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Exosomes have a crucial role in intercellular communication
and mediate interactions between tumor cells and tumor-asso-
ciated macrophages (TAMs). Exosome-encapsulated non-cod-
ing RNAs (ncRNAs) are involved in various physiological
processes. Tumor-derived exosomal ncRNAs induce M2
macrophage polarization through signaling pathway activa-
tion, signal transduction, and transcriptional and post-tran-
scriptional regulation. Conversely, TAM-derived exosomal
ncRNAs promote tumor proliferation, metastasis, angiogen-
esis, chemoresistance, and immunosuppression. MicroRNAs
induce gene silencing by directly targeting mRNAs, whereas
lncRNAs and circRNAs act as miRNA sponges to indirectly
regulate protein expressions. The role of ncRNAs in tumor-
host interactions is ubiquitous. Current research is increasingly
focused on the tumor microenvironment. On the basis of the
“cancer-immunity cycle” hypothesis, we discuss the effects of
exosomal ncRNAs on immune cells to induce T cell exhaustion,
overexpression of programmed cell death ligands, and create a
tumor immunosuppressive microenvironment. Furthermore,
we discuss potential applications and prospects of exosomal
ncRNAs as clinical biomarkers and drug delivery systems.
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BACKGROUND
Non-coding RNAs (ncRNAs) do not encode proteins but control pro-
tein expression and function.1–3 Several types of ncRNAs, including
microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and cir-
cular RNAs (circRNAs), affect cell growth, proliferation, and meta-
bolism through multiple mechanisms.3–5 miRNAs are 20–25 nucleo-
tide ncRNAs that induce gene silencing at the post-transcriptional
level by binding to the 30 untranslated region (30 UTR) of target
mRNAs, thus regulating gene expression and other cellular
processes.6,7

lncRNAs are longer than 200 nucleotides that are involved in post-
transcriptional regulation in the nucleus and cytoplasm.8,9 lncRNAs
modulate the stability, translation, protein stability, and translocation
of mRNAs.9,10 lncRNAs increase target mRNA expressions by
sponging miRNAs as competitive endogenous RNAs (ceRNAs),
and are secreted either alone or bound to proteins.11,12
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circRNAs are characterized by a covalently closed-loop structure
without a 50 cap and a poly(A) tail.13,14 These RNAs are implicated
in miRNA spongings, protein interactions, and the regulation of nu-
clear transcription and pre-mRNA splicing.15,16

Exosomes are 40–150 nm extracellular vesicles that regulate multiple
physiological and pathological processes by mediating intercellular
communication.17,18 The content of exosomes released by donor cells
is protected from enzymatic hydrolysis.19–21 Exosomes have funda-
mental roles in tumor proliferation, metastasis, and drug resis-
tance.21–23 Tumoral and immune cells secrete exosomes in the tumor
immune microenvironment (TIME).23,24 Tumor-derived exosomes
(TEXs) modulate immunological activities, including macrophage
polarization, T cell regulation, and inhibition of natural killer (NK)
cell activity.25–27 TEXs also affect tumor malignancy, suggesting their
key role in interactions between tumoral and immune cells.28–30 The
roles of exosomal ncRNAs in tumor development and immunosup-
pression have attracted increasing attention.31–33 Exosomes can be
used in drug delivery because of their high encapsulation efficiency
and the ability to transport anti-cancer drugs, natural agents, nucleic
acids, and gene-editing systems such as CRISPR-Cas9.34–36

Macrophages are phagocytic immune cells, and their phenotypes are
influenced by cytokines and other factors in the TIME.37 Macro-
phages can assume a classically activated pro-inflammatory (M1)
phenotype and an alternatively activated anti-inflammatory (M2)
phenotype.38 Tumor-associated macrophages (TAMs) have an M1
phenotype in the early stages of cancer.37 In the later stage, growth
factors and anti-inflammatory mediators, such as IL-4, IL-10, and
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Figure 1. Interactions between tumor cells and TAMs via exosomal non-coding RNAs

Tumor-derived exosomal ncRNAs induce macrophage M1/M2 polarization. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angio-

genesis, and chemoresistance. Besides, these ncRNAs contribute to an immunosuppressive microenvironment by regulating immune cells.
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TGF-b, are expressed in the TIME, inducing M2 polarization.37 M1-
M2 polarization is highly dynamic and reversible.

M2 TAMs produce growth factors and inhibit immune activity in the
TIME.39 TAM infiltration in solid tumors underscores the role of
these cells in tumor progression and immunosuppression.39–41 M2
macrophages can be divided into M2a, M2b, M2c, and M2d.42 The
M2a subgroup is activated by IL-4 and IL-13 and produces CD163,
CD206, IL-10, TGF-b, and IL1Ra.42 The M2b subgroup is stimulated
by immune complexes and bacterial lipopolysaccharide to produce
CD86, IL-10, IL-6, and TNF-a.42 The M2c subgroup is induced by
glucocorticoids, IL-10, and TGF-b and produces CD163, CD206,
IL-10, and TGF-b; in addition, this subgroup is active against
apoptotic cells.42 The M2d subgroup, stimulated by IL-6 and adeno-
sine, secretes anti-inflammatory cytokines (high levels of IL-10 and
low levels of IL-12) and vascular endothelial growth factor (VEGF)
to promote tumor angiogenesis.42

Some signaling pathways regulate macrophage switch.41,43 Pro-in-
flammatory cytokines induce malignant behavior, whereas the anti-
inflammatory microenvironment promotes tumorigenesis and im-
mune evasion.41,43 Therefore, macrophage activation is fine-tuned
by the TIME. Tumor tissues may contain mixed macrophage popula-
tions with a spectrum of activation states. However, in this review, we
assumed that TAMs have an M2 phenotype, as described in the
literature.37
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Increased attention has been given to the interactions between tumor
cells and TAMs. Tumor cells promote TAM polarization, and polar-
ized TAMs support the malignant phenotype of tumor cells, forming
a cycle in which exosomal ncRNAs mediate the communication be-
tween tumoral and immune cells (Figure 1). This review discusses
the interactions between tumor cells and TAMs during tumor initia-
tion and development, mechanisms controlled by exosomal ncRNAs,
the influence of exosomal ncRNAs on the formation of the TIME
based on the “cancer-immunity cycle”model, and the potential appli-
cation of exosomal ncRNAs as diagnostic and prognostic biomarkers
and therapeutic targets.

EXOSOMAL ncRNAs ARE IMPORTANTMEDIATORSOF
INTERACTIONS BETWEEN TUMOR CELLS AND TAMs
IN THE TIME
Tumor-derived exosomal ncRNAs promote macrophage

polarization

Signaling pathways and macrophage polarization

Macrophage polarization involves multiple signaling pathways and
transcriptional and post-transcriptional regulatory networks.38 The
phosphatidylinositol 3-kinase (PI3K)/AKT and JAK/STAT pathways
and key regulatory factors, including the signal transducer and acti-
vator of transcription (STAT) family, peroxisome proliferator-acti-
vated receptor-g (PPARg), and interferon regulatory factors, are
implicated in macrophage polarization.44,45 Tumors can regulate po-
larization by controlling the function of exosomal ncRNAs and
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regulatory factors. For instance, in HPV+ head and neck squamous
cell carcinoma (HNSCC), miR-9 was enriched in TEXs and was trans-
ported to macrophages, inducing M1 polarization by downregulating
PPARd.46 In addition, high levels of miR-451/miR-21 were detected
in exosomes from primary human glioblastoma multiforme (GBM)
cells and were taken up by TAMs in the brain of mice, decreasing
c-Myc mRNA levels. The levels of miR-21 and miR-451 increased
in microglia co-cultured with GBM exosomes and heparin reduced
this effect.47 In prostate cancer (PCa), miRNAs let-7a-5p and let7-
b, -g, -i were enriched in exosomes and downregulated integrin-b3,
causing M2 polarization and PCa cell migration.48 Exosomal lncRNA
TUC339 was highly expressed in hepatocellular carcinoma (HCC)
cells and promoted M2 polarization, leading to reduced pro-inflam-
matory cytokine production, compromised phagocytosis, and
decreased co-stimulatory molecule expression in macrophages.49,50

TUC339 is involved in cytokine receptor signaling pathways and
CXCR chemokine receptor binding pathways, which may explain
the mechanisms underlying this regulation.50 miR-21-5p was highly
enriched in exosomes from colorectal cancer (CRC) cells.51 Exosomes
from the CRC cell lines SW480, SW620, and LoVo were injected into
nude mice and were significantly enriched in liver macrophages.
Furthermore, miR-21 in CRC exosomes promoted M1 polarization
via TLR7 to produce IL-6, inducing a pro-inflammatory pre-metasta-
tic niche and CRC cell survival and colonization, ultimately leading to
liver metastasis.51

miRNAs also target metabolic enzymes. For instance, melanoma exo-
somal miR-125b-5p targeted lysosomal acid lipase A in macrophages,
leading to phenotypic switching and increasing M2 macrophage
survival.52

Several immune factors, including TGF-b, IL-10, and BMP-7, pro-
mote M2 polarization via the PI3K/AKT pathway.45,53,54 Phosphatase
and tension homolog deleted on chromosome ten (PTEN) inhibits
AKT activity by dephosphorylating PIP3.45,55 Exosomal miR-21
from bladder cancer cells regulated PI3K/AKT signaling by inhibiting
PTEN activation in macrophages and enhanced STAT3 expression,
promoting M2 polarization, leading to cancer cell migration and in-
vasion.56 Exosomal miR-130b-3p, miR-425-5p, and miR-25-3p were
transported from CRC cells to macrophages and induced M2 polari-
zation by targeting PTEN and activating the PI3K/AKT pathway. M2
macrophages enhanced epithelial-mesenchymal transition (EMT)
and secreted VEGF to promote CRC metastasis.57,58 circFARSA
was upregulated in non-small cell lung cancer (NSCLC) tissues and
transported to macrophages by exosomes.59 Exosomal circFARSA
activated PI3K/AKT signaling in macrophages through ubiquitina-
tion and degradation of PTEN, promoting M2 polarization.59 The
RNA-binding protein eIF4A3 triggered circFARSA biogenesis and
cyclization during M2 polarization, enhancing EMT and metastasis
in NSCLC cells.59

The JAK/STAT signaling pathway is implicated in macrophage polar-
ization, and STAT1/5 and STAT 3/6 are involved in M1 and M2 po-
larization, respectively.60,61 STAT activity is regulated by members of
the suppressor of cytokine signaling (SOCS) family.60 Exosomal miR-
29a-3p promoted M2 macrophage polarization in oral squamous cell
carcinoma by regulating SOCS1/STAT6 signaling.62 In a co-culture
system, exosomal miR-223 from cervical squamous cell carcinoma
(CSCC) induced IL-6 secretion in M1 macrophages, enhancing
STAT3 activity and increasing miR-223 expression in CSCC cells,
creating a positive feedback loop.63 Moreover, miR-223 repressed
TGFBR3 and HMGCS1 expression in CSCC by targeting their 30

UTRs, resulting in anchorage-independent growth and tumor
growth.63

Factors regulating macrophage polarization

Hypoxia stimulates exosome secretion, and hypoxic exosomes from
tumor cells trigger M2 macrophage polarization in a HIF1a- and HI-
F2a-dependent manner.64,65 Hypoxia induced miR-301a-3p expres-
sion in pancreatic cancer (PC) cells and their exosomes and promoted
M2 polarization through the PTEN/PI3Kg signaling pathway.66,67 In
addition, hypoxia stimulated hsa_circ_0048117 expression in exo-
somes from esophageal squamous cell carcinoma (ESCC) cells, and
this circRNA promoted M2 polarization by upregulating TLR4 and
sponging miR-140.68

The activation or inhibition of the above signaling pathways and reg-
ulatory factors is enhanced by hypoxia. For instance, hypoxic tumor
exosomes increased oxidative phosphorylation in macrophages via
miRNA let-7a, inhibiting the insulin-AKT-mTOR signaling
pathway.69 Mammalian target of rapamycin (mTOR) is a down-
stream molecule of the PI3K-AKT pathway.53 Similarly, hypoxic
exosomes induced M2 polarization and enhanced the proliferation,
migration, and invasion of glioma in vitro and in vivo.70

MicroRNA-1246 was highly enriched in hypoxic glioma exosomes
and mediated M2 polarization by targeting TERF2IP through the
STAT3 and NF-kB pathways.70

Different ncRNAs are expressed in tumor exosomes depending on
oxygen availability. Under normoxic conditions, miR-222-3p was en-
riched in macrophage exosomes from epithelial ovarian cancer
(EOC) cells and induced M2 polarization via the SOCS3/STAT3
pathway.71 In contrast, miR-940 was expressed in EOC cells and their
exosomes and stimulated M2 macrophage polarization under hypox-
ic conditions.72 In addition, under hypoxia, miR-21-3p, miR-125b-
5p, and miR-181d-5p in EOC cell exosomes induced M2 polarization
by regulating the SOCS4/5/STAT3 pathway.73 However, the source of
exosomes and the mechanisms underlying macrophage polarization
by circRNA have not been determined.

EMT is associated with tumor development and chemoresistance.74

Tumor cells control TAMs via exosomal ncRNAs and promote
EMT.75,76 EMT is accompanied by a large infiltration of M2 macro-
phages and exosomes in tumor tissues, including HCC, human
head and neck cancer, CRC, and NSCLC.77–82 Whether EMT leads
to M2 polarization or M2 macrophages promote EMT remains
controversial; notwithstanding, these processes are complementary.
HCC exosomal lncRNA DLX6-AS1 regulated M2 macrophage
Molecular Therapy Vol. 30 No 10 October 2022 3135
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Figure 2. Tumor-derived exosomal non-coding RNAs promote macrophage polarization

Circ0048117, lncRNA TUC339, and miR-21-5p interfere with TLRs or other receptors on the surface of macrophages to induce M2 polarization. miR-21, miR-25-3p, miR-

130b-3p, miR-425-5p, hypoxic miR-301a-3p, and circFARSA inhibit PTEN to activate the PI3K/AKT signaling pathway and induce M2 polarization. miR-29a-3p, miR-222-

3p, hypoxic miR-21-3p, hypoxic miR-125b-5p, and hypoxic miR-181d-5p promote M2 polarization by suppressing SOCS signaling. miR-21 activates STAT signaling and

promotes M2 polarization. miR-9, miR-451/miR-21, miRNA let-7a-5p/let7-b, -g, -i, miR-125b-5p, miRNA let-7a, miR-1246, miR21, and miR-16 downregulate PPARd, c-

Myc, integrin-b3, LIPA, IRS-1/IRS-2/INSR/IGF1R, TERF2IP, PDCD4/IL12A, and IKKa mRNAs, respectively, to induce M1 or M2 polarization. lncRNA DLX6-AS1 compet-

itively binds to miR-15a-5p to induce M2 polarization.
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polarization through competitively binding to miR-15a-5p and regu-
lating the miRNA-15a-5p/CXCL17 axis, thereby promoting HCC
migration, invasion, EMT, and pulmonary metastasis.77 The EMT
transcription factor Snail activated miR21 transcription and pro-
duced miR-21-enriched TEXs. TEXs containing miR-21-, taken up
by human monocytes, decreased the expression of M1 markers and
increased the expression of M2 markers. In Snail-expressing human
head and neck cancer cells, miR-21 knockdown attenuated M2 polar-
ization and inhibited tumor angiogenesis and growth.78 CRC exo-
somes containing the lncRNA RPPH1 mediated M2 macrophage po-
larization, promoting cancer cell proliferation and metastasis.79,80

Hsa_circ_0074854 was transferred from HCC tissues and exosomes
to macrophages and promoted M2 polarization, and hsa_
circ_0074854 knockdown suppressed exosome-mediated polariza-
tion and HCC migration and invasion.81 The roles of exosomal
lncRNA FGD5-AS1 in NSCLC were similar to those of hsa_
circ_0074854 in HCC.82 Nonetheless, the underlying mechanisms
remain unclear.

Epigallocatechin gallate exerts antitumor effects by upregulating miR-
16 in tumor cells and their exosomes and inhibiting TAM infiltration
and M2 polarization.83
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The infiltration of M2macrophages in NSCLC was driven by the Kras
mutant and was associated with tumor expansion, Kras-related che-
moresistance, and patient survival. Exosome cicHIPK3/PTK2 pro-
moted Kras-driven intratumoral heterogeneity in CD163+ TAMs
and lymph node metastasis in mice.84

Malignant cells transmit genetic information via exosomal ncRNAs to
induce M2 polarization in the TIME (Figure 2; Table 1).

TAM-derived exosomal ncRNAs affect tumor progression

TAM-derived exosomal ncRNAs and tumor cell proliferation

Uncontrolled cell proliferation is an important feature of cancer and
is characterized by alterations in the expression and activity of cell-cy-
cle proteins.85 TAM exosomal ncRNAs regulate the transcription,
translation, and function of these proteins.

ncRNAs are transferred from TAM exosomes to tumor cells, regu-
lating cancer cell proliferation and apoptosis.86 TAMs promote PCa
progression via exosome-mediated miR-95 transfer. In vitro and
in vivo experiments showed that miR-95 bound to its target gene,
JunB, in PCa cells and further induced tumor proliferation, invasion,
and EMT.87 In addition, miR-21 in TAM exosomes enhanced cell
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Table 1. Tumor-derived exosomal ncRNAs promote macrophage polarization

Exosomal ncRNAs Cancer type

Expression levels in
tumor cells and their
exosomes

Potential direct target
gene(s) of ncRNAs in
macrophages Mechanism

Macrophage
polarization Effect Ref.

miRNAs

miR-9
HPV+

HNSCC
high PPARdY

downregulate PPARd
mRNA

M1
increase the
radiosensitivity of
HPV+ HNSCC

Tong et al.46

miR-451/miR-21 GBM high c-MycY
downregulate c-Myc
mRNA

M2 /
Van der Vos
et al.47

miRNA let-7a-5p
miRNAs let7-b,
-g, -i

PCa high integrin-b3Y
downregulate integrin-
b3

M2 tumor migration
Ferguson
et al.48

miR-21-5p CRC high / bind to TLR7 M1 liver metastasis Shao et al.51

miR-125b-5p melanoma high in exosomes LIPAY target LIPA M2 /
Gerloff
et al.52

miR-21
bladder
cancer

high PTENY
inhibit PTEN
activation and increase
STAT3 expression

M2
cancer migration and
invasion

Lin et al.56

miR-25-3p
miR-130b-3p
miR-425-5p

CRC high PTENY
downregulate PTEN
and activate PI3K/
AKT signaling

M2

tumor metastasis
by enhancing
EMT and secreting
VEGF

Wang and
co-
workers57,58

miR-29a-3p

oral
squamous
cell
carcinoma

high SOCS1Y
regulate SOCS1/
STAT6 signaling ac-
tivity

M2
cancer proliferation
and invasion

Cai et al.62

miR-223 CSCC high / / M1 tumor progression
Zhang
et al.63

miR-301a-3p PC
high under hypoxic
conditions

PTENY
activate the PTEN/
PI3Kg signaling
pathway

M2
cancer migration,
invasion, and EMT

Wang and
co-
workers66,67

miRNA let-7a /

low in tumor cells and
high in exosomes
under hypoxic
conditions

IRS-1, IRS-2, INSR,
and IGF1RY

enhance oxidative
phosphorylation and
inhibit the insulin-
Akt-mTOR signaling
pathway

M2 / Park et al.69

miR-1246 glioma
high under hypoxic
conditions

TERF2IPY

target TERF2IP to
activate STAT3
signaling and inhibit
NF-kB signaling

M2
cancer proliferation,
migration, and
invasion

Qian et al.70

miR-222-3p EOC high SOCS3Y
regulate the SOCS3/
STAT3 pathway

M2
cancer proliferation,
migration

Ying et al.71

miR-940 EOC
high under hypoxic
conditions

/ / M2 tumor progression Chen et al.72

miR-21-3p
miR-125b-5p
miR-181d-5p

EOC
high under hypoxic
conditions

SOCS4/5Y
regulate the SOCS4/5/
STAT3 pathway

M2
cancer proliferation
and migration

Chen et al.73

miR21
head and
neck cancer

high PDCD4 and IL12AY
downregulate PDCD4
and IL12A

M2
tumor growth and
angiogenesis

Hsieh
et al.78

miR-16 BC
high after
epigallocatechin
gallate treatment

IKKaY

downregulate IKKa
and accumulate Ik-B
to suppress NF-kB
activity

M2/M1 / Jang et al.83

(Continued on next page)
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Table 1. Continued

Exosomal ncRNAs Cancer type

Expression levels in
tumor cells and their
exosomes

Potential direct target
gene(s) of ncRNAs in
macrophages Mechanism

Macrophage
polarization Effect Ref.

lncRNAs

lncRNA TUC339 HCC high /

regulate cytokine
receptor signaling
pathways and CXCR
chemokine receptor
binding pathways

M2

cancer proliferation
and reduce cancer cell
adhesion to the
extracellular matrix

Kogure and
co-
workers49,50

lncRNA DLX6-
AS1

HCC high miR-15a-5pY
regulate the miRNA-
15a-5p/CXCL17 axis

M2

cancer migration,
invasion and EMT,
including pulmonary
metastasis

Wang
et al.77

lncRNA RPPH1 CRC high / / M2
cancer metastasis and
proliferation

Liang and
co-
workers79,80

lncRNA FGD5-
AS1

NSCLC high / / M2
cancer migration and
invasion

Lv et al.82

circRNAs

circFARSA NSCLC high PTENY

increase ubiquitination
and degradation of
PTEN and activate the
PI3K/AKT signaling
pathway

M2 EMT and metastasis Chen et al.59

circ0048117 ESCC
high under hypoxic
conditions

miR-140Y
act as a sponge of miR-
140 by competing with
TLR4

M2
tumor invasion and
migration

Lu et al.68

circ0074854 HCC high / / M2
tumor migration and
invasion

Wang
et al.81

cicHIPK3
cicPTK2

NSCLC high / / M2
Kras-associated
chemoresistance

Katopodi
et al.84
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proliferation and inhibited apoptosis in gastric cancer (GC) cells by
inhibiting PDCD4 expression.88

lncRNAs can reverse miRNA-induced gene silencing. For instance,
TAM exosomal lncRNA LIFR-AS1 enhanced osteosarcoma cell pro-
liferation by sponging miR-29a and increasing NFIA protein
expression.89

TAM exosomal ncRNAs alter the proliferative capacity of tumor cells
via post-transcriptional regulation. Low levels of cyclin-dependent ki-
nase inhibitor 1B (CDKN1B) were associated with EOC progression
and poor prognosis. Exosomal miR-221-3p directly targeted and in-
hibited CDKN1B expression, favoring EOC proliferation and G1/S
progression.90 miR-142 and miR-223 were effectively transferred
from macrophages to HCC cells via exosomes. These RNAs decreased
the expression of reporter proteins and endogenous proteins
stathmin-1 and insulin-like growth factor-1 receptor and inhibited can-
cer cell proliferation.91 miR-125a and miR-125b suppressed HCC cell
proliferation by downregulating the cancer stem cell marker CD90.92

TAM-derived exosomal ncRNAs and metastasis

Organ-specific metastasis is complex and dynamic and involves tu-
mor-host intercellular interactions.93,94 TEXs in the circulation can
help establish a pre-metastatic niche.95,96 ncRNAs enter the systemic
circulation and travel to distant organs to transmit information via
3138 Molecular Therapy Vol. 30 No 10 October 2022
cell receptors, allowing these RNAs to regulate tumor cell
proliferation.51

Clinical and experimental evidence suggests that TAMs promote can-
cer cell migration via exosomal signaling.97,98 Moreover, exosomal
ncRNAs are involved in different steps of the metastatic cascade.
miR-501-3p was highly expressed in pancreatic ductal adenocarcinoma
(PDAC) and TAM exosomes.99 This RNA promoted PDACmetastasis
by downregulating the tumor-suppressor gene TGFBR3, andmiR-501-
3p inhibition suppressed tumor formation and metastasis in vivo.99

ncRNAs regulate the expression of proteins involved in invasion or
migration. miR-21-5p and miR-155-5p, highly abundant in M2
macrophage exosomes, downregulated the protein expression of
BRG1 in CRC cells, promoting cancer cell migration and invasion.100

Decreased Brg-1 expression is implicated in CRC metastases.101

lncRNA SBF2-AS1 acted as ceRNA to inhibit miR-122-5p and upre-
gulate X-linked inhibitor of apoptosis protein.102 The overexpression
of exosomal lncRNA SBF2-AS1 promoted PC progression, and the
inhibition of this RNA in M2 macrophages attenuated PC tumorige-
nicity.102 Similarly, lncRNA AFAP1-AS1 downregulated miR-26a
and upregulated its direct target ATF2, increasing esophageal cancer
cell migration, invasion, and lung metastasis. Moreover, M2 macro-
phage exosomes showed higher AFAP1-AS1 and ATF2 expression
and lower miR-26a expression than M1 macrophage exosomes.103
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Androgen receptors (ARs) help regulate HCC initiation and progres-
sion.104 Macrophage exosomal miR-92a-2-5p inhibited AR transla-
tion by targeting the 30 UTR and PHLPP/p-AKT/b-catenin signaling,
increasing HCC cell invasion. In addition, a preclinical study showed
that miR-92a-2-5p inhibitors suppressed HCC progression.104

TAM exosomal miR-223 was upregulated in breast cancer (BC) cells
in vitro and promoted BC cell invasion through the Mef2c-b-catenin
pathway, and miR-223 inhibition decreased the invasiveness of BC
cells.105 Furthermore, macrophage exosomal miR-223 promoted the
migration and invasion of GC cells via the PTEN-PI3K/AKT
pathway, and RNA silencing reversed this effect. This RNA changed
the actin cytoskeleton and upregulated multiple proteins associated
with EMT.106 Exosomes from TWEAK-stimulated macrophages
were internalized by EOC cells and suppressed metastasis by inhibit-
ing the EGFR/AKT/ERK1/2 pathway. TWEAK increased miR-7
levels—a tumor-suppressive miRNA—in macrophages, macrophage
exosomes, and recipient EOC cells.107

Distant metastasis is a complex process in which M1 and M2 facilitate
different steps.51,100 It is essential that tumor cells acquire the ability to
migrate and distant organs prepare the environment that favors the
metastasis of tumor cells during distant organ metastasis.108–111 As a
first step, cancer cells need to become motile and invasive to enter the
bloodstream. miR-21-5p and miR-155-5p in exosomal M2 macro-
phages from primary tumors regulated the expression of cell migra-
tion-related proteins and EMT, endowing tumor cells with invasive ac-
tivity.100 Stephen Paget proposed the “seed and soil” hypothesis,
expounding that metastasizing cancer cells “seed” only in certain espe-
cially suitable tissues, akin to seeding in “fertile soil.”112 Shao et al. found
that exosomes carrying miR-21 traveled from the primary tumor
portion to the liver and liver macrophages can phenotype pro-inflam-
matory M1 by miR-21, which prepared a favorable environment for
the metastasis of CRC.51

TAM-derived exosomal ncRNAs and tumor angiogenesis

Tumor angiogenesis involves several processes and cell types.113 In the
TIME, exosomes derived from mesenchymal, stromal, and endothelial
cells play active roles in this process.114 TAM infiltration in the TIME
impacts tumor angiogenesis and epigenetic regulation.115 Exosomes
stimulate the formation of tubular structures, the growth of endothelial
cells, and the secretion of VEGF. VEGF and other factors secreted by
TAMs during tumor progression promote cancer development.116

M2 macrophage exosomes increased the expression of migration and
angiogenesis-related proteins in PDAC cells and enhanced metastasis
in vivo.99 Exosomal miR-501-3p promoted tumor cell migration, inva-
sion, and tube formation.99MicroRNA-21was transferred from glioma
tomicroglia through exosomes. ExogenousmiR-21 increased the ability
of GBM cells to promote M2 polarization, and miR-21 inhibition
reversed this effect.117,118 ThismiRNApromoted endothelial angiogen-
esis throughVEGFR2 signaling.119miR-21was involved in the response
to anti-angiogenic therapy, and bevacizumab treatment was associated
with increased expressionofmiR-21 in the serum.120Moreover,miR-21
silencing increased GBM sensitivity to the anti-angiogenic drug suniti-
nib.121 Exosomal miR-130b-3p promoted angiogenesis in GC cells.122

Mixed lineage leukemia 3 (MLL3), a poor prognostic factor in GC,
increased the expression of the gene grainyhead-like 2 (GRHL2).123

MLL3 inhibited the proliferation, migration, and invasion of GC cells
and tube formation in HUEVCs by increasing GRHL2, whereas miR-
130b-3p had the opposite effect by inhibiting MLL3 expression.122 In
addition, miR-130b-3p downregulation and GRHL2 upregulation in-
hibited tumor formation and angiogenesis in GC.122

Hypoxia is a crucial regulator of angiogenesis and affects exosome
secretion and function and the expression of exosome ncRNAs.124,125

Tissue inhibitor of metalloproteinases-1 upregulated miR-210 and
downregulated the mRNA and protein expression of its downstream
targets by activating PI3K/AKT/HIF-1 signaling, increasing angio-
genesis and tumor growth in vivo.126 Exosome miR-21 activated
STAT3, increasing VEGF levels in recipient cells.127

TAM-derived exosomal ncRNAs and tumor chemoresistance

Exosomal ncRNAs increase resistance to antitumor drugs. For instance,
M2 macrophage miR-21 increased GC resistance to cisplatin by sup-
pressing apoptosis via PTEN/PI3K/AKT activation.128 lncRNA
CRNDE was upregulated in GC tissues and TAM and promoted
cisplatin resistance in GC cells via PTEN ubiquitination. CRNDE
silencing inM2macrophage exosomes increased the sensitivity of these
cells to cisplatin, and PTEN knockdown reversed this effect.129

MicroRNA-21 stimulated temozolomide resistance in GBM by modu-
lating the STAT3/miR-21/PDCD4 signaling pathway. The STAT3 in-
hibitor pacritinib overcame temozolomide resistance by decreasing
miR-21 levels and the number of miR-21-enriched exosomes.117 The
levels of miR-1246 were significantly higher in paclitaxel-resistant
ovarian cancer (OC) exosomes than in paclitaxel-sensitive OC exo-
somes. TheCav1gene and themultidrug resistance genewere direct tar-
gets of miR-1246 and participated in exosome transfer. Cav1 overex-
pression and miR-1246 mimic treatment sensitized OC cells to
paclitaxel.130,131

Hypoxia increases macrophage recruitment and promotes exosome
production and release, altering drug sensitivity in tumor cells. For
instance, miR-223 was enriched in TAM exosomes under hypoxia
and was transferred to EOC cells, inducing drug resistance via the
PTEN-PI3K/AKT pathway.132 HIF-1a might be involved in the pro-
duction of miR-223 in TAM and their exosomes.132 MicroRNA-365
increased PDAC resistance to gemcitabine by upregulating the
triphosphate-nucleotide pool and increasing cytidine deaminase
expression, whereas miR-365 antagonists reversed this effect.133

TAM exosomal ncRNAs affect every aspect of tumor progression
(Figure 3; Table 2).

EXOSOMAL ncRNAs AND THE TIME
The cancer-immunity cycle is the sequence of events that lead to an
effective anti-cancer immune response.134 Tumor-specific antigens
released from dead tumor cells are recognized by antigen-presenting
cells (APCs), especially dendritic cells (DCs), and further processed to
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Figure 3. Tumor-associated macrophage-derived exosomal non-coding RNAs affect tumor progression

miRNAs can bind to the 30 UTR of target mRNAs to induce gene silencing. lncRNAs can sponge miRNAs to increase target mRNA expression. (A) miR-95, miR-21, miR-221-

3p, miR-142, miR-223, miR-125a, andmiR-125b, promote tumor progression by binding to target mRNAs and downregulating gene expression. lncRNA LIFR-AS1 acts as a

miR-29a sponge to upregulate NFIA. (B) miR-501-3p, miR-21-5p, miR-155-5p, miR-92a-2-5p, miR-223, and miR-7 promote tumor cell migration and invasion by targeting

the corresponding genes. lncRNA SBF2-AS1 and lncRNA AFAP1-AS1 act as ceRNAs to repress miR-122-5p and miR-26a, respectively, increasing protein expression.

(C) miR-501-3p and miR-130b-3p induce tumor angiogenesis by downregulating targeted genes. (D) miR-21, hypoxic miR-223, and lncRNA CRNDE promote chemore-

sistance by downregulating PTEN. In addition, miR-21 downregulates the STAT3 and PDCD4. miR-365 upregulate cytidine deaminase (CDA) and the triphosphate-nucle-

otide pool, which is associated with drug resistance in tumors.
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form the antigen-peptide-MHC complex. Then, T cell receptors on
DCs recognize this complex, whereas B7 molecules on DCs bind to
CD28 on T cells, activating these cells. Cytotoxic T lymphocytes
(CTLs) infiltrate the tumor and kill cancer cells.

Based on programmed cell death ligand 1 (PD-L1) expression and tu-
mor-infiltrating lymphocytes (TILs), the TIME can be classified as
having a “hot” or “cold” phenotype, with distinct pathophysiological
characteristics; the former is characterized by the presence of acti-
vated lymphocytes and good response to immunotherapy, and the
latter is characterized by the lack of T cell infiltrates and poor
response to immunotherapy.135 TILs are reflected by CD8A or cyto-
lytic activity. Immunotherapy aims to stimulate the activity of CTLs
and initiate and establish effective and long-term anti-cancer immu-
nity.136 However, as the tumor progresses, immune editing mediates
immune escape through low tumor antigen expression, high PD-L1
expression, and reduced TILs, and hot tumors may transform into
cold tumors, leading to poor immune response.137–139

Exosomal ncRNAs regulate the functions, interactions, and infiltra-
tion of CTLs—DCs, CTLs, NK cells, TAMs, fibroblasts, myeloid-
3140 Molecular Therapy Vol. 30 No 10 October 2022
derived suppressor cells (MDSCs), and Treg cells—in the TIME (Fig-
ure 4; Table 3).168–170

Exosomal ncRNAs regulate DC maturation and function

DCs are APCs that express a wide range of TLRs.171,172 Upon TLR
stimulation, DCs activate T cells and initiate the immune response
by upregulating co-stimulatory molecules and pro-inflammatory cy-
tokines.173 Interference with TLR activation prevents initiating im-
munity. miR-21 and miR-29a in NSCLC exosomes bound to TLRs,
resulting in tumor growth and metastasis.140 In PCs, the overexpres-
sion of miR-203 had a similar effect on TLR4.141 In addition, miR-203
reduced the expression of TNF-a and IL-12, which were essential for
DCmaturation and Th1 differentiation, respectively.141 PC exosomes
transferred miR-212-3p to DCs and inhibited the expression of the
regulatory factor X-associated protein, decreasing MHC II expression
and increasing immune tolerance in DCs.142 Mature DCs stimulated
the activation, proliferation, and differentiation of effector T cells,
whereas immature DCs promoted T cell tolerance to tumor anti-
gens.174 Melanoma exosomes regulated DCmaturation.143 Exosomes
blocked DC differentiation from myeloid precursors, producing
immature MDSCs that contributed to tumor progression.144 In
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Table 2. Tumor-associated macrophage-derived exosomal ncRNAs affect tumor proliferation, metastasis, angiogenesis, and chemoresistance

Biological
function

Exosomal
ncRNAs

Expression levels in macrophages
and their exosomes

Potential direct target gene(s) of
ncRNAs in tumor cells Mechanism Cancer type Ref.

Tumor cell
proliferation

miR-95 high JunBY

promote tumor progression by
binding directly to its downstream
target gene JunB to promote PCa
cell proliferation, invasion, and
EMT

PCa Guan et al.87

miR-21 high PDCD4Y

promote tumor progression by
targeting the PDCD4 gene and in-
hibiting PDCD4 expression to
prevent apoptosis in GC cells

GC
Wang
et al.88

lncRNA LIFR-
AS1

high miR-29aY

act as a miR-29a sponge to
upregulate NFIA, promoting
tumor cell proliferation but
inhibiting tumor cell invasion and
apoptosis

osteosarcoma
Zhang
et al.89

miR-221-3p high CDKN1BY

directly target and inhibit
CDKN1B expression to promote
EOC cell proliferation and G1/S
conversion

EOC
Li and
Tang90

miR-142
miR-223

high STMN1 and IGF-1RY

downregulate the expression of
reporter proteins and
endogenously expressed
stathmin-1 and insulin-like growth
factor-1 receptor at the post-tran-
scriptional level to inhibit tumor
cell proliferation

HCC
Aucher
et al.91

miR-125a
miR-125b

underexpressed in exosomes CD90[
target CD90 to promote HCC cell
proliferation

HCC
Wang
et al.92

Tumor
metastasis

miR-501-3p high TGFBR3Y
target TGFBR3 to promote PDAC
cell metastasis

PDAC Yin et al.99

miR-21-5p
miR-155-5p

high BRG1Y

downregulate BRG1 expression by
binding to the BRG1 coding
sequence to promote CRC cell
migration and invasion

CRC Lan et al.100

lncRNA SBF2-
AS1

high miR-122-5pY
act as a ceRNA to repress miR-122-
5p and upregulate XIAP to
promote PC progression

PC Yin et al.102

lncRNA
AFAP1-AS1

high miR-26aY

act as a ceRNA to repress miR-26a
and upregulate ATF2 to promote
esophageal cancer (EC) cell
migration and invasion and lung
metastasis

EC Mi et al.103

miR-92a-2-5p high ARY

target the 30 UTR of AR mRNA
and inhibit AR translation to alter
PHLPP/p-AKT/b-catenin
signaling and promote HCC cell
invasion

HCC Liu et al.104

miR-223 high Mef2cY
target the Mef2c-b-catenin
pathway to promote BC cell
invasion

BC
Yang
et al.105

miR-223 high PTENY

target the PTEN-PI3K/AKT
pathway, alter the actin cytoskel-
eton, and upregulate multiple pro-
teins associated with EMT to pro-
mote GC cell migration and
invasion

GC
Zheng
et al.106

miR-7 high after TWEAK treatment EGFRY
downregulate the activity of the
EGFR/AKT/ERK1/2 pathway to
reduce EOC cell metastasis

EOC Hu et al.107

(Continued on next page)
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Table 2. Continued

Biological
function

Exosomal
ncRNAs

Expression levels in macrophages
and their exosomes

Potential direct target gene(s) of
ncRNAs in tumor cells Mechanism Cancer type Ref.

Tumor
angiogenesis

miR-501-3p high TGFBR3Y
target TGFBR3 to promote tube
formation

PDAC Yin et al.99

miR-130b-3p high MLL3Y
promote GC progression via miR-
130b-3p/MLL3/GRHL2 signaling

GC
Zhang
et al.122

Tumor
chemoresistance

miR-21 high PTENY

activates PI3K/AKT signaling by
downregulating PTEN to inhibit
GC cell apoptosis and promote
DDP resistance

GC
Zheng
et al.128

lncRNA
CRNDE

high PTENY
facilitate NEDD4-1-mediated
PTEN ubiquitination to increase
cisplatin resistance in GC cells

GC Xin et al.129

miR-21 high STAT3 and PDCD4Y

regulate the STAT3/miR-21/
PDCD4 signaling pathway, which
is associated with temozolomide
resistance in GBM

GBM
Chuang
et al.117

miR-223 high PTENY

activate downstream signaling
pathways, including PI3K/AKT,
through downregulating PTEN to
enhance drug resistance in EOC
cells under hypoxia

EOC Zhu et al.132

miR-365 high CDA[

upregulate the triphosphate-
nucleotide pool and induce the
enzyme cytidine deaminase in
cancer cells to induce PDAC
resistance to gemcitabine

PDAC
Binebaum
et al.133
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summary, TEXs in the TIME inhibit the differentiation and matura-
tion of DCs, thus transforming them from beneficial APCs to negative
regulators of the immune response.175

Exosomal ncRNAs regulate T cell recruitment, proliferation, and

differentiation

T cells are divided into two major groups based on phenotype, surface
receptors, and antigen specificity: CD4+ T helper (Th) and CD8+ CLT
cells.176,177 Th cells can be further divided into Th1, Th17, and Tregs.177

In addition to inhibiting DC maturation,178 TEXs control the prolif-
eration, differentiation, and function of T lymphocytes and the
expression of immune function genes in these cells.179 miR146a in
HCC exosomes promoted M2 polarization and impaired T cell func-
tion.39 In addition, exosomes decreased the release of antitumor im-
mune factors, such as IFN-g, IL-2, and IL-17, from CD4+ and/or
CD8+ T cells.145 In advanced lung cancer, miR-23a was upregulated
in tumor-infiltrating CD8+ T cells and suppressed CD8+ T cell func-
tion by downregulating its target gene BLIMP-1.146 In HCC, TGF-b
inhibited CD8+ T cell function by suppressing miR-34a, enhancing
Treg recruitment to the TIME.147

TEXs are associated with the proliferation and apoptosis of T cells.
Exosomal miR-24-3p inhibited T cell proliferation and Th1 and
Th17 differentiation and induced Treg differentiation by targeting
FGF11 in nasopharyngeal carcinoma.148 Hypoxia increased the level
and activity of miR-24-3p.148 Hypoxia-induced miR-210-inhibited
3142 Molecular Therapy Vol. 30 No 10 October 2022
Th17 differentiation in T cells by targeting HIF1a.149 PC exosomes
induced endoplasmic reticulum-mediated apoptosis of T lympho-
cytes by activating p38 mitogen-activated protein kinase (MAPK), ul-
timately leading to immunosuppression.150

TAMs contribute to immune escape and immunosuppression by
affecting T lymphocyte infiltration in the TIME. M2 macrophage exo-
somes promoted immune escape by shuttling miR-21 and decreasing
PEG3 mRNA expression in a mouse model of glioma.151 In addition,
exosomal miR-21 enhanced tumor volume and reduced the percentage
of CD8+ T cells in glioma tissues.151 miR-21 depletion inhibited glioma
growth, migration, and invasion, enhanced apoptosis, upregulated
IFN-g levels, and increased CD8+ T proliferation and cytotoxicity.151

ncRNAsmediate the upregulation of immune checkpoints. HCC exo-
somal lncRNA PCED1B-AS1 enhanced the expression and function
of programmed cell death ligands (PD-Ls) in HCC cells via sponging
hsa-miR-194-5p and induced immunosuppression by inhibiting
recipient T cells and macrophages.152

NK cells are a T cell subpopulation with cytotoxic activity and the
ability to produce antitumor cytokines, such as IL-4, IFN-g, Fas
ligand, IL-13, and perforin.180,181 TGF-b inhibits the cytotoxic activ-
ity of these cells by upregulating miR-183 and decreasing the protein
levels of DNAX-activating protein 12, a signaling adaptor for NK cell
function and a key factor in TGF-b-mediated immunosuppression.153

In addition, glioma cell-derived miR-92a significantly decreased the
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Figure 4. Exosomal non-coding RNAs of tumor cells or TAMs remodel the tumor immune microenvironment

Dendritic cells (DCs) process tumor antigens and form the antigen-peptide-MHC complex, which activates T lymphocytes. CD4+ T cells can differentiate into Th1, Th17, and

Treg cells. Activated CD8+ T cells generate cytotoxic T lymphocytes (CTLs) that kill tumor cells. NK cells kill tumor cells by producing antitumor cytokines, such as IL-4, IFN-g,

FasL, IL-13, and perforin. Myeloid-derived suppressor cells (MDSCs) and Tregs have immunosuppressive activity. miR-21, miR-29a, and miR-203 bind to TLRs on the sur-

face of DCs and inhibit DC maturation. miR-212-3p downregulates MHC II on DCs. miR-21 and miR-24-3p decrease CD8+ T cell proliferation, whereas miR-23a, miR-34a,

and miR-21 suppress CD8+ T cell function. miR-29a-3p, miR-21-5p, miR-24-3p, hypoxic miR-210, and miR-203 affect CD4+ T cell differentiation. miR-183, miR-92a, hyp-

oxic miR-210, and hypoxic miR-23a reduce NK cell cytotoxicity. miR-210, miR-494, miR-20a, miR-17-5p, and miR-155 affect the recruitment and function of MDSCs. miR-

34a, miR-24-3p, and miR-214 promote Treg recruitment and expansion. lncRNA PCED1B-AS1 suppresses T cell function via enhancing the expression and function of

programmed cell death ligands in tumor cells. miR-1247-3p and miR-21 promote conversion from normal fibroblasts to CAFs.
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expression of antitumor cytokines in NK cells and increased the abil-
ity of NK cells to suppress cytotoxic CD8+ T cell activity.154 HCC-
derived circUHRF1 inhibited the secretion of IFN-g and TNF-a by
NK cells and caused NK cell dysfunction by inhibiting miR-449c-
5p and upregulating its target gene TIM-3. High levels of plasma
exosomal circUHRF1 decreased the NK cell ratio and NK cell infiltra-
tion.155 TEXs decreased NK cell cytotoxicity under hypoxic condi-
tions via miR-210 and miR-23a.156,157 As a primary regulator of the
hypoxic tumor response, miR-210 controlled antigen-specific
immune response,156 whereas miR-23a directly targeted CD107a
expression.157 These data demonstrate the vital role of exosomal
ncRNAs in mediating T cell exhaustion and creating an immunosup-
pressive microenvironment.

Exosomal ncRNAs regulate immunosuppressive cell

recruitment and function

Other immune cells in the TIME influence the cytotoxicity of CTLs
and NK cells.182,183 M1 macrophages enhance the antitumor effects
of cytotoxic cells, whereas M2 macrophages, MDSCs, and Treg cells
have the opposite effect.182,183 Exosomal ncRNAs stimulate these
immunosuppressive cells in the TIME, indirectly influencing the
function of CTLs and NK cells.

Treg cells are a major subgroup of immunosuppressive leukocytes.
CD25+ CD4+ Tregs produce immunosuppressive cytokines and ex-
press co-stimulatory molecules that inhibit tumor-specific CTL func-
tion.182 The frequency of Tregs is increased during tumorigenesis
and is positively correlated with compromised immune
response.182,184,185 The Treg/Th17 ratio was correlated with histolog-
ical grade and was significantly increased in EOC.158 miR-29a-3p and
miR-21-5p were enriched in TAM exosomes.158 These two miRNAs
directly inhibited STAT3 in transfected CD4+ T cells but caused an
imbalance in the Treg/Th17 ratio and synergistically suppressed
STAT3.158 These results indicate that exosomes mediate the crosstalk
between TAMs and T cells to create an immunosuppressive microen-
vironment.158 miR-214 induced Treg expansion in CD4+ T cells by
targeting PTEN, causing immunosuppression and tumor growth.159

MDSCs are immature myeloid cells that suppress adaptive and innate
immunity in the TIME and are a major driver of tumor immune
Molecular Therapy Vol. 30 No 10 October 2022 3143
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Table 3. Exosomal ncRNAs of tumor cells or TAMs remodel the tumor immune microenvironment

Exosomal ncRNAs
Immune
cells Mechanism Effect Cancer type Ref.

miR-21
miR-29a

DCs
bind to TLRs to induce primary
inflammation

tumor growth and metastasis NSCLC Fabbri et al.140

miR-203 DCs
bind to TLR4 to induce primary
inflammation and reduce the expression of
cytokines such as TNF-a and IL-12

inhibit DC maturation and Th1
differentiation to reduce cellular immunity

PC Zhou et al.141

miR-212-3p DCs
suppress RFXAP to induce MHC II
downregulation

enhance immune tolerance in DCs PC Ding et al.142

Exosomes DCs / regulate DC maturation melanoma Maus et al.143

Exosomes DCs /
inhibit DC differentiation and stimulate
MDSC differentiation to promote tumor
progression

/
Condamine and
Gabrilovich144

miR146a T cells /
stimulate M2 polarization and inhibit anti-
HCC T cell activity

HCC Yin et al.39

Exosomes T cells /
Decrease the release of antitumor factors
such as IFN-g, IL-2, and IL-17 from CD4+

and CD8+ T cells

nasopharyngeal
carcinoma

Ye et al.145

miR-23a T cells downregulate the target gene BLIMP-1 suppress CD8+ T cell function advanced lung cancer Lin et al.146

miR-34a T cells suppress TGF-b
inhibit CD8+ T cell function and recruit
Tregs to the TIME

HCC Yang et al.147

miR-24-3p T cells target FGF11
stimulate Tregs and inhibit T cell
proliferation and Th1 and Th17
differentiation;

nasopharyngeal
carcinoma

Ye et al.148

Hypoxia miR-210 T cells target HIF1a
promote Th17 differentiation of T cells
and promote tumor immune escape

/ Wang et al.149

Exosomes T cells
uptake by T lymphocytes to activate p38
MAPK

induce ER stress-mediated apoptosis of T
lymphocytes and lead to
immunosuppression

PC Shen et al.150

miR-21 (TAM) T cells regulate PEG3

decrease CD8+ T cell proliferation and
cytotoxic activity to accelerate immune
escape and cancer cell growth, migration,
and invasion; inhibit apoptosis to enhance
tumor volume decrease

glioma Yang et al.151

lncRNA PCED1B-
AS1

T cells
sponge hsa-miR-194-5p and enhance the
expression and function of PD-Ls in HCC
cells

suppress recipient T cells and
macrophages to induce
immunosuppression in HCC

HCC Fan et al.152

miR-183 NK cells
induced by TGF-b, target and inhibit
DAP12

impair the lymphatic function of NK cells
and trigger TGF-b-mediated
immunosuppression

/ Donatelli et al.153

miR-92a NK cells
reduce the expression of antitumor
cytokines (perforin, FasL, and IFN-g) by
NK cells

induce NK cells to decrease cytotoxic
CD8+ T cell activity

glioma Tang et al.154

circUHRF1 NK cells
degrade miR-449c-5p and upregulate
TIM-3 to inhibit IFN-g and TNF-a
secretion in NK cells

reduce the NK cell ratio and tumor
infiltration

HCC Zhang et al.155

Hypoxic miR-210 NK cells
control antigen-specific immune
responses and tumor hypoxia

reduce NK cell cytotoxicity and function / Norman et al.156

Hypoxic miR-23a NK cells
directly target the expression of CD107a as
an immunosuppressive factor

reduce NK cell cytotoxicity and function / Berchem et al.157

miR-29a-3p
miR-21-5p (TAM)

Tregs

directly inhibit STAT3 in CD4+ T cells and
induce imbalance in the Treg/Th17 ratio to
have a synergistic effect on STAT3 dinhi-
bition

increase the Treg/Th17 ratio and create an
immunosuppressive microenvironment

EOC Zhou et al.158

miR-214 Tregs decrease PTEN secretion
promote Treg expansion to enhance
immunosuppression and tumor growth

/ Yin et al.159

(Continued on next page)
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Table 3. Continued

Exosomal ncRNAs
Immune
cells Mechanism Effect Cancer type Ref.

miR-210
miR-494

MDSCs
target IL-16 and CXCL12 (miR-210) and
PTEN (miR-494), respectively

enhance MDSC recruitment and
immunosuppressive activity

/ Liu and co-workers160,161

miR-20a
miR-17-5p

MDSCs repressed by hypoxia inhibit MDSC immunosuppressive activity /
Truettner and co-
workers162–164

miR-155 MDSCs repressed by tumor-derived exosomes
enhance MDSC recruitment and
immunosuppressive activity

/ Wang et al.165

miR-1247-3p CAFs
convert HSC to CAFs via activation of
PTEN/PDK1/AKT signaling

secret pro-inflammatory cytokines to
promote HCC progression

HCC Fang et al.166

miR-21 CAFs
convert HSC to CAFs via activation of
PTEN/PDK1/AKT signaling

secret angiogenic cytokines to promote
HCC progression

HCC Zhou et al.167
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escape.186 The accumulation of MDSCs and activation of suppressive
cells require inflammatory factors regulated by immune-related miR-
NAs.187 Tumor exosomal miR-210 and miR-494 were upregulated in
rodent models.160,161 Targeting CXCL12, PTEN, and IL-16 via miR-
210, miR-494, and miR-210/miR-494, respectively, increased the
recruitment and suppressive activity of MDSCs.160,161 In addition,
miR-20a and miR-17-5p were downregulated in MDSCs under hyp-
oxic conditions, and their overexpression reduced the suppressive ac-
tivity of MDSCs.162–164 MicroRNA-155 deficiency increased the
recruitment of MDSCs to the TIME and enhanced their immunosup-
pressive and pro-angiogenic function.165

Exosomal ncRNAs regulate the function of cancer-associated

fibroblasts

Cancer-associated fibroblasts (CAFs) represent the majority of stro-
mal cells in the TIME.188 In the lung metastatic niche, metastasis-
prone HCC cells had advantages in converting normal fibroblasts
to CAFs via secreting exosomal miR-1247-3p that targeted
B4GALT3 in fibroblasts and activated b1-integrin-NF-kB
signaling.166 Similarly, HCC-derived exosomal miR-21 could convert
normal hepatocyte stellate cells (HSCs) to CAFs through activating
PTEN/PDK1/AKT signaling in HSCs.167 Activated CAFs further pro-
moted HCC progression by secreting angiogenic cytokines, including
VEGF, MMP, and TGF-b.167 CAF-derived exosomal ncRNAs are
associated with immunosuppression. For example, the levels of
miR-92 were higher in CAF exosomes of BC patients than in healthy
controls.189 CAF exosomes upregulated PD-L1 in BC cells, decreasing
T cell proliferation and increasing apoptosis.189 Hypoxia induced
CAFs to release exosomal circEIF3K but inhibited miR-214, which
downregulated PD-L1 expression in CRC. As a result, PD-L1 expres-
sion was upregulated in CRC under hypoxia.190

In summary, exosomes and their ncRNAs mediate tumor immune
escape and the interaction between cancer cells and TAM in the TIME.

CLINICAL APPLICATIONS OF EXOSOMAL ncRNAs
AND EXOSOMES
Exosomes and their ncRNAs are found in virtually all body fluids and
thus can be used as non-invasive diagnostic biomarkers in cancer.191
Exosomes are suitable for delivering small interfering RNAs (siR-
NAs), antitumor agents, and CRISPR-Cas9 systems, decreasing anti-
genicity and drug toxicity.34,192–194

Exosomal ncRNAs as promising diagnostic and prognostic

biomarkers

Exosomal ncRNAs are highly enriched in biological fluids and can be
used for liquid biopsies, improving diagnostic specificity and sensi-
tivity.191 In addition, improving exosomemembrane structure can in-
crease miRNA stability.191

circSATB2 was implicated in NSCLC progression and thus can be
potentially used as a diagnostic marker for this cancer type.195 Exoso-
mal circ0048117 regulated ESCC progression, and higher serum exo-
somal circ0048117 was positively and significantly correlated with
TNM stage.68 Exosomal circSHKBP1 is a promising biomarker for
GC diagnosis and prognosis and a therapeutic target since this
RNA was detected in the blood and promoted GC progression.196

CRC exosomal miR-203 promoted the expression of M2 markers
in vitro.197 MicroRNA-203-transfected CRC mouse cells developed
more liver metastases than the control group.197 Circulating exosomal
miR-203 levels were correlated with metastasis, and low miR-203
expression in tumor tissue was a poor prognostic factor in CRC.197

Bioinformatics analysis showed that the high expression of lncRNA
GAS5 and miR-221 in tissue, plasma, and exosomes was of diagnostic
value in CRC and was a prognostic factor for CRC.198 A prognostic
model targeting the STAT3-miR-223-HMGCS1/TGFBR3 axis pre-
dicted survival in HCC patients.199 The exosomal lncRNAs RP11-
538D16.2 and CTD-2116N20.1 are associated with poor prognosis
in CRC.199 The level of exosomal RPPH1 in the plasma was high in
treatment-naive CRC patients but low after tumor resection.79,80 Exo-
somal RPPH1 had a higher diagnostic value than CEA and CA199 in
CRC.79,80

Exosomes and ncRNAs as potential therapeutic targets

Exosomes and their ncRNAs play essential roles in physiological
and pathological processes. Exosomes are being developed for drug
delivery in cancer therapy.34,200 Exosome encapsulation enables the
effective transfer of unstable molecules to target cells to participate
Molecular Therapy Vol. 30 No 10 October 2022 3145
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in antitumor and immunomodulatory processes, increasing drug
concentration and decreasing drug toxicity.201,202 Compared with
synthetic carriers, such as liposomes and nanoparticles (NPs), exo-
somes have better biocompatibility, lower immunogenicity, wider
distribution, and chemical stability in biological fluids, allowing tar-
geted delivery to the blood-brain barrier and preventing phagocytosis
by mononuclear macrophages.200,201 Exosomes enter recipient cells
by endocytosis, enhancing drug internalization.200,201 Exosomes
have a strong homing property and can target specific tissues and
cells, increasing the cytotoxicity of therapeutic agents.200,201 Milk
exosomes have been developed for paclitaxel delivery and comply
with good manufacturing practices.203 The inhibition of the
CD47-SIRPa interaction by engineered exosomes promoted T cell
infiltration in syngeneic mouse models of cancer.204 It has been
proposed that CAR T cell-derived exosomes are more efficient and
less toxic than CAR T therapy.205 Exosomes can potentially be
used as cancer vaccines.206 miRNAs and siRNA can be delivered
to recipient cells via exosomes to help regulate the expression of
relevant genes, particularly oncogenes, which are potential targets
for tumor therapy.207,208 Exogenous siRNAs target human mono-
cytes and lymphocytes and have been used to silence the MAPK1
gene.209 Engineered mesenchymal stromal cell exosomes carrying
KRASG12D siRNA are currently in phase I clinical trials for patients
with metastatic PC and KRASG12D mutations (NCT03608631).
Clinical trials on therapeutic exosomes have been well organized
previously.200,210,211

Although these advantages make exosomes promising therapeutic
targets, some limitations, such as off-targeting, low loading efficiency,
fast clearance in vivo, and the lack of standardized production and
preparation, need to be resolved before clinical application.

Exosomes are surface-functionalized with ligands to prevent off-tar-
geting and achieve targeted drug delivery.200,212 Common modifica-
tion methods include chemical ligation of targeted peptides, genetic
engineering of progenitor cells and exosomal membranes, magnetic
NPs, and electrostatic interactions. Nonetheless, exosome engineer-
ing has some limitations.200,212 First, changing the exosome surface
structure is challenging. Second, genetically modifying parental cells
reduces transfection efficiency and the biological activity of mem-
brane proteins. Third, chemically modified viral proteins may have
adverse health effects. Fourth, cationic nanomaterials may cause cyto-
toxicity and have low loading efficiency when used in electrostatic
interactions.

Achieving the efficient, cost-effective, large-scale production of ther-
apeutic exosomes determines whether they can be used in clinical
practice. Exosome production is divided into two stages: large-scale
cell culture and exosome isolation and processing. In addition, several
characterization indexes are needed to assess whether the extracted
components are exosomes. Exosomes are characterized based on
morphology, size, and protein markers. The most commonly used
isolation methods are ultracentrifugation, particle size separation,
polymer precipitation, and immunoaffinity capture. However, several
3146 Molecular Therapy Vol. 30 No 10 October 2022
methods need to be combined to achieve the desired yield, purity,
integrity, price, and other relevant characteristics. Combining
different methods can improve purification efficiency and allow
cost-effective large-scale production. However, the effectiveness of
these strategies has not been determined. Recent advances in thera-
peutic exosome production are detailed in two reviews.210,212,213

Tumor-suppressive miRNAs are expressed at low levels in tumors and
inhibit cancer development. The recovery of these miRNAs using
miRNAmimics is a promising therapeutic strategy. A proof-of-concept
study evaluated the effectiveness of thesemimics as anmiRNA-replace-
ment therapy in a preclinical animal model.214,215 Antisense oligonu-
cleotides, miRNA sponges, ribonucleases, small molecules, and the
CRISPR-Cas9 system can suppress oncomiRs.216–220

Despite recent achievements in the study of immune checkpoint in-
hibitors (ICIs), immunotherapeutic agents have limitations on
response rates, toxicity, and resistance.221 Exosomal ncRNAs impact
the efficacy of immunotherapy. For instance, endoplasmic reticulum
stress promoted the release of exosomes fromHCC, andmiR-23a-3p-
loaded exosomes were phagocytosed by macrophages and activated
the PI3K/AKT pathway through inhibiting PTEN. As a result, macro-
phages were polarized to M2, increasing the expression of PD-L1 and
impairing T cell function. The blockade of HCC-macrophage interac-
tions by miR-23a-3p inhibitors may be a novel strategy to treat HCC
progression.222 In addition, HCC exosome-educated macrophages
suppressed the expression of IFN-g and TNF-a and upregulated
the expression of inhibitory receptors, such as PD-1 and CTLA-4 in
T cells.39 HCC exosomal lncRNA PCED1B-AS1 regulated the expres-
sion of PD-L1 and PD-2 in HCC, affecting the efficacy of ICIs.152

Serum exosome PCED1B-AS1 correlated with the expression of
PD-Ls in HCC and predicted the efficacy of immunotherapy.152

PCED1B-AS1 inhibitors can potentially improve immunotherapy.
HCC exosomal circUHRF1 reduced NK infiltration in tumors and in-
hibited the secretion of IFN-g and TNF-a by NK cells. In addition,
circUHRF1 upregulated TIM-3 expression by inhibiting miR-449c-
5p, thereby reducing NK cell function. More importantly, circUHRF1
might be involved in immunosuppression by inducing NK cell
dysfunction in HCC, leading to anti-PD1 therapy resistance.155

Blocking circUHRF1 may restore the function of NK cells and
improve the efficacy of immunotherapy. Exosomes from drug-resis-
tant BC cells increased the levels of TGF-b1 and the expression of
PD-L1, inducing resistance to antitumor agents such as trastuzu-
mab.223 These results suggest that the exosome-mediated transfer of
ncRNAs to monocytes contributes to cancer-associated immune
escape.224

As an important part of the TIME, macrophages are becoming a new
target for antitumor immunity. Current cancer immunotherapies tar-
geting macrophages can inhibit macrophage recruitment, deplete
TAMs, reprogram TAMs, and block the CD47-SIRPa pathway.225,226

First, targeting the colony-stimulating factor 1 (CSF-1)/CSF-1R axis,
C-C chemokine ligand 5 (CCL5)/CCR5 axis, CCL2/CCR2 axis, or
VEGF effectively decreased TAM recruitment in preclinical and
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clinical studies.227 The delivery of a CCR2 siRNA to monocytes using
cationic NPs in peripheral blood, bone marrow, and spleen inhibited
monocyte recruitment and reduced TAM infiltration, leading to
TIME remodeling.228 Similarly, M2 TAM dual-targeted NPs loaded
with anti-CSF-1R siRNA decreased macrophage infiltration in mela-
noma and tumor size and improved overall survival in mice.229

Hyaluronic acid (HA) NPs loaded miRNA-125b promotedM1 polar-
ization and enhanced antitumor efficacy.230 miRNAmimics are being
used in preclinical trials to reprogram TAMs. MicroRNA-125b/wt-
p53 plasmids encapsulated in CD44/EGFR-targeted HA NPs trig-
gered M1 polarization and inhibited tumor growth in a mouse model
of lung cancer.231 Similarly, the targeted delivery of miR-99b to mice
with HCC or subcutaneous Lewis lung cancer induced M1 polariza-
tion by targeting kB-Ras2 and mTOR, enhancing immune surveil-
lance and preventing tumor growth.232

CD47 is a transmembrane protein expressed in all cell types, partic-
ularly immature red blood cells and cancer cells.233 CD47 overexpres-
sion is linked with decreased phagocytosis/apoptosis by TAMs and
poor prognosis in tumors.234 Therefore, blocking the CD47-SIRPa
pathway can potentially restore the antitumor effect of TAMs.
CD47 could be downregulated by antiD47 siRNA.235,236 Exosomes
containing SIRPa variants significantly enhanced tumor phagocytosis
and induced an effective antitumor T cell response.204 Anti-SIRPa
therapy targeting myeloid cells has fewer side effects than anti-
CD47 therapy, especially in red blood cells, making it a promising
strategy to block the CD47-SIRPa pathway.237 In addition, inhibiting
this pathway induces macrophage repolarization.238,239
DISCUSSION
Exosomal ncRNAs usually represent the ncRNA landscape of the
mother cell. However, many ncRNAs are differentially expressed be-
tween cells and exosomes. In this respect, miR-21 and miR-451 were
highly expressed in GBM.47 The relative expression level of miR-21
did not differ significantly between GBM cells and exosomes; howev-
er, the level of miR-451 was 1,000–10,000 times higher in exosomes.47

Similarly, 117 ultraconserved RNAs (ucRNAs) were upregulated, 68
miRNAs were downregulated, and 24 ucRNAs were detected exclu-
sively in exosomes.49 The transport of ncRNAs via exosomes is selec-
tive, although the underlying mechanisms are unclear. lncRNA LIFR-
AS1, a miR-29a sponge, was transferred from macrophages to tumor
cells by exosomes. lncRNA LIFR-AS1 was highly expressed and miR-
29a was lowly expressed in osteosarcoma tissues. The expression of
miR-29a in macrophages was significantly upregulated by lncRNA
LIFR-AS1 knockdown, but not in exosomes. This indicated that the
two ncRNAs were not co-transported in exosomes, which may be
related to selective inclusion of exosomes.89

In addition, the miRNA landscape of exosomes varies depending on
the tumor type.48 Viral infection can also affect miRNA expression in
tumor cells and exosomes. MicroRNA-9 was highly expressed in
HPV+ HNSCC cells but not in HPV� HNSCC cells.46
Hypoxia promoted the secretion of exosomes in tumor cells,66–68 and
increased miRNA levels in TEXs.72 Under hypoxia, the expression of
total let-7a miRNA in tumor cells decreased to approximately 30% of
that in normal hypoxia controls, while the content of let-7a in exo-
somes increased to approximately 25 times.69 This reflected the
enhanced enrichment ability of exosomes under hypoxia.

The functions of miRNAs in recipient cells depend on the character-
istics of exosomes, uptake mechanism, the amount of miRNA trans-
ferred to recipient cells in the cytoplasm, and the level of endogenous
target mRNAs.47
PROSPECTS AND CONCLUSIONS
Macrophages are one of themost abundant cell types in the TIME and
are closely associated with tumor development. The heterogeneity in
macrophage activity may have significant diagnostic and therapeutic
implications in cancer. Exosomes mediate interactions between tu-
moral cells and TAMs via ncRNAs.

Immune escape is a hallmark of tumors and disrupts the cancer-im-
munity cycle, leading to T cell depletion and long-term
immunosuppression.

Exosomal ncRNAs are used by cancer cells to evade immune surveil-
lance and can serve as diagnostic markers given their abundance in
tumor tissues and peripheral circulation. Nonetheless, their specificity
and sensitivity in solid tumors must be further assessed.

Antagonists can be used to reverse the effects of exosomes and their
ncRNAs; nonetheless, the development of effective and clinically
applicable antagonists is challenging.

Targeting signaling pathways and designing drugs that can reverse
macrophage phenotype and tumor drug resistance have tremendous
implications in oncotherapy. However, large follow-up studies and
clinical validation are needed.

Moreover, miRNAs and siRNAs transferred to recipient cells via exo-
somes can abrogate the expression of target genes, limiting tumor
progression.34 Notwithstanding, establishing standard production
practices, improving purity, yield, and targeting, and achieving
cost-effective large-scale production are necessary before these nano-
vesicles advance to clinical trial.

Macrophage-targeting therapies are emerging immunotherapies.
More preclinical studies are needed to improve the targeting of these
treatments. The exact efficacy and immune-related adverse effects
need to be fully evaluated before clinical studies can be conducted.
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