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Abstract

Complex biological tissues consist of numerous cells in a highly coordinated manner and carry 

out various biological functions. Therefore, segmenting a tissue into spatial and functional 

domains is critically important for understanding and controlling the biological functions. The 

emerging spatial transcriptomics technologies allow simultaneous measurements of thousands of 

genes with precise spatial information, providing an unprecedented opportunity for dissecting 

biological tissues. However, how to utilize such noisy, sparse, and high dimensional data for tissue 

segmentation remains a major challenge. Here, we develop a deep learning-based method, named 

SCAN-IT by transforming the spatial domain identification problem into an image segmentation 

problem, with cells mimicking pixels and expression values of genes within a cell representing 

the color channels. Specifically, SCAN-IT relies on geometric modeling, graph neural networks, 

and an informatics approach, DeepGraphInfomax. We demonstrate that SCAN-IT can handle 

datasets from a wide range of spatial transcriptomics techniques, including the ones with high 

spatial resolution but low gene coverage as well as those with low spatial resolution but high gene 

coverage. We show that SCAN-IT outperforms state-of-the-art methods using a benchmark dataset 

with ground truth domain annotations.

1 Introduction

Complex tissues in multicellular organisms consist of numerous highly coordinated cells to 

carry out essential functions that vary botspatially and temporally to maintain their structures 

and functions. Cellular heterogeneity in different spatial contexts provides diverse biological 

functions and cells in a spatial domain often organize their compositions to achieve unique 
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functions. The correct identification of spatial domains is the foundation of down-stream 

tasks such as reliable assessment of disease progression. Previously, identifying such spatial 

domain requires anatomical experiments and known markers to specify regions that are 

often challenging and non-scalable.

The recent spatial transcriptomics (ST) technologies [5, 14, 16] can produce spatial images 

of many genes simultaneously at the resolution of individual cells or a small group of 

cells. Such emerging datasets provide unprecedented opportunities to dissect spatial domains 

without using prior knowledge of the spatial domain marker genes (genes that are highly 

expressed within the domain but lowly expressed elsewhere). Here, we transform such 

spatial domain identification problem into a classic image segmentation problem, where 

cells are treated as pixels in an image and gene expressions within cells represent different 

channels (analogous to RGB channels) [12]. One major difference and a challenge, however, 

is the number of channels, which is significantly larger in ST data compared to classical 

images with three channels. In addition, the signal detection in current ST technologies is 

often noisy and sparse, leaving segmentation more difficult.

Reducing the number of channels by using only spatially-variable genes instead of highly-

variable genes without spatial constraints can improve the tissue segmentation [10]. 

Preprocessing procedures, such as smoothing gene expression in space, can also lead 

to improved tissue domain annotations [13]. Another approach is to incorporate spatial 

constraints in the classical clustering methods to make cells “spatially-aware”. For example, 

SmfishHmrf constructs a hidden random Markov field model on the cell proximity graph 

by including the gene expression dependency between cells [21], and BayesSpace uses a 

Bayesian model to make spatially neighboring cells more likely to be in the same cluster 

[20]. These methods, however, are based on prescribed and simplified probabilistic models, 

resulting in limited applicability.

Here we utilize the deep graph neural networks method for tissue segmentation by 

translating it into a clustering-based image segmentation problem. This interpretation will 

treat ST data as an image with irregular grids and thousands of channels. To identify 

tissue domains in an unbiased manner from such an image, we propose a deep learning 

method, named SCAN-IT. Specifically, SCAN-IT first builds a geometry-aware spatial 

proximity graph with the nodes as the spots (a group of cells) or individual cells in ST data 

using alpha complex. Compared to commonly used k-nearest neighbor graphs, this graph 

representation better captures the physical proximity among cells. We adapt Deep Graph 

Infomax [17] to generate low-dimensional embeddings of the nodes. These embeddings 

represent both gene expression patterns in the cells and the gene expression patterns in 

their microenvironment by preserving the neighborhood information through the intrinsic 

property of DeepGraphInfomax. Finally, the resultant low-dimensional representation is fed 

to commonly used clustering algorithms to derive the tissue domains. We evaluate SCAN-IT 

both qualitatively on several ST data with various spatial resolutions, and quantitatively, on a 

benchmark dataset with ground-truth. In the quantitative benchmark, SCAN-IT outperforms 

other existing methods [10, 13, 20, 21]. SCAN-IT software is available at github.com/zcang/

SCAN-IT.
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2 Method

2.1 Spatial transcriptomics image segmentation problem

A ST dataset can be regarded as a 2-dimensional point cloud of NS points (spots). On each 

spot, the expression of NG genes are measured assembling a feature vector. Therefore, a ST 

dataset is often represented by a position matrix P ∈ ℝNS × 2 and a gene expression matrix 

ℝ+
NS × NG of the spots. The purpose of domain segmentation of ST data is to separate the NS 

spots into clusters (spatial regions) that are homogeneous within a cluster and differ between 

clusters in terms of gene expressions. This task is analogous to the image segmentation task 

except two main differences: 1) the ST data are represented by irregular point clouds in 

space and 2) there are thousands of channels (genes) in ST data compared to the three color 

channels in images.

2.2 Determining spatial adjacency by alpha complex

A graph of the spatial spots of cells is constructed by using alpha complex. A Voronoi cell is 

first constructed for each spot located at r as

V r = x ∈ ℝ2 x−r ≤ x−r′ , ∀r′ ∈ P , (1)

where P is the set of locations for the spatial spots and ǁ·ǁ is 2-norm. Then we use the 

1-skeleton of the alpha complex [4] to derive the neighborhood graph of the spots in ST data 

as Gα (P, δ ) = (V, E) with edges defined as

E = i, j ∩k ∈ i, j V rk ∩ B rk, δ ≠ 0 , (2)

where B(x, δ ) is a closed ball in ℝ2 centered at x with a radius δ. The radius δ is estimated 

by the average distance of the spots to their k nearest neighbors.

2.3 Graph convolutional network as the encoder

To derive a low-dimensional node representation that encode gene expression patterns both 

on the node and its microenvironment, an encoder that has the potential to characterize 

spatial neighborhood information is needed. To this end, we use a graph convolutional 

network (GCN) [8] to derive low-dimensional representations of the spots in ST data. 

When applied to image segmentation, GCN has the advantage of better preserving segment 

boundaries [15] compared with deep convolutional neural networks. Given a data with NS 

spots from which an adjacency matrix A ∈ ℝNS × NS is defined following Section 2.2, and 

let Xi − 1 ∈ ℝNS × NF
i − 1

 be the input signal of the ith layer, the layer is then defined with the 

expression:

Xi = σ D− 1
2AD− 1

2Xi − 1Θi , (3)
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where A = A + INS is the normalized adjacency matrix with the corresponding degree 

matrix Dii = jAij, Θi ∈ RNF
i − 1 × NF

i
 is the feature map parameter, and σ is an activation 

function.

Here the input signal is the gene expression matrix X0 ∈ ℝNS × NG of the spatial data with 

NS spots and ÑG selected genes. A two-layer GCN with parametric ReLU as the activation 

function for both layers is used as an encoder.

2.4 Training the encoder to encode local neighborhood information

The Deep Graph Infomax (DGI) model [17] is used to train the GCN so that the low-

dimensional representation of the GCN carries location information and encodes both the 

node features and the local neighborhood characteristics. With an encoder to be trained: 

ℰ:ℝNS × NG × ℝNS × NS ℝNS × NF , a summary function ℛ:ℝNS × NF ℝNF  that 

summarizes a global feature from local features, and a discriminator D:ℝNF × ℝNF ℝ
that quantifies the probability score between two feature vectors, DGI trains the encoder by 

maximizing the following objective function based on Jensen-Shannon divergence [7, 17]:

ℒ = 1
NS + M i = 1

NS
E X0, A logD hi, s +

j = 1

M
E X0, A log 1 − D hj, s , (4)

where s = ℛ ℰ X0, A  is the global summary, hi is the ith column of ℰ X0, A , and hj is 

the jth column of ℰ X0, A . While maximizing the probability score between hi and s, the 

probability score is minimized for hj obtained by applying the encoder to a corrupted graph 

X0, A = C X, A .

Here we choose the corruption function C to be a random permutation of the node input 

features with M = NS. The summary function is defined as ℛ H = Sigmoid 1
NS i

hi  with 

H = ℰ X, A = h1, ⋯, hNS . The discriminator is defined as D hi, s = Sigmoid hi
TW s  where 

W ∈ RNF × NF  is a trainable parameter.

To distinguish the original graph and the corrupted graph, the encoder is forced to 

encode the local neighborhood gene expression patterns. As a result, the tissue domains 

determined based on this low-dimensional representation are regions with similar spatial 

gene expression patterns and similar cell type compositions.

2.5 Determining tissue domains through segmentation

To accommodate the randomness in the independently trained DGI models and to 

incorporate external low-dimensional representations, for example, those characterizing cell 

types and cell morphology, we use a consensus representation based on several individual 

representations [19]. Given a collection of k low-dimensional representations of the spatial 

spots, Hi ∈ ℝNS × NH
i

, i = 1, · · ·, k, we first compute a consensus distance matrix 
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C as a weighted sum of distance matrices derived from the individual representations, 

i = 1
k αiCi. The consensus distance matrix is then fed to a (metric) multidimensional scaling 

algorithm to derive the low-dimensional representations xi, i = 1, · · ·, NS by minimizing 

the stress SC x1, x2, ⋯, xNS = i ≠ j Cij − xi − xj
2

1
2 . This consensus low-dimensional 

representation is then fed to clustering algorithms such as k-means clustering and Louvain 

clustering [1] for spatial domain segmentation.

3 Experiments

3.1 Single-cell resolution spatial imaging data

We first apply SCAN-IT to two spatial imaging datasets obtained from technologies 

that have single-cell resolution but measure only a small number of selected genes. The 

osmFISH data of mouse somatosensory cortex contains 5328 cells and 33 genes [2]. The 

domain segmentation inferred by SCAN-IT is found to match well with the annotated 

tissue domains (Fig. 2a) that was previously obtained by manually adjusting a domain 

segmentation method designed for osmFISH data [2].

When applying SCAN-IT to a seqFISH data of mouse visual cortex with 1597 cells and 

125 genes [21], we find 16 different spatial domains (Fig. 2b). Interestingly, the inferred 

tissue domains capture spatial regions of cells that exhibit collective information instead of 

different cell states or types. Specifically, each domain contains multiple different types of 

cells characterized by non-spatial clustering. This analysis suggests strong applicability of 

SCAN-IT and its validity.

3.2 Single-cell resolution spatial transcriptomics data

Next, we apply SCAN-IT to a single-cell resolution ST data of mouse somatosensory 

cortex obtained by seqFISH+ technique [5] with 523 cells and 10000 genes. The inferred 

tissue domains capture the spatial regions with two properties: a) within a given region 

cells of different annotation are well-mixed in space and b) different regions have different 

compositions of cells (Fig. 3a ). To further investigate the relations between the identified 

spatial domains and the cell types, we show the marker genes that are found to be 

differentially expressed in each inferred tissue domain (Fig. 3b,c). It is clear the top marker 

genes for the identified spatial domains are different from cell type marker genes. Together, 

this indicates that our segmentation identifies spatial domains with biological differences 

that are beyond the classical non-spatial cell clustering.

3.3. Non-single-cell resolution spatial transcriptomics data

Due to current technological limitations, when increasing the tissue coverage or sequencing 

depth, the spatial resolution is often reduced, for example, leading to a loss of the individual 

cell resolution. We further evaluate SCAN-IT by analyzing datasets from two different 

techniques that measure gene expression at spatial spots with each spot containing a small 

number of cells rather than one cell.
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The two datasets obtained by Visium technique on the coronal section and the sagittal 

posterior section of mouse brain contain 32285 genes, and 2702 and 3355 spatial spots, 

respectively [16]. The domain segmentation by SCAN-IT well captures the anatomical 

regions as revealed in the classical histological H&E stain images that have been well used 

as a tool for tissue segmentation (Fig. 4a,b).

SCAN-IT also correctly detects tissue domains in three mouse spatial datasets from Slide-

seq technique [14], namely, the cerebellum (24847 spots and 18906 genes), the hippocampus 

(38666 spots and 19869 genes), and the olfactory bulb (26316 spots and 18838 genes) 

compared to the ground-truth segmentation from Allen Brain Atlas [9] (Fig. 4c,d).

3.4 Comparison to other methods

Finally, we use a benchmark dataset with ground truth tissue domain segmentations [10] 

to compare our method with four recently developed methods, namely, spatialLIBD [10], 

smfishHmrf [3, 21], stLearn [13], and BayesSpace [20]. This benchmark contains twelve 

Visium datasets of human dorsolateral prefrontal cortex. The tissue domains were annotated 

manually in the original publication [10], which we use as the ground truth for benchmark. 

For the comparison, we use four standard metrics that measure the quality of a clustering 

given the ground-truth clustering including the normalized mutual information, adjusted 

Rand index, adjusted mutual information, and Fowlkes-Mallows index [11, 18] (Fig. 5).

SCAN-IT with unbiased gene selection (top 3000 spatially variable genes identified by 

using SOMDE [6]) outperforms other methods regarding all four metrics while SCAN-IT 

with only the 126 manually picked spatial marker genes in the original study [10] further 

significantly improves the clustering performance (Table 1).

4 Conclusion

We have developed a method using graph neural networks approach to segment biological 

tissues, a major challenging task when analyzing the emerging spatial transcriptomics 

data. SCAN-IT has been evaluated on spatial transcriptomics datasets of various spatial 

resolutions for its applicability and accuracy, and found to outperform several existing 

methods on a benchmark dataset with ground-truth tissue domains. Formulating the 

tissue segmentation problem in spatial transcriptomics data as a graph/image segmentation 

problem establishes a new bridge between computer vision and spatial bioinformatics. In the 

experiments, we found that comparing to commonly used knn graphs, the alpha complex 

induced spatial neighborhood graph produces most accurate results and it can potentially 

improve performances of segmentation of broader point cloud data embedded in 2D or 

3D. Finally, SCAN-IT is implemented as a user-friendly open-source Python package with 

extensive tutorials provided, and it is directly applicable to custom spatial transcriptomics 

data.
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Figure 1: 
Overview of Scan-IT method. A spatial graph is constructed for the spatial spots of 

cells using alpha complex. A graph convolutional neural network is then used as an 

encoder trained using the deep graph infomax [17]. The tissue domains are segmented 

by performing clustering on a consensus low-dimensional representation obtained from 

multiple independently trained encoders or external embeddings.
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Figure 2: 
SCAN-IT segmentation of spatial imaging data. a. Mouse somatosensory cortex examined 

by osmFISH with annotated tissue domain from the original publication [2] and the domain 

segmentation by SCAN-IT. b. SCAN-IT domain segmentation based on mouse visual cortex 

datasets using seqFISH [21] and the cell types characterized using a paired single-cell RNA 

sequencing data in the original publication of the seqFISH data [21].
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Figure 3: 
Inferred tissue domains of single-cell resolution ST data of mouse somatosensory cortex 

obtained using seqFISH+ technique. a. The SCAN-IT segmentation of the ST data and the 

manually annotated cell types of individual cells. b. The spatial marker genes of the tissue 

domains (left) and the marker genes of the annotated cell types (right). c. Spatial expression 

of the top spatial marker gene for each tissue domain.
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Figure 4: 
Segmentation of datasets with non-single-cell resolution. a. The H&E image and 

segmentation of Visium data of mouse brain coronal section. b. The H&E image and 

segmentation of Visium data of mouse brain sagittal posterior section. c. Segmentation of 

Slide-seq datasets of mouse cerebellum, hippocampus, and olfactory bulb. d. Ground-truth 

anatomical segmentation in the reference atlas from Allen Brain Atlas [9].
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Figure 5: 
Benchmark of SCAN-IT on twelve Visium datasets with marker genes taken from the 

original publication [10]. For each sample, ten independent runs of SCAN-IT are carried 

out. a. The ground truth segmentation (determined by domain expert with prior knowledge) 

and the SCAN-IT segmentation with the median performance over the ten independent runs 

are shown for three representative samples for the three types of layouts. The ground truth 

labels the domain as layers 1 to 6 and white matter (WM) in the biological context, and 

in the unsupervised SCAN-IT domain segmentation, the domains are labeled with cluster 

numbers without biological interpretation. An accurate unsupervised domain segmentation 

should have a similar clustering of nodes compared to the ground truth. b. The performance 

of SCAN-IT in the ten independent runs over the twelve samples measured by normalized 

mutual information (NMI), adjusted Rand index (ARI), adjusted mutual information (AMI), 

and Fowlkes-Mallows index (FMI).
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Table 1:

The performance (mean;median;standard deviation) of the methods measured by normalized mutual 

information (NMI), adjusted Rand index (ARI), adjusted mutual information (AMI), and Fowlkes-Mallows 

index (FMI) over the twelve benchmark datasets [10].

NMI ARI AMI FMI

spatialLIBD 0.430;0.416;0.053 0.288;0.283;0.056 0.429;0.414;0.053 0.459;0.473;0.034

smfishHmrf 0.479;0.513;0.070 0.334;0.354;0.061 0.478;0.512;0.070 0.480;0.483;0.061

stLearn 0.526;0.529;0.069 0.353;0.352;0.075 0.525;0.528;0.069 0.511;0.512;0.044

BayesSpace 0.598;0.622;0.083 0.447;0.488;0.108 0.597;0.621;0.083 0.574;0.572;0.068

SCAN-IT (SVgenes) 0.619;0.627;0.059 0.465;0.464;0.091 0.619;0.626;0.059 0.589;0.582;0.069

SCAN-IT (markers) 0.676;0.683;0.037 0.544;0.541;0.047 0.675;0.682;0.037 0.646;0.635;0.043
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