medical School of University of Sao Paulo, and included 205 pregnant with
PE and 206 HP with uncomplicated pregnancies. PE was defined as pregnancy-induced hypertension (≥140 mmHg
systolic and ≥90 mmHg diastolic on two or more measurements, at least 6 h apart) in a woman after 20 weeks
of gestation, and returning to normal by 12 weeks post partum, and significant proteinuria (Pr; ≥0.3 g/24 h), in
accordance to the American College of Obstetricians and Gynecologists report [20]. We did not include in the study
women with pre-existing hypertension, with or without superimposed PE.

Maternal venous blood samples were collected into tubes containing heparin (to measure nitrite and sFlt-1
concentrations) and ethylenediaminetetraacetic acid (to measure visfatin/NAMPT concentrations) at the clinical
attendance, and after the written informed consent. Plasma was obtained by centrifugation of tubes containing
whole blood in heparin (at 1000 × g for 3 min) or ethylenediaminetetraacetic acid (at 2000 × g for 10 min), and
stored at -70◦C until assayed. Genomic DNA was extracted from the cellular fraction of 1 ml of whole blood by a
standard salting-out method and stored at -20◦C until analyzed.

Antihypertensive treatment & drug response evaluation
Responsiveness to antihypertensive therapy was based on the evaluation of clinical and laboratory parameters
in response to the use of these drugs: methyldopa (1000–1500 mg per day) was the first antihypertensive drug
of choice, followed by nifedipine (40–60 mg per day) in cases of lack of significant response to methyldopa.
Hydralazine (5–30 mg) was used only in cases of hypertensive crisis. The patients included in the study were
monitored with caution for signs and symptoms of PE, with fetal surveillance and laboratory tests at least once a
week. The presence of at least one of the criteria stated below was considered to classify the patients with PE as
nonresponsive to antihypertensive therapy [19,21–23]:
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• Clinical symptoms including blurred vision, persistent headache or scotomata, persistent right upper quadrant
or epigastric pain;

• Systolic blood pressure (SBP) above 140 mmHg and diastolic blood pressure (DBP) above 90 mmHg, as assessed
by the blood pressure curve;

• Hemolysis, elevated liver enzymes and a low platelet count syndrome; or Pr >2.0 g per 24 h; creatinine >1.2 mg
per 100 ml or blood urea nitrogen >30 mg per 100 ml; aspartate aminotransferase >70 Ul-1 and alanine
aminotransferase >60 Ul-1;

• Fetal hypoactivity or nonreactive fetus, as revealed by cardiotocography; intrauterine growth restriction (IUGR),
oligoamnio, abnormal biophysical profile score and Doppler velocimetry abnormalities, as evaluated by ultra-
sound.

Enzyme immunoassays of visfatin/NAMPT & sFlt-1
Visfatin/NAMPT and sFlt-1 concentrations in plasma were measured with commercially available ELISA kits
(RayBio Human Visfatin EIA–VIS–1, GA, USA; and R&D Systems, MN, USA, respectively), according to
manufacturer’s instructions.

Measurement of nitrite concentrations
Nitrite concentrations were measured using an ozone-based chemiluminescence assay, as previously described [6].
Briefly, 200 μl of plasma aliquots analyzed in triplicate were injected into a solution of acidified triiodide, purging
with nitrogen in-line with a gas-phase chemiluminescence NO analyzer (Sievers Model 280 NO Analyzer; General
Electric Company, CO, USA). Approximately 8 ml of triiodide solution (2.0 g of potassium iodide and 1.3 g of
iodine dissolved in 40 ml of water with 140 ml of acetic acid) were placed in the purge vessel into which plasma
samples were injected. The triiodide solution reduced nitrites to NO gas, which was detected by the NO analyzer.

Genotyping
Taqman Allele Discrimination assays using probes and primers from Applied Biosystems (CA, USA) were used
to determine the genotypes for the SNPs in the promoter region (rs1319501 T>C; C 7590641 30) and in
intron 1 (rs3801266 A >G; C 340124 10) of NAMPT. PCR reactions were performed in standard conditions
for thermal cycling and in a total volume of 10 μl (5 ng of template DNA, 1× TaqMan Genotyping Master Mix
[Life Technologies Co., NY, USA] and 1× Taqman Allele Discrimination Assay). StepOnePlus Real-Time PCR
System from Applied Biosystems was used to record the fluorescence, and results were analyzed with manufacturer’s
software.

Statistical analysis
The clinical characteristics were compared between PE patients and HP women, and between PE patients responsive
or nonresponsive to antihypertensive therapy, using student’s unpaired t-test, Mann–Whitney U-test or χ2 as
appropriate. The effects of the different genotypes for the NAMPT SNPs on nitrite concentrations in HP, PE
patients, and responsive and nonresponsive PE patients were compared by student’s unpaired t-test. Deviation
from Hardy–Weinberg equilibrium was tested for the distributions of genotypes. The relationships between
visfatin/NAMPT and nitrite or sFlt-1 concentrations were analyzed using Spearman’s correlation (r and p-values).
GraphPad Prism 5.0 was used for statistical analysis. A value of p < 0.05 was considered the level of statistical
significance.

Identification of functional SNPs located in the NAMPT promoter
To identify mechanisms by which the NAMPT SNPs may affect visfatin/NAMPT levels, we first searched the
literature for functional SNPs located in the NAMPT promoter that may affect NAMPT expression. Next, we
searched the University of California Santa Cruz (UCSC) Genome Browser to examine whether these functional
SNPs overlap with several data from The Encyclopedia of DNA Elements (ENCODE) Project [24], including DNase
I hypersensitivity clusters, transcription factor (TF) ChIP-seq clusters (TF binding sites) and ChIP-seq data for
three histone marks on seven cell lines: the acetylation of histone H3 on lysine 27 (H3K27ac), the monomethylation
of histone H3 on lysine 4 (H3K4me1) and the trimethylation of histone H3 on lysine 4 (H3K4me3).

H3K27ac is often found near active regulatory elements such as enhancers [24], and distinguishes active from
inactive enhancers containing the monomethylation of histone H3 on lysine 4 alone [25]. H3K4me3 is associated
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Table 1. Clinical, demographic and biochemical characteristics of study subjects.
Parameter Healthy pregnant (n = 206) Preeclampsia (n = 205) p-value

Age (years) 24.5 ± 0.4 26.7 ± 0.5 0.001

Ethnicity (% white) 67.1 69.7 0.809

Current smokers (%) 11.2 9.0 0.517

BMI (kg m-2) 23.3 ± 0.3 27.2 ± 0.5 0.000

SBP (mmHg) 111.1 ± 0.8 140.2 ± 1.5 0.000

DPB (mmHg) 71.8 ± 0.6 88.0 ± 0.9 0.000

HR (beats/min) 81.5 ± 0.7 82.6 ± 0.6 0.286

Fasting glucose (mg dl-1) 75.1 ± 1.0 79.2 ± 2.2 0.182

Hemoglobin (g dl-1) 11.9 ± 0.1 11.9 ± 0.1 0.792

Hematocrit (%) 35.7 ± 0.4 35.9 ± 0.3 0.685

Creatinine (mmol l-1) 61.88 61.89 0.920

24-h Pr (mg/24 h) ND 846.5 ± 108.7

Primiparity (%) 45.3 44.3 0.849

GAD (weeks) 39.7 ± 0.1 36.0 ± 0.3 0.000

Newborn weight (g) 3297 ± 39.7 2528 ± 62.8 0.000

GAS (weeks) 36.6 ± 0.3 34.3 ± 0.3 0.000

Visfatin/NAMPT (ng/ml) 21.3 ± 2.0 20.7 ± 2.5 0.290

sFlt-1 (ng/ml) 3.8 ± 0.2 11.2 ± 1.0 0.000

Plasma nitrite (nM) 159.8 ± 11.2 95.9 ± 4.7 0.000

Early-onset PE (%) ND 24.5

Preterm birth (%) ND 33.8

IUGR (%) ND 30.4

Maternal PE (%) ND 88.7

AST (U/l) ND 26.1 ± 2.4

ALT (U/l) ND 19.7 ± 2.0

Values are the mean ± SEM. p � 0.05 vs healthy pregnant group. Bold values are significant.
ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; DBP: Diastolic blood pressure; GAD: Gestational age at delivery; GAS: Gestational age at sampling; HR: Heart rate; IUGR:
Intrauterine growth restriction; NAMPT: Nicotinamide phosphoribosyltransferase; ND: Not determined (however, negative dipstick test); PE: Preeclampsia; Pr: Proteinuria; SBP: Systolic
blood pressure; SEM: Standard error of the mean; sFlt-1: Soluble fms-like tyrosine kinase-1.

with promoters [26]. GeneHancer track available in the UCSC Genome Browser was also used to identify active
regulatory elements (enhancers and promoters) [27] that may target the NAMPT gene. This approach using
computational genomics to identify functional SNPs located within gene regulatory regions was recently performed
elsewhere [28].

Linkage Disequilibrium (LD) analysis
We then assessed the pairwise LD calculated as D´ using the Haploview version 4.2 [29] among the functional
SNPs located in the NAMPT promoter from the literature search (described above), and the rs1319501 in the
promoter and rs3801266 in intron 1 of NAMPT studied here. Data from the 1000 Genomes Phase III for Africans
(YRI, Yoruba in Ibadan, Nigeria), East Asians (CHB, Han Chinese in Beijing, China; and JPT, Japanese in Tokyo,
Japan) and Europeans (CEU, Utah Residents with Northern and Western European Ancestry) were used for LD
analysis.

Results
The characteristics of the subjects included in this study are shown in Table 1. Ethnicity (% white), % of current
smokers, hemoglobin, hematocrit and creatinine were similar in HP and PE (all p > 0.05). PE showed higher SBP
and DBP than in HP (both p < 0.01), despite that most PE patients were receiving antihypertensive therapy. We
found higher age and BMI, but lower gestational age at delivery and at sampling, and lower newborn weight in PE
than in HP (all p < 0.01). PE showed higher sFlt-1 and lower nitrite concentrations than HP (both p < 0.01),
which are in line with our previous findings [6,18]. We found no differences in visfatin/NAMPT concentrations
between HP and PE (p > 0.05).
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Table 2. Clinical, demographic and biochemical characteristics of patients with preeclampsia classified as responsive and
nonresponsive to antihypertensive therapy.
Parameters PE responsive (n = 110) PE nonresponsive (n = 95) p-value

Age (years) 26.5 ± 0.5 26.6 ± 0.7 0.918

Ethnicity (% white) 71.4 70.5 0.953

Current smokers (%) 12.5 4.2 0.052

BMI (kg m-2) 28.6 ± 0.7 25.8 ± 0.6 0.003

SBP (mmHg) 132.2 ± 1.7 149.7 ± 2.0 0.000

DPB (mmHg) 83.2 ± 1.0 93.9 ± 1.3 0.000

HR (beats/min) 82.5 ± 0.7 82.1 ± 1.1 0.765

Fasting glucose (mg dl-1) 74.8 ± 2.1 84.6 ± 4.2 0.046

Hemoglobin (g dl-1) 11.9 ± 0.1 11.9 ± 0.2 0.952

Hematocrit (%) 35.9 ± 0.4 36.0 ± 0.5 0.950

Creatinine (mmol l-1) 61.88 70.7 0.032

24-h Pr (mg/24 h) 681.5 ± 144.9 1127.0 ± 174.7 0.049

Primiparity (%) 42.3 47.3 0.655

GAD (weeks) 38.1 ± 0.2 33.9 ± 0.5 0.000

Newborn weight (g) 2999 ± 67.7 2033 ± 91.7 0.000

GAS (weeks) 35.7 ± 0.4 32.7 ± 0.5 0.000

Visfatin/NAMPT (ng/ml) 21.0 ± 3.4 23.6 ± 4.7 0.884

sFlt-1 (ng/ml) 8.1 ± 1.4 16.3 ± 2.0 0.002

Plasma nitrite (nM) 164.3 ± 56.7 122.3 ± 14.1 0.431

Early-onset PE (%) 6.3 47.3 0.000

Preterm birth (%) 11.6 61.5 0.000

IUGR (%) 14.3 50.5 0.000

Maternal PE (%) 92.3 85.7 0.757

AST (U/l) 23.7 ± 3.5 29.0 ± 3.2 0.270

ALT (U/l) 15.2 ± 1.2 25.6 ± 4.3 0.011

Values are the mean ± SEM. p � 0.05 vs responsive PE patients’ group. Bold values are significant.
ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; DBP: Diastolic blood pressure; GAD: Gestational age at delivery; GAS: Gestational age at sampling; HR: Heart rate; IUGR:
Intrauterine growth restriction; NAMPT: Nicotinamide phosphoribosyltransferase; ND: Not determined (however, negative dipstick test); PE: Preeclampsia; Pr: Proteinuria; SBP: Systolic
blood pressure; SEM: Standard error of the mean; sFlt-1: Soluble fms-like tyrosine kinase-1.

The characteristics of PE patients either responsive or nonresponsive to antihypertensive therapy are shown in
Table 2. Age, ethnicity (% white), % of current smokers, hemoglobin, hematocrit, visfatin/NAMPT concentrations
and nitrite concentrations were similar between groups (all p > 0.05). Nonresponsive PE patients showed higher
SBP and DBP, fasting glucose, creatinine, Pr, and sFlt-1 concentrations than responsive PE patients (all p < 0.05).
Noteworthy, the phenotypes of early-onset PE, preterm birth and IUGR were more frequent in nonresponsive PE
patients (all p < 0.05). Moreover, nonresponsive PE patients showed lower BMI, newborn weight, and gestational
age at delivery and at sampling (all p < 0.05).

We examined the relationships between plasma visfatin/NAMPT and nitrite or sFlt-1 concentrations in respon-
sive and nonresponsive PE patients. We found no significant correlations in responsive PE patients (Figure 1A &
C). Conversely, plasma visfatin/NAMPT levels were inversely related to nitrite concentrations (r = -0.376; 95% CI:
-0.643 to -0.027; p = 0.031; Figure 1B), and positively related to sFlt-1 levels (r = 0.621; 95% CI: 0.164–0.858; p
= 0.010; Figure 1D) in nonresponsive PE patients.

Next, we evaluated the effects of NAMPT genotypes on plasma nitrite concentrations in HP and PE. The
distribution of genotypes for the NAMPT SNPs showed no deviation from the Hardy–Weinberg equilibrium
(all p > 0.05, data not shown). We found no significant effects of genotypes for the NAMPT SNPs on nitrite
concentrations in HP or PE patients (Figure 2). We further examined the effects of NAMPT genotypes on nitrite
concentrations in PE patients classified as responsive or nonresponsive to antihypertensive therapy. Although there
were no differences in visfatin/NAMPT levels or nitrite concentrations between responsive and nonresponsive PE
patients (p > 0.05; Table 2), we found significant effects of NAMPT genotypes on nitrite concentrations for the
SNP rs1319501, but not for the SNP rs3801266 (Figure 3B). The TT genotype for the rs1319501 T>C SNP was
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Figure 1. Correlations between plasma nitrite concentrations (A & B) or sFlt-1 (C & D) and visfatin/NAMPT levels in
patients with preeclampsia classified as responsive and nonresponsive to antihypertensive therapy. The regression
lines are plotted. The r- and p-values are reported.
r: Spearman’s correlation.

associated with higher nitrite concentrations in nonresponsive PE patients (p < 0.05, compared with the TC + CC
genotypes; Figure 3A).

Finally, we searched for ENCODE data at the UCSC Genome Browser to identify functional SNPs that
may affect NAMPT expression. The NAMPT promoter region shows an enrichment for the active histone mark
H3K27ac and H3K4me3, which is associated with active promoters, and it has a promoter element according to
GeneHancer (GH07J106281; Supplementary Figure 1). We then assessed the LD among the functional SNPs in
the NAMPT promoter and the rs1319501 and rs3801266 SNPs studied here. A short segment of high LD between
the SNPs rs1319501 and rs9770242 was found in the African population (Figure 4A), which may be explained
by the demographic history and higher recombination events, as compared with non-Africans. Notably, the SNP
rs1319501 is in high LD with the functional SNPs rs59744560 and rs61330082 in the European population
(Figure 4B). However, most of these SNPs were not found in East Asian population (Supplementary Figure 2).

Discussion
This study was the first to examine the relationships between plasma nitrite concentrations or sFlt-1 and
visfatin/NAMPT levels in patients with PE classified according to antihypertensive therapy responsiveness, and
the effect of NAMPT SNPs on nitrite concentrations in health pregnant and in PE patients. Our main findings are
as follows: plasma visfatin/NAMPT levels were inversely related to nitrite concentrations and positively related to
sFlt-1 levels in nonresponsive PE patients, genotypes for the NAMPT SNP rs1319501 affect nitrite concentrations
in nonresponsive PE patients and the NAMPT SNP rs1319501 is in high LD with other functional SNPs located
in the NAMPT promoter in Europeans.
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Visfatin/NAMPT may impair endothelium-dependent relaxation by activating NADPH oxidase with release
of superoxide anions [12], since these scavenge NO to generate peroxynitrite [30,31]. Moreover, superoxide induces
NOS3 uncoupling, leading to a reduced NO bioavailability and increased peroxynitrite production [32]. Notably,
the signaling pathways related to the induction of NADPH oxidase lead to upregulation of sFlt-1, which is
upregulated in PE [30]. In line with these findings, visfatin/NAMPT levels were previously shown to be inversely
related to nitrite concentrations and positively related to sFlt-1 levels in PE, which suggest that visfatin/NAMPT
inhibits NO formation and upregulates sFlt-1 in PE [14]. Likewise, we found here that visfatin/NAMPT levels were
inversely related to nitrite concentrations and positively related to sFlt-1 levels in nonresponsive PE patients, but
not significantly related in responsive PE patients. Nonresponsive PE patients presented higher creatinine, Pr and
sFlt-1 levels than responsive PE patients. Noteworthy, the phenotypes of early-onset PE, preterm birth and IUGR
were more frequent in nonresponsive PE patients (Table 2). Circulating factors in PE contribute to endothelial
dysfunction by increasing oxidative stress, thereby decreasing NO bioavailability [33]. Specifically, sFlt-1 binds to
circulating VEGF, which results in diminished production of NO [34]. In addition, sFlt-1 may also play a role in
oxidative stress in trophoblasts in PE [35], and VEGF inhibition may result in hypertension through disturbance of
the prooxidant/antioxidant balance [36]. Taken together, these findings suggest that visfatin/NAMPT inhibits NO
formation and upregulates sFlt-1 due to the increased oxidative stress in nonresponsive PE patients, who exhibit
the worst clinical outcomes [19,21–23]. However, this hypothesis remains to be proved.

Antihypertensive drug therapy during PE reduces the risk of severe hypertension [37]. Despite this therapy
does not reverse the primary mechanisms of PE, the major goal is to prevent cardiovascular and cerebrovascular
consequences of severe hypertension, and to prolong gestation improving both maternal and fetal outcomes [38].
There is no evidence for the antihypertensive effects of methyldopa by mechanisms involving NO production.
However, nifedipine and other calcium channel blockers were shown to restore NO bioavailability and improve
endothelial function [39,40]. In addition, hydralazine was shown to increase cGMP concentrations in PE patients,
which may be related to NO production [41]. Therefore, these antihypertensive drugs commonly used to treat PE
might produce their beneficial effects by increasing NO bioavailability, thus counteracting the diminished NO
formation previously reported in PE [6,23]. However, 40% of PE patients have been classified as nonresponsive to
antihypertensive therapy [19,21–23], and as such this group showed higher SBP and DBP, despite most of them were
receiving more intense antihypertensive therapy (Table 2). In this context, pharmacogenomics research may help
to improve antihypertensive therapy for the nonresponsive group of patients with PE [42–44].

Although no previous study has examined whether NAMPT SNPs affect plasma nitrite concentrations in HP
and in PE, we have previously found that NOS3 polymorphisms were associated with NO formation in healthy
subjects and in PE [45,46], and with antihypertensive responses to enalapril [47,48] and in PE [23]. Moreover, while
we previously found no effects of the SNP rs1319501 on visfatin/NAMPT levels in HP or PE patients [18], the
TT genotype for this SNP was associated with higher visfatin/NAMPT levels in PE patients nonresponsive to
antihypertensive therapy [19]. Here we found that nonresponsive PE patients with the TT genotype for the SNP
rs1319501 had higher nitrite concentrations. Noteworthy, an upregulation of NOS2 has been reported in both
experimental and clinical hypertension [49]. Peroxynitrite may also affect endothelial function by increasing the
expression of NOS2 and ICAM-1, a marker of endothelial dysfunction due to activation of NF-κB [31]. In line
with these findings, visfatin/NAMPT may activate NADPH oxidase with release of superoxide anions [12], and
peroxynitrite can be formed in the presence of abnormally high NO and superoxide [50]. Taken together, we suggest
that the SNP rs1319501 affects visfatin/NAMPT levels and then may alter NO bioavailability and oxidative stress
in nonresponsive PE patients, which could also be increased due to NOS2 activation. Nonetheless, further studies
are needed to explore this hypothesis. Gene–gene interactions in the NAMPT pathway [51,52] could also explain
the effects of the NAMPT SNP rs1319501 on nitrite concentrations in nonresponsive PE patients.

It is possible that other functional NAMPT polymorphisms, mainly those located in the promoter region, may
be in LD with the SNP rs1319501 and affect NAMPT expression. Indeed, the promoter SNPs rs1319501 and
rs9770242 were in complete LD in different populations [53,54]. The 5′-upstream NAMPT region has several
regulatory elements [55] and an in silico analysis of the NAMPT promoter revealed putative cis-regulatory elements,
including the binding sites for the TFs NF-κβ, SP1 and STAT [56]. Notably, the SNP rs1319501 overlaps not only
with these TF but also with several TF ChIP-seq data from ENCODE (Supplementary Figure 1), and it has a
RegulomeDB score 2c (it is likely to affect TF binding) [57]. We further searched for functional SNPs in the NAMPT
promoter that may affect NAMPT expression. Notably, the SNP rs1319501 is in high LD with the functional SNPs
rs59744560 and rs61330082 in Europeans. The promoter SNP rs59744560 was shown to significantly increase
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NAMPT transcription in response to cyclic stretch in endothelial cells [58]. Moreover, a variant promoter sequence
containing the SNP rs61330082 resulted in an increased transcriptional activity of NAMPT in transfected MCF7
and HEK293T cells [59]. Taken together, these findings suggest that the SNP rs1319501 is tightly linked with
functional SNPs that affect NAMPT expression.

The present study has some limitations. We were able to measure visfatin/NAMPT levels and nitrite concen-
trations only in a small number of subjects, mainly due to plasma availability and technical reasons. Despite this,
we found significant correlations between visfatin/NAMPT and nitrite or sFlt-1 concentrations, and significant
effects of NAMPT genotypes on nitrite concentrations in nonresponsive PE patients. Notably, our findings must
be replicated in further studies. While there is no currently established definition of how to assess antihypertensive
drug responsiveness during pregnancy, we considered the patients with PE who manifested more severe clinical
symptoms as nonresponsive to the antihypertensive therapy, even when treated with a standardized antihypertensive
therapy regimen.

Conclusion
We found that visfatin/NAMPT levels are inversely related to nitrite concentrations and positively related to sFlt-1
levels in patients with PE nonresponsive to antihypertensive therapy. Moreover, the NAMPT SNP rs1319501 affects
NO formation in these nonresponsive PE patients, and it is in high LD with other functional SNPs located in the
NAMPT promoter in Europeans. Our novel findings suggest that NAMPT SNP rs1319501 affects NO formation,
and that visfatin/NAMPT inhibits NO formation and upregulates sFlt-1 levels in patients with PE nonresponsive
to antihypertensive therapy.
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Summary points

Background
• In preeclampsia (PE), the release of the antiangiogenic factor sFlt-1 into the maternal circulation may lead to

systemic maternal endothelial dysfunction.
• In PE, there is clinical evidence for diminished nitric oxide (NO) formation and sFlt-1 was inversely related to NO

formation.
• The role of visfatin/NAMPT is not fully known in pregnancy complications, including PE.
• Visfatin/NAMPT was shown to impair endothelium-dependent relaxation by stimulation of NADPH oxidase and

to produce in vivo endothelial dysfunction in mice, which support its role as a mediator of vascular damage.
• Plasma visfatin/NAMPT levels were positively related to nitrite concentrations (a marker of endogenous NO

formation) and inversely related to sFlt-1 levels in healthy pregnancy, but inversely related to nitrite
concentrations and positively related to sFlt-1 levels in PE.

Aim
• We examined the relationships between visfatin/NAMPT levels and nitrite concentrations or sFlt-1 levels in 205

patients with PE classified as responsive or nonresponsive to antihypertensive therapy.
• Moreover, we examined whether the NAMPT SNPs rs1319501 and rs3801266 affect nitrite concentrations in PE

and in 206 healthy pregnant, and their linkage disequilibrium (LD) with other functional SNPs in the NAMPT
promoter.

Patients & methods
• Responsiveness to antihypertensive therapy in pregnant with PE was based on the evaluation of clinical and

laboratory parameters in response to the use of these drugs: methyldopa (1000–1500 mg per day) was the first
antihypertensive drug of choice, followed by nifedipine (40–60 mg per day) in cases of lack of significant
response to methyldopa. Hydralazine (5–30 mg) was used only in cases of hypertensive crisis.

• Circulating visfatin/NAMPT and sFlt-1 levels were previously measured by ELISA, and nitrite concentrations using
an ozone-based chemiluminescence assay.

• The UCSC Genome Browser was used to identify functional SNPs located in the NAMPT promoter, and their
overlap with functional genomics data from the ENCODE Project, including DNase I hypersensitivity clusters,
transcription factor ChIP-seq clusters and ChIP-seq data for three histone marks (H3K27ac, H3K4me1 and
H3K4me3).

• Pairwise LD was calculated among these functional SNPs located in the NAMPT promoter and the NAMPT SNPs
rs1319501 and rs3801266 studied here.

Results
• Pregnant women with PE who were nonresponsive to antihypertensive therapy showed higher systolic blood

pressure and diastolic blood pressure, fasting glucose, creatinine, proteinuria, and sFlt-1 concentrations than
responsive PE patients (all p < 0.05).

• Noteworthy, the phenotypes of early-onset PE, preterm birth and intrauterine growth restriction were more
frequent in pregnant with PE nonresponsive to antihypertensive therapy (all p < 0.05).

• Plasma visfatin/NAMPT levels were inversely related to nitrite concentrations (r = -0.376; 95% CI: -0.643 to -0.027;
p = 0.031) and positively related to sFlt-1 levels (r = 0.621; 95% CI: 0.164–0.858; p = 0.010) in pregnant with PE
nonresponsive to antihypertensive therapy.

• The TT genotype for the NAMPT SNP rs1319501 (T>C) was associated with higher nitrite concentrations in
pregnant with PE nonresponsive to antihypertensive therapy (p < 0.05, compared with the TC + CC genotypes).

• The NAMPT SNP rs1319501 is in high LD with the functional SNPs rs59744560 and rs61330082 in the European
population from the 1000 Genomes Phase III Project.

Discussion
• This is the first study to examine the relationships between plasma nitrite concentrations or sFlt-1 and

visfatin/NAMPT levels in pregnant with PE classified as responsive or nonresponsive to antihypertensive therapy,
and the effect of NAMPT SNPs on nitrite concentrations in health pregnant and in PE patients.

• Our findings suggest that visfatin/NAMPT inhibits NO formation and upregulates sFlt-1 due to the increased
oxidative stress in nonresponsive PE patients, a subgroup who exhibit the worst clinical outcomes. Moreover, the
NAMPT SNP rs1319501 affects visfatin/NAMPT levels and thereby may alter NO bioavailability and oxidative stress
in nonresponsive PE patients. However, further studies are needed to explore these hypotheses.

Conclusion
• Visfatin/NAMPT levels were inversely related to nitrite concentrations and positively related to sFlt-1 levels in

patients with PE nonresponsive to antihypertensive therapy.
• The SNP rs1319501 of NAMPT gene affects NO formation in these nonresponsive PE patients, and it is in high LD

with other functional SNPs located in the NAMPT promoter in Europeans.
• Our novel findings suggest that NAMPT SNP rs1319501 affect NO formation, and that visfatin/NAMPT inhibit NO

formation and upregulate sFlt-1 levels in patients with PE nonresponsive to antihypertensive therapy.
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