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Abstract

Different essential viral proteins are translated via programmed stop codon readthrough.

Pea enation mosaic virus 1 (PEMV1) and potato leafroll virus (PLRV) are related positive-

sense RNA plant viruses in the family Solemoviridae, and are type members of the Enamo-

virus and Polerovirus genera, respectively. Both use translational readthrough to express a

C-terminally extended minor capsid protein (CP), termed CP-readthrough domain (CP-

RTD), from a viral subgenomic mRNA that is transcribed during infections. Limited incorpo-

ration of CP-RTD subunits into virus particles is essential for aphid transmission, however

the functional readthrough structures that mediate CP-RTD translation have not yet been

defined. Through RNA solution structure probing, RNA secondary structure modeling, site-

directed mutagenesis, and functional in vitro and in vivo analyses, we have investigated in

detail the readthrough elements and complex structure involved in expression of CP-RTD in

PEMV1, and assessed and deduced a comparatively simpler readthrough structure for

PLRV. Collectively, this study has (i) generated the first higher-order RNA structural models

for readthrough elements in an enamovirus and a polerovirus, (ii) revealed a stark contrast

in the complexity of readthrough structures in these two related viruses, (iii) provided com-

pelling experimental evidence for the strict requirement for long-distance RNA-RNA interac-

tions in generating the active readthrough signals, (iv) uncovered what could be considered

the most complex readthrough structure reported to date, that for PEMV1, and (v) proposed

plausible assembly pathways for the formation of the elaborate PEMV1 and simple PLRV

readthrough structures. These findings notably advance our understanding of this essential

mode of gene expression in these agriculturally important plant viruses.

Author summary

RNA viruses use a variety of strategies to express their encoded proteins, and one mecha-

nism used is translational readthrough of stop codons. Some viruses in the family Solemo-

viridae use this expression strategy to make a C-terminally extended minor capsid protein

that, when incorporated into virus particles, mediates plant-to-plant transmission by

aphids. In this study we investigated the RNA sequences and structures that facilitate
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readthrough production of the minor capsid proteins of pea enation mosaic virus 1

(PEMV1; genus Enamovirus) and potato leafroll virus (PLRV; genus Polerovirus). A com-

bination of structural and functional analyses allowed for the identification of RNA ele-

ments that contribute to the readthrough process. In both cases, the RNA structures that

facilitate readthrough were formed via long-distance RNA-RNA interactions, with the

active readthrough structure for PEMV1 being significantly more complex than that for

PLRV. These results provide the first structural models for readthrough signals in these

virus genera, and provide new insights into how these critical RNA structures assemble.

This information significantly advances our understanding of this important gene expres-

sion strategy that is employed by these agriculturally important viruses.

Introduction

Programmed stop codon readthrough is an alternative protein expression strategy utilized by

different viruses. The readthrough process involves the decoding of a stop codon as a sense

codon by near-cognate tRNAs, which then allows ribosomes to continue translating in the

original reading frame. The resulting C-terminally extended readthrough product is function-

ally distinct from its pre-readthrough protein, which expands the coding capacity of viral

mRNAs. Positive sense RNA viruses represent the largest proportion of the viruses that employ

readthrough [1–3]. Some of these viruses, like alphaviruses, alphacarmoviruses, tombusviruses,

betanecroviruses, tobamoviruses, etc., [4–9] express their RNA-dependent RNA polymerase

(RdRp) via readthrough. Other viruses, such as members of Benyvirus, Furovirus, Pomovirus,

Luteovirus, Polerovirus and Enamovirus genera [1,10–14] translate a C-terminally extended

minor capsid protein (CP) by means of readthrough.

Readthrough efficiency is promoted and fine-tuned by downstream regulatory RNA

sequences and structures [1–3] that are either positioned 30-proximally to readthrough sites

[9] or involve both proximal and distal RNA elements that are united by RNA-RNA interac-

tions [5–8]. Some distal readthrough elements (DRTEs) are separated from their complemen-

tary proximal readthrough elements (PRTEs) by shorter distances (~50 to 150 nt), as observed

for RdRp production in alphaviruses and predicted for furoviruses, tobraviruses, pecluviruses,

and pomoviruses [5]. However, other DRTEs involved in RdRp translation are positioned sev-

eral thousand nucleotides downstream from their cognate PRTEs, as in viruses in the Tombus-

virus, Betanecrovirus, and Alphacarmovirus genera [6–8].

Members of Luteovirus (Tombusviridae), Polerovirus (Solemoviridae) and Enamovirus

(Solemoviridae) genera, all of which are related by similarities in their CPs and corresponding

readthrough products, have been proposed to regulate CP readthrough from their subgenomic

(sg) mRNAs via long-distance RNA-RNA interactions (spanning ~700 nt); based on observed

complementarity between corresponding PRTEs and DRTEs [12,13]. Viruses belonging to

these three genera are economically important pathogens causing major crop losses of pea,

bean, potato and other food crops around the world [15–18]. These viruses require aphid vec-

tors for plant-to-plant transmission and readthrough of the CP stop codon generates a C-ter-

minally extended minor CP, referred to as CP-readthrough domain (CP-RTD), that plays a

key role in aphid transmission [14,19–24]. CP-RTD also facilitates other viral events, such as

systemic movement in infected plants, persistence of virions in aphid vectors, tissue tropism,

and phloem loading [20,21,23,25–31].

To date, only limited information is available about the regulation of readthrough-mediated

translation of CP-RTD from sg mRNAs in Luteovirus, Polerovirus and Enamovirus genera
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[12,13]. The luteovirus barley yellow dwarf virus (BYDV) was the first virus shown to require

RNA sequences both proximal (i.e. PRTE) and distal (i.e. DRTE) from its CP stop codon for

efficient readthrough [12] and, subsequently, the polerovirus potato leaf roll virus (PLRV) was

shown to have similar requirements [13]. Despite the existence of complementarity between

the PRTEs and DRTEs in these and other related viruses, no experimental evidence confirm-

ing the functional importance of such long-distance interactions has been reported, nor have

there been any studies investigating the structural nature of the functional readthrough-pro-

moting RNA signals.

Pea enation mosaic virus (PEMV1) is an enamovirus with a 5.7 kb-long plus-strand RNA

genome that contains a 50 viral protein genome-linked (VPg) and no 30 poly(A) tail (Fig 1A)

[32]. The enamovirus protein coding scheme is very similar to that of poleroviruses, like PLRV,

except that poleroviruses encode a few additional smaller proteins [18]. The PEMV1 genome

codes for three 50-proximally encoded non-structural proteins, p0, p1, and p1/2 (RdRp,

expressed via frameshifting), all of which are translated from the genome (Fig 1A) [32]. Struc-

tural proteins, CP and its readthrough product CP-RTD, are expressed from a 1.8 kb-long sg

mRNA that is transcribed during infections (Fig 1B). Similar to poleroviruses and luteoviruses,

the sg mRNAs of enamoviruses were predicted to contain complementary readthrough-pro-

moting PRTEs and DRTEs [13]. However, although the interactions proposed for PEMV1 were

in the right general areas of the RTD (Fig 1B and 1C, red circles), the base-pairing partner

sequences that were suggested were not correct [13], as revealed by results presented herein.

In this study we investigated, in detail, the CP readthrough signal in PEMV1’s sg mRNA

and determined that it adopts an elaborate RNA structure, which contrasts the simple read-

through structure that was deduced for PLRV. We also confirmed the functional requirement

for long-distance RNA-RNA interactions between the PRTEs and DRTEs in both PEMV1 and

PLRV. Lastly, we propose putative folding pathways for formation of the complex PEMV1 and

simple PLRV readthrough structures.

Results

Secondary structure analysis of the PRTE and DRTE in PEMV1 sg mRNA

Prior to investigating the functional involvement of the PRTE and DRTE in regulating

PEMV1 CP stop codon readthrough (Fig 1B and 1C), the local RNA secondary structures in

these regions were analyzed via selective 20-hydroxyl acylation analyzed by primer extension

(SHAPE) [33]. SHAPE was conducted on in vitro synthesized transcripts of the full-length

wild type (wt) PEMV1 sg mRNA and the reactivity data gathered (SHAPE reactivity correlates

with flexibility of the corresponding nucleotide) were integrated into the RNAStructure folding

program to predict the most probable secondary structure [34]. The results for the PRTE

region revealed the presence of two small RNA stem-loop (SL) structures, termed SL1 and

SL3, located downstream of the CP stop codon (Fig 2A, left). Interestingly, an alternative fold

was also possible for the sequence between the stop codon and SL3, in which SL1 is replaced

by a mutually-exclusive SL2 (Fig 2A, right). Notably, SL2 contains four cytidylate residues

(red) in its terminal loop (Fig 2A, right), which are complementary to four guanylate residues

(red) in the terminal loop of the SHAPE-predicted SL4 in the DRTE (Fig 2B). Consequently,

the complementary terminal loops of SL2 and SL4 could potentially engage in a kissing-loop

base-pairing interaction and nucleate contact between the PRTE and DRTE. Subsequent to

this initial interaction, additional regions of complementarity, such as the identified orange-

highlighted segments, would then be able to pair (Fig 2A and 2B).

The sequence in the PRTE between the CP stop codon and SL3 is highly conserved in

enamoviruses. However, one genus member, citrus vein enation virus (CVEV), was found to
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Fig 1. Organization of PEMV1 genome and subgenomic mRNA. (A) Linear representation of PEMV1 genome showing encoded ORFs (grey boxes)

for p0, p1, p2, coat protein (CP) and coat protein-readthrough domain (CP-RTD). Proteins translated from the genome are shown beneath it as tan

and green bars. P1/2 RdRp protein is expressed via programmed -1 frameshifting within the p1 ORF. Black arrow beneath the genome indicates the
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differ significantly in this region [35]. In CVEV, a SL2 equivalent with a tandem base pair

covariation (boxed) in the center of its stem was predicted, however a corresponding SL1

could not be identified (Fig 2C). Additionally, CVEV has a comparable, but distinct, SL4 in its

DRTE (described in a later section) that contains a complementary terminal loop sequence for

CCCCA (red) in SL2 (Fig 2C). These comparative observations support the existence and pro-

posed relevance of PEMV1’s SL2 in mediating the initial union of PRTE and DRTE via a SL2/

SL4 kissing-loop interaction.

Functional analysis of the CCCC/GGGG (red) interaction in PEMV1 sg mRNA

A wheat germ extract (wge) in vitro translation system was employed to assess modulation of

PEMV1 CP readthrough by the identified RNA elements, starting with the red partner

sequences (Fig 3A). To accurately assign the identity of translational products, the wt sg

transcription initiation site for the subgenomic (sg) mRNA. The black square at the 50-end of the genome represents the VPg. (B) PEMV1 sg mRNA

encoding CP and CP-RTD. Corresponding translation products are indicated below as blue bars. CP-RTD is expressed via programmed readthrough

of the CP UGA stop codon. Relative positions of the proposed readthrough-regulating proximal readthrough element (PRTE) and distal readthrough

element (DRTE) are shown as red circles. (C) RNA secondary structure model of full-length PEMV1 sg mRNA, as predicted by RNAStructure using

default settings [34] and rendered using RNA2Drawer [57]. Labelled are the 50 and 30 ends, PRTE, DRTE, CP stop codon, SL1, SL3, SL4 and the pink-

orange intervening (POI) domain. The red circles on the folded structure correspond to the regions circled on the linear sg mRNA in panel B. The

proposed long-distance RNA-mediated interaction between PRTE and DRTE is indicated by a red double-headed arrow, and spans approximately 700

nt.

https://doi.org/10.1371/journal.ppat.1010888.g001

Fig 2. SHAPE-guided RNA secondary structures of PRTE and DRTE. (A) SHAPE-guided and alternative folds for the PRTE in

PEMV1. Relative SHAPE reactivities of individual nucleotides are colour-coded (see key) in the SHAPE-guided fold (left). The CP stop

codon, SL1, and SL3 are labeled. An alternative fold in which SL2 forms is shown on the right, with a double-headed arrow depicting the

proposed interconversion between the two conformations. The stem of SL3 is highlighted in blue, while orange and red highlights denote

sequences that have complementary partner segments in the DRTE, which is shown in panel B. (B) SHAPE-guided fold of DRTE in

PEMV1. Nucleotide reactivities are colour-coded and segments complementary to red and orange RNA segments in the PRTE are

indicated. (C) SL2 and SL3 PRTE equivalents predicted in citrus vein enation virus (CVEV, NC_021564), with corresponding orange, red,

and blue segments highlighted.

https://doi.org/10.1371/journal.ppat.1010888.g002
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Fig 3. Assessing the red long-distance RNA-RNA interaction. (A) Secondary structures for the PRTE alternative fold and DRTE in

PEMV1. The intervening 668 nucleotides between SL3 and SL4 are depicted by a connecting dashed line. (B) Wheat germ extract

(wge) in vitro translation assay testing wt and mutant PEMV1 sg mRNAs. In mutants sg1 and sg2, the CP start codon and the CP

stop codon, respectively, were inactivated (AUG! CAG and UGA!GGA). The sg mRNAs tested are indicted above each lane and

the identities of the translated viral proteins are indicated on the left. The X-designated doublet band likely represents translation

initiation at internal start codons in the CP ORF, and their probable readthrough products are indicated by the arrowhead. (C) and

(E) Compensatory mutations introduced in the sg mRNA to test the red interaction. Nucleotide substitutions are shown in white. (D)

and (F) In vitro translation analyses of the sg mRNAs shown in panels C and E, respectively. Average relative readthrough (Rel. RT)

levels (±SE) calculated from three independent trials are shown below each lane. (G) Northern blot analysis of total nucleic acids

isolated from pea protoplasts transfected with wt and HA-tagged mutant PEMV1 genomes. gHA, gHA7, gHA8, gHA9 and gHAns

each contain a triple HA tag inserted 6 amino acids from the CP N-terminus. Tagged genomic mutants gHA7, gHA8 and gHA9
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mRNA, a sg mRNA with the CP start codon inactivated by changing AUG to CAG (mutant

sg1), and a sg mRNA with the UGA CP stop codon altered to glycine-coding GGA (mutant

sg2) were tested. The results showed that both CP and CP-RTD were produced from wt sg

mRNA, as confirmed by the absence of the former in the CP AUG knockout (sg1) and the

increased levels of the latter in the CP UGA knockout (sg2) (Fig 3B). Two smaller minor prod-

ucts were also generated from wt sg mRNA (Fig 3B, denoted by X). These bands likely repre-

sent translational initiation at inframe downstream AUGs in the CP open reading frame

(ORF), because in mutant sg1 (CP AUG knockout) their accumulation increased and a corre-

sponding smaller readthrough product(s), denoted by an arrowhead, appeared (Fig 3B).

Having established that the wge system yielded readily detectable amounts of CP-RTD, the

proposed red CCCC/GGGG interaction between SL2 and SL4 was investigated (Fig 3A). Sets

of compensatory substitutions were introduced individually at two different nucleotide posi-

tions in the complementary red sequences (Fig 3C and 3E). In vitro translation analysis of cor-

responding wt and mutant sg mRNAs showed that the relative readthrough levels correlated

with base-pairing capacity between the terminal loop sequences (Fig 3D and 3F). That is,

when base pairing was disrupted, relative readthrough levels dropped below 20% that of wt

(Fig 3D, mutants sg4 and sg5; Fig 3F, mutants sg7 and sg8), while restoration of base pairing

in compensatory mutants sg6 and sg9 rescued relative readthrough to wt levels (Fig 3D and

3F).

To determine if the results obtained from in vitro translation assays reflected activity in cor-

responding in vivo viral infections, an N-terminal triple-HA tag was introduced into the CP

ORF in the full-length PEMV1 genome (creating gHA), thus allowing for immunological

detection of CP and CP-RTD. The same red sequence-targeting mutations in sg mRNA

mutants sg7, sg8 and sg9 (Fig 3E) were then introduced into the gHA genomic context, creat-

ing gHA7, gHA8, and gHA9, and the tagged viral genomes were transfected into pea proto-

plasts. Infections also included gHAns as a control, which was a mutant genome in which the

CP stop codon was converted to a glycine sense codon (UGA! GGA). Northern blot analysis

revealed that HA-tagged genomes and sg mRNAs accumulated to lower levels than their wt

counterpart (Fig 3G), likely due to the tag interfering with virus packaging and/or other intra-

cellular viral processes. However, the accumulation levels of the sg mRNAs in the tagged virus

infections were reasonably comparable, and examination of corresponding relative read-

through levels revealed results that were consistent with those from in vitro assays (compare

Fig 3H and 3F). Combined, these in vitro and in vivo findings provide compelling evidence

for the requirement of the red CCCC/GGGG interaction for optimal readthrough and vali-

dated use of the wge system for further analysis.

Additional RNA elements are required for efficient readthrough

Formation of the long-distance red CCCC/GGGG interaction would position the identified

complementary orange sequences in the PRTE and DRTE in close proximity (Fig 4A). In vitro

translation of compensatory mutants targeting two different base pairs in the orange partner

sequences in the sg mRNA (Fig 4B and 4D) supported functional base-pairing (Fig 4C and

contain the same compensatory mutations as shown in panel E, and genomic mutant gHAns has the same CP stop codon knockout

substitution as mutant sg2 in panel B. Substitutions in the DRTE in gHA8 and gHA9 lead to an arginine to serine amino acid change

in CP-RTD. Positions of the genome (g) and sg mRNA (sg) are shown on the left side of the blot. Average sg levels (±SE) were

calculated from three independent trials and are displayed below each lane. An ethidium bromide-stained rRNA loading control is

shown below the Northern blot. (G) Western blot analysis of total proteins extracted from the same pea protoplast infections as in

panel G. Identities of the detected viral proteins are indicated on the left and averaged Rel. RT levels (±SE) from three independent

trials are shown under each lane. Ponceau S-stained loading control of the blot is shown below.

https://doi.org/10.1371/journal.ppat.1010888.g003
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4E). Notably, in both cases, only partial rescue of readthrough (~45–50% of wt) was observed

for compensatory mutants sg56 and sg59 (Fig 4C and 4E). This lower level of rescue could be

related to the substitutions in the orange sequence in the PRTE interfering with presentation

of the red CCCC in the terminal loop of SL2, because the orange sequence forms the 50 half of

the stem in SL2 (Fig 4A). Regardless, the obtained results support an important role for the

orange interaction in promoting readthrough efficiency.

The importance of SL3 (blue), localized within the PRTE region, was also assessed due to its

proximity to the other functionally relevant PRTE sequences (i.e. orange and red) and its con-

servation among enamoviruses (Fig 5A). Regarding the latter point, four enamoviruses con-

tain a U-to-C substitution in the stem of their SL3s that maintains pairing (Fig 5A), while

CVEV contains a SL3 with multiple covariant base pairs (Fig 5B, boxes). Compensatory muta-

tions in sg mRNAs were designed to simultaneously target three base pairs in the GC-rich

stem of PEMV’s SL3 (Fig 5C) and results from wge assays indicated that stability of the stem

contributes to CP stop codon readthrough (Fig 5D), albeit to a lesser degree than the associ-

ated long-distance interactions.

Fig 4. Assessing the orange long-distance RNA-RNA interaction. (A) RNA secondary structures of PRTE and

DRTE in PEMV1. (B) and (D) Compensatory mutations introduced in the sg mRNA to test the orange interaction.

Nucleotide substitutions are shown in red. (C) and (E) In vitro translation analyses of the wt and mutant sg mRNAs

shown in panels B and D, respectively. Averaged Rel. RT levels (±SE) collected from three independent trials are

shown below each lane.

https://doi.org/10.1371/journal.ppat.1010888.g004
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Formation of the two long-distance RNA-RNA interactions (red and orange) between the

PRTE and DRTE would lead to an RNA structure with a large intervening sequence (659 nt)

(Fig 5E). In this structure, the red helix would likely coaxially stack on the orange helix below,

with the red helix separated from SL3 (blue) by an 8 nt long intervening sequence (pink)

Fig 5. Assessing the local SL3 (blue) in the PRTE. (A) RNA secondary structures of PRTE and DRTE in PEMV1. A

nucleotide mono-variation (U to C) in the SL3 of four enamoviruses that maintains base pairing is shown (boxed). Alfalfa

enamovirus-2 (AEV-2, KY985463.1), bean enamovirus-1 (BEnV-1, MZ361924), birdsfoot trefoil virus-2 (BFTV-2,

NC_048296) and red clover enamovirus-1 (RCEV-1, MN412742). (B) SL3 of citrus vein enation virus (CVEV, NC_021564).

Covariations in the SL3 stem that maintain pairing are boxed. (C) Compensatory mutations introduced into SL3, with

substitutions depicted in red. (D) Results of in vitro translation reactions for the sg mRNAs shown in panel C. Averaged Rel.

RT levels (±SE) calculated from three independent trials are shown below each lane. (E) Proposed RNA secondary structure

when the red and orange long-distance interactions between the PRTE and DRTE occur. The linker sequence between red and

blue helices is highlighted in pink, with corresponding substitutions in mutant sg mRNAs circled and indicated in red. (F)

Results of in vitro translation reactions for mutant sg mRNAs shown in panel E. Averaged Rel. RT levels (±SE) calculated from

three independent trials are shown below each lane.

https://doi.org/10.1371/journal.ppat.1010888.g005

PLOS PATHOGENS Translational readthrough signals in PEMV-1 and PLRV

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010888 September 29, 2022 9 / 25

https://doi.org/10.1371/journal.ppat.1010888.g005
https://doi.org/10.1371/journal.ppat.1010888


(Fig 5E). The location of this small linker sequence between two functionally important struc-

tures suggested that it too could be important for readthrough. Consequently, two separate

single nucleotide substitutions were introduced into the intervening pink sequence (Fig 5E).

Results from translational assays revealed that both substitutions had notable detrimental

effects on relative readthrough levels (Fig 5F), confirming an important role for the pink linker

sequence.

A third long-distance RNA-RNA interaction is required for readthrough

Like the orange and red sequences in the PRTE, we reasoned that the pink sequence (Fig 6A,

top left) could also function by pairing with a complementary sequence. Potential base-pairing

partner sequences for the PRTE’s pink segment were initially sought close to the red and

orange sequences in the DRTE. Although complementary sequences were identified nearby,

none proved to be functionally relevant. A continued search ultimately identified a partially

complementary 5 nt long sequence (pink) located some 170 nucleotides upstream from the

orange segment in the DRTE (Fig 6A, bottom right). Compensatory mutagenesis of two dif-

ferent base pairs followed by translational analyses revealed a critical role for the pink

PRTE-DRTE long-distance interaction in facilitating optimal CP readthrough (Fig 6B–6E). As

with the orange interaction (Fig 4), the inability to recover full activity with restored pink pair-

ing may be related to concurrent destabilization of the stem of SL2 and reduced presentation

of the red CCCC (Fig 6A). Notably, although the 5 nt long pink sequence is located 170 nucle-

otides upstream from the orange and red in the DRTE, the intervening 170 nucleotides are

predicted, in the context of the full-length wt sg mRNA (Fig 1C), to fold into a small RNA

domain, herein termed the pink-orange intervening (POI) domain (Fig 6A, grey shading).

Formation of the POI domain would colocalize the red, orange, and pink sub-elements of the

DRTE (Fig 6A, bottom right), thereby facilitating their simultaneous interaction with their

corresponding localized partner sequences in the PRTE. Collectively, the results show that

optimal PEMV1 CP stop codon readthrough depends on three long-distance RNA-RNA inter-

actions (red, orange, and pink) and a local stem-loop structure, SL3 (blue).

Role of DRTE’s SL4 and a potential fourth long-distance interaction

Simultaneous base pairing between complementary red, orange, and pink sequences would

collectively lead to the assembly of an extended quasi-continuous helix (Fig 7A), with the 170

nt long POI domain and a larger 482 nt long domain extending from the helical intersections.

The junctions of the adjacent helices are likely stabilized via coaxial stacking, which for the

blue-pink and pink-red helical joints could involve non-canonical base pairs forming above

(AG, CA) and below (CC) the pink helix (Fig 7A). In this structure, SL4’s stem could, as

shown, remain paired while its loop interacts with its red partner sequence in the PRTE (Fig

7A). However, an alternative long-distance interaction (green) was noted in which the 50-por-

tion of SL4’s stem could base-pair with a 6 nt complementary sequence immediately down-

stream from the CP stop codon (Fig 7A, green). Thus, the stem sequence in SL4 could first

function locally in the DRTE to present the GGGG (red) sequence and subsequently partici-

pate in a fourth PRTE/DRTE (green) interaction. SL4’s role in presenting GGGG (red) is

strongly supported by comparative structural analysis among enamoviruses, which revealed

covariation within the stem (alfalfa enamovirus-2, AEV-2; bird’s-foot trefoil enamovirus,

BFTV-2; and red clover enamovirus-1, RCEV-1) and alternative SL4 folds (Bean enamovirus-

1, BEnV-1 and citrus vein enation virus, CVEV) (Fig 7B). Additionally, the analysis of PEMV1

sg mRNAs with compensatory mutations in the stem of SL4 (Fig 7C, right) confirmed the

importance of pairing in its stem (Fig 7D, boxed lanes).
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Comparative structural analysis of the potential long-distance green interaction revealed

that for most enamoviruses (except CVEV) the green sequence in the PRTE is strictly con-

served, with substitutions in partner green sequences in their DRTEs that generally maintained

complementarity (nucleotides in green), or generated non-canonical GA or AG pairs (nucleo-

tides in red) (Fig 7E). CVEV’s green sequence in its PRTE contains two substitutions (boxed)

compared to that of the other enamoviruses (Fig 7E), and collectively maintains a potential

green interaction that could include GA and AG pairs [36–38]. Accordingly, the structural

Fig 6. Assessing the pink long-distance RNA-RNA interaction. (A) RNA secondary structures of PRTE and DRTE

in PEMV1, including the POI domain (grey shading). The complementary sequences highlighted in pink represent a

third long-distance RNA-RNA interaction between PRTE and DRTE. (B) and (D) Compensatory mutations

introduced in the sg mRNA context to test the pink interaction. Nucleotide substitutions are shown in red. (C) and (E)

In vitro translation analyses of the wt and mutant sg mRNAs shown in panels B and D, respectively. Averaged Rel. RT

levels (±SE) collected from three independent trials are shown below each lane.

https://doi.org/10.1371/journal.ppat.1010888.g006
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Fig 7. Assessing SL4 and a potential fourth PRTE/DRTE interaction. (A) RNA secondary structure model for the

readthrough structure when red, orange, and pink complementary sequences are paired. (B) Conservation of SL4 in DRTEs

among the members of the genus Enamovirus: PEMV1, AEV-2, BFTV-2, RCEV-1, BEnV-1, and CVEV. In the top row, mono-

and co-variations that maintain base pairing of SL4 are shown in green. (C) RNA secondary structures of PRTE and DRTE in

PEMV1, with substitutions targeting the green PRTE sequence and the stem of SL4 boxed and shown in red. Segments in the

putative fourth PRTE/DRTE long-distance interaction are highlighted in green. (D) In vitro translation analyses of the wt and

mutant sg mRNAs. The boxed area represents results from the SL4 stem compensatory mutants shown to the right in panel C.
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comparisons suggest the possibility of a fourth functionally relevant long-distance green

PRTE/DRTE interaction. Indeed, if sterically feasible, the green interaction would extend the

quasi-continuous helix at the base and presumably further enhance the structure’s stability

(Fig 7A). To address this possibility, compensatory mutations were introduced into the green

partner sequences in sg mRNAs and tested in translational assays (Fig 7F and 7G). Disruptive

mutants (sg22 and sg23) notably decreased readthrough, while the restorative mutant (sg24)

caused further reduction (Fig 7G). Moreover, combining the green interaction-restoring

changes in mutant sg24 with an additional substitution (Fig 7C, sg63) that simultaneously

restored pairing in the stem of SL4 (thereby generating sg65) did not lead to recovery of read-

through (Fig 7D). Therefore, nucleotide identity within the PRTE’s green sequence is impor-

tant, but its role may be independent of pairing with the DRTE’s complementary green

sequence. Accordingly, while our results corroborate an important role for the stem of SL4 in

presenting the red GGGG partner sequence in the DRTE, they do not support, but also do not

conclusively preclude, its involvement in a fourth long-distance green PRTE/DRTE

interaction.

PLRV readthrough signal involves a long-distance RNA-RNA interaction

A previous study identified a PRTE and DRTE in PLRV that were both shown to be essential

for efficient CP-RTD production [13]. Although these sequences exhibited notable comple-

mentarity, efforts to experimentally demonstrate a PRTE/DRTE pairing requirement for read-

through were unsuccessful [13]. Due to PLRV’s close relationship to PEMV1, we sought to

assess the necessity for such pairing and deduce the RNA structure formed. Initially, the sec-

ondary structure of wt PLRV sg mRNA was modeled using the RNAStructure folding program

[34]. Interestingly, within the full-length sg mRNA fold, the previously identified PRTE and

DRTE sequences (orange) were predicted to be paired to each other at the base of a large RNA

domain (Fig 8A). In the prior attempt to generate informative sg mRNA compensatory

mutants, several nucleotides were targeted simultaneously for substitution [13]. We reasoned

that this approach likely hindered important local folding in one or both regions and/or the

modified PRTE or DRTE inadvertently bound to non-cognate partner sequences elsewhere in

the sg mRNA. We therefore designed our compensatory mutations as single nucleotide

changes that would disrupt the bottom of the proposed structure while minimally altering the

partner sequences. This strategy would both destabilize the overall structure and alter the func-

tionally important distance between the UAG and the base of the readthrough-promoting

structure (Fig 8B and 8C). Also, contrary to prior reports [13,39], we were able to detect syn-

thesis of a PLRV CP-RTD product using wge assays, as confirmed by its level increasing upon

knockout of the CP stop codon in sg mRNA mutant PLns (Fig 8D). Using the wge system to

test wt and mutant PLRV sg mRNAs, we observed that both sets of compensatory mutants

yielded results consistent with base pairing of the orange sequences in the PRTE and DRTE

being required for optimal CP-RTD production (Fig 8E and 8F). These results demonstrate

that the previously proposed long-distance interaction in PLRV [13] is indeed essential for

optimal readthrough of its CP stop codon.

Averaged Rel. RT levels (±SE) collected from three independent trials are shown below each lane. (E) Conservation of the green

pairing between the PRTE and DRTE among enamoviruses. The green PRTE sequence is 100% conserved (except for CVEV),

while complementary green DRTE sequences have variations that maintain (green) or potentially destabilize (red) the base-

pairing of the green partner sequences. (F) Compensatory mutations introduced in PEMV1 sg mRNA that target the long-

distance PRTE/DRTE green base-pairing interaction. (G) In vitro translation analyses of the wt and mutant sg mRNAs shown

in panel F. Averaged Rel. RT levels (±SE) collected from three independent trials are shown below each lane.

https://doi.org/10.1371/journal.ppat.1010888.g007
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Discussion

Survival of PEMV1 and PLRV depends on aphid-mediated host-to-host transmission, which

is conferred by their CP-RTD minor capsid proteins generated via programmed ribosome

readthrough [40]. In this study we performed a detailed investigation of the regulation of

CP-RTD production in PEMV1 and developed an elaborate multi-helix model for the read-

through structure. In contrast, our assessment of the PLRV readthrough signal indicated a

simple single-helix RNA structure. Below, different readthrough structures are discussed, the

PEMV1 and PLRV readthrough structures are compared, and hypothetical models for the

assembly of PEMV1 and PLRV readthrough signals are proposed.

Long-distance readthrough structures in other viruses

Programmed stop codon readthrough is commonly used by RNA viruses to produce their

RdRps or minor CPs [1]. In some cases, readthrough stimulating signals are localized immedi-

ately downstream from corresponding stop codons. Murine leukemia retrovirus relies on a

compact RNA pseudoknot structure situated 8-nt downstream from its gag stop codon for pol

translation [41], while in tobacco mosaic virus a 6 nt-long linear sequence directly after the

stop codon promotes readthrough production of its RdRp [9]. In other viruses, bipartite read-

through signals, separated by intervening sequences, are employed. For example, alphaviruses

Fig 8. Assessing the PRTE/DRTE interaction in PLRV. (A) RNA secondary structure model for a central region of the PLRV sg mRNA based

on RNAStructure [34] and rendered using RNA2Drawer [57]. In the structure, small black circles represent nucleotides, with those

corresponding to the PLRV CP UAG stop codon shown in red. Highlighted in orange are the PRTE and DRTE sequences previously proposed

to base-pair and regulate CP readthrough in PLRV [13]. (B) and (C) Compensatory mutations introduced in PLRV sg mRNA that target the

orange PRTE/DRTE base-pairing interaction, and mutant PLns, in which the CP stop codon was inactivated. (D), (E) and (F) In vitro

translation analyses of the wt and mutant PLRV sg mRNAs shown in panels B and C. Averaged Rel. RT levels (±SE) collected from three

independent trials are shown below each lane.

https://doi.org/10.1371/journal.ppat.1010888.g008
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utilize a simple helical readthrough structure, similar to that in PLRV (Fig 9A), for production

of their RdRps [5]. However, although comparable with respect to their basic stem structures,

the intervening sequences in alphaviruses are considerably shorter than that in PLRV (i.e.

~100–150 nt versus ~670 nt, respectively).

Arguably the best studied viruses employing long-distance interactions for readthrough are

genera in the family Tombusviridae (Tombusvirus, Betanecrovirus and alphacarmovirus), all

of which use long-distance RNA-RNA base pairing (spanning kilobases) to mediate read-

through expression of their RdRps [6–8]. In contrast to readthrough in the sg mRNAs in

PEMV1 and PLRV, readthrough in tombusvirids occurs in the full-length viral genomes, and

with corresponding DRTEs located in their genomic 30UTRs. This placement coincides with

genomic replication elements, allowing for potential crosstalk between the two processes. For

instance, the DRTE of the tombusvirus carnation Italian ringspot virus is integrated with a

genome replication element in the genomic 30UTR and, importantly, the functional structures

of the DRTE and replication element are mutually-exclusive RNA conformations. This

Fig 9. Comparison of PLRV and PEMV1 readthrough structures. (A) Predicted readthrough structure of PLRV

showing the key orange PRTE/DRTE interaction. (B) Proposed readthrough structure for PEMV1, including local and

long-distance interactions. (C) Predicted local RNA secondary structures for PRTE and DRTE [13] regions in PLRV.

Nucleotides shown in red were targeted for compensatory mutational analysis in Fig 8.

https://doi.org/10.1371/journal.ppat.1010888.g009
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overlapping arrangement acts as an RNA switch that dictates whether genomic minus-strand

synthesis or translational readthrough proceeds, thereby coordinating these two opposing pro-

cesses [6]. In contrast, the DRTEs for PEMV1 and PLRV are positioned centrally in the coding

regions of their RTDs (Fig 1B). Thus, although possible, the remote locations of these DRTEs

are likely not related to regulation of other sg mRNA processes. Instead, their positions are

more likely the consequence of random but productive (for readthrough) initial long-distance

interactions, which were maintained and further optimized.

The PRTEs of some tombusvirids can assume alternate structures or have flexible adjacent

structures important for readthrough efficiency. The PRTE of the alphacarmovirus turnip

crinkle virus can adopt two alternative structures, one which is nonfunctional and the other

that is functional [8]. In tobacco necrosis betanecrovirus, a downstream PRTE-adjacent struc-

ture that influences readthrough efficiency has both active and inactive conformations [42].

Alternative RNA conformations such as these provide additional avenues for regulating read-

through, and illustrate the importance of considering local context and structural flexibility

when investigating regulatory RNA elements. Indeed, as alluded to earlier (Fig 2A), alternative

local conformations are also likely relevant in PEMV1’s PRTE.

For both betanecroviruses and tombusviruses, in addition to their PRTE/DRTE interac-

tions, efficient RdRp readthrough expression requires an extra long-distance RNA-RNA inter-

action, termed the upstream linker/downstream linker (UL/DL) interaction [6,43], which is

also essential for viral genome replication [44]. Accordingly, these viruses employ two distinct

long-distance interactions for readthrough, one involved in forming the readthrough structure

(PRTE/DRTE) and another that serves an essential accessory role (UL/DL). Since the UL/DL

interactions reside within the ~3 kb intervening sequence between the PRTE and DRTE part-

ner sequences, it was proposed that they likely function to help unite the PRTE and DRTE

[6,43]. In this regard, the possibility of intervening sequence assisting in the formation of the

PRTE/DRTE interaction in PLRV is discussed in the next section.

The PEMV1 readthrough structure versus PLRV’s

Enamovirus, Luteovirus, and Polerovirus genera are related based on amino acid conservation

of their CP and CP-RTD [32,45]. Members of these genera are also predicted to contain bipar-

tite readthrough regulatory signals separated by ~600 to ~800 nt [12,13]. Notably, they all have

the same relative positioning of their PRTEs and DRTEs in the CP-RTD coding region [13].

This suggests that CP/CP-RTD coding and associated readthrough signal were adopted by an

enamo/polerovirus common ancestor prior to its divergence into two distinct genera, while a

recombination event introduced the 30-proximal structural gene cassette into luteoviruses,

which contain tombus-like polymerases [46–48]. Despite their distinct evolutionary histories,

these genera have maintained commonalities in their strategies for mediating readthrough.

Of the three genera, poleroviruses and enamoviruses are most similar [16]. Yet a compari-

son of the prototype species, PLRV and PEMV1, revealed clear differences in their approach to

inducing readthrough (Fig 9A and 9B). PLRV’s CP ORF and those of all known poleroviruses

terminate with an UAG stop codon, while PEMV1 and all known enamoviruses (except for

CVEV) use UGA. Proteomic analysis of PLRV’s CP-RTD revealed that the UAG is decoded

~89% of the time by tRNAGln [13]. The tRNA responsible for decoding PEMV1’s UGA is cur-

rently unknown. Corresponding PRTEs and DRTEs in PLRV and PEMV do not share any

noteworthy sequence identity (Fig 9A and 9B). Dissimilarity also extends to the predicted

local RNA secondary structures at these two locations. For PLRV, prior solution structure

probing and mutational analyses [13] determined that the orange DRTE sequence involved in

forming the readthrough structure resides in a local stem-loop structure, with most of the
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orange nucleotides paired (Fig 9C, right). The local structure in the PRTE region was not

investigated [13], but thermodynamic predictions suggest that this segment likely includes a

small RNA stem-loop that sequesters most of the PRTE’s orange sequence (Fig 9C, left). Based

on these predictions, the PRTE and DRTE regions do not adopt conformations that would

effectively nucleate PLRV’s orange interaction. This suggests that PLRV uses a different strat-

egy for uniting these sequences, and secondary structure predictions of the full-length PLRV

sg mRNA indicate that this could be accomplished through global folding, where PRTE and

DRTE form the closing ends of a large RNA domain (Fig 8A). That is, the folding of subdo-

mains within the large domain would act to bring the partner sequences together. In contrast,

folding predictions for PEMV1 sg mRNA indicate that the PRTE and DRTE are located in dif-

ferent RNA domains (Fig 1C), thus a unification mechanism akin to that suggested for PLRV

would be less likely. Accordingly, the differences in sequence and predicted RNA structures

for PLRV and PEMV1 indicate that the former likely mediates formation of its readthrough

structure primarily through the folding of an independent RNA domain, while the latter initi-

ates readthrough structure formation by stochastic nucleation of key partner sequences (i.e.

red) located in different RNA domains (see next section for details).

The proposed readthrough signal for PLRV, a contiguous helix, is relatively simple (Fig

9A). In comparison, the PEMV1 readthrough structure is considerably more complex, consist-

ing of a quasi-contiguous helix stabilized by coaxial stacking at stem junctions and assembled

via multiple long-distance interactions involving different regions (Fig 9B). Though these

structures differ greatly, they are both able to direct production of the requisite amounts of

CP-RTD. It is intriguing that two closely related viruses have found such radically different

structural solutions for readthrough. These differences are presumably the consequence of

repeated sequential sampling of distinct structural variants, resulting in maintenance of those

that adequately addressed functional requirements. The net result being that these viruses have

evolved via divergent pathways to give rise to secondary structures of vastly contrasting com-

plexity. Considering these extreme examples, and the predicted variability of PRTE/DRTE

interactions [13], we anticipate the existence of a range of readthrough structures with differ-

ent levels of complexity within the expansive and diverse polerovirus and luteovirus genera

[49].

An assembly model for PEMV1 readthrough structure

SHAPE data indicated that the default structure of the PRTE is comprised of SL1 and SL3 (Fig

2A, left). Importantly, although the orange sequence is predicted by SHAPE to be single

stranded in the loop of SL1 (Fig 2A), its orange partner sequence in the DRTE is predicted to

be paired (i.e. low SHAPE reactivity) and thus unavailable for pairing (Fig 2B). The latter

interpretation is supported by the prediction that, in the context of the full-length sg mRNA,

the orange sequence in the DRTE is paired with the DRTE’s pink sequence (Fig 6A, bottom

right). Accordingly, SL1 would be limited in its ability to nucleate the PRTE/DRTE interaction

via an orange pairing interaction. In the alternative PRTE fold where SL2 forms and presents

the red sequence in its loop, the pink and orange sequences are paired in its stem (Fig 6A, top

left) and thus would not be available for long-distance base-pairing with partner sequences in

the DRTE; which are also predicted to be paired and unavailable (Fig 6A, bottom right). Con-

sequently, the predicted local structural contexts in the alternatively-folded PRTE and the

DRTE would favor the red CCCC/GGGG kissing-loop interaction, and concurrently impede

the orange and pink interactions (Fig 6A).

Based on our experimental results, we propose a theoretical model for the assembly of the

PEMV1 readthrough structure (Fig 10). In the PRTE, the red CCCC sequence in SL1 is
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initially paired in the stem of SL1 and is not available for pairing with its available red GGGG

partner sequence in SL4 in the DRTE (Fig 10A). However, the unfolding of SL1 by the helicase

activity of terminating ribosomes [50] would facilitate a SL1 to SL2 conversion (Fig 10A).

Refolding of the PRTE sequence into the alternative CCCC-presenting SL2 (Fig 10B, i) would

then allow for a red CCCC/GGGG kissing loop interaction with SL4 in the DRTE (Fig 10B,

ii). In this model, SL1 acts as an attenuator of readthrough structure formation in the absence

of CP translation and presumably contributes to the regulation of readthrough levels. Follow-

ing the red-mediated nucleation of the interaction, additional secondary interactions, such as

the orange (Fig 10C) or the pink would form in turn and lead to the assembly of an active

readthrough structure (Fig 10D).

Not depicted in Fig 10D is the potential formation of an additional interaction involving

the green partner sequences in the PRTE and DRTE. This pairing would extend the helical

region at the base and could help to stabilize the structure via coaxial stacking with the orange

helix (Fig 10D). However, this green interaction would need to be temporary and disengage

during ribosome readthrough, so as to allow for the necessary spacer distance (~7–9 nt)

between the stop codon and the base of the readthrough structure [1]. Either with or without

the involvement of this latter interaction, the active RNA structure, postulated to be that

depicted in Fig 10D, would then be able to efficiently trigger CP stop codon readthrough, pre-

sumably by increasing utilization of near cognate tRNAs or decreasing recruitment of release

factors by an unknown mechanism [1]. Active translation of the RTD coding region would

cause disruption of PRTE/DRTE interactions and their local RNA structures. Accordingly, for

subsequent rounds of readthrough to occur, ribosome-mediated conversion of SL1 to SL2

would again be required to initiate assembly of an active readthrough structure (Fig 10A and

10B). It is also noted that the readthrough structure folding process described could also

involve other protein factors, such as RNA chaperones and/or RNA helicases.

Conclusion

This study has provided the first higher-order RNA models for readthrough structures in the

Enamovirus and Polerovirus genera. Compelling experimental evidence demonstrating the

importance of long-distance RNA-RNA interactions in the formation of these structures was

also presented. Compared to other readthrough structures, the proposed structure for PEMV1

is arguably the most elaborate readthrough signal reported to date, and its suggested folding

pathway, as well as that for PLRV, provide new insights into readthrough structure assembly.

Collectively, these findings significantly advance our understanding of the strategies used by

viruses to mediate the production of essential readthrough proteins.

Materials and methods

cDNA preparation

Standard PCR-based site-directed mutagenesis was utilized for introducing nucleotide substi-

tutions in different parts of full-length PEMV1 genome (gene bank: NC_003629.1) and

Fig 10. Model for assembly of the PEMV1 readthrough structure. (A) Default structures for PRTE and DRTE. The

helicase activity of a terminating ribosome extends over SL1 and unfolds it. (B) (i) The sequence refolds into an

alternative conformation that includes SL2. (ii) SL2 pairs with SL4 via a red sequence kissing-loop interaction and

nucleates the assembly process. (C) Other key interactions then form, such as pairing of the orange partner sequences.

(D) Addition of the pink interaction generates an extended helical structure, stabilized by coaxial stacking at stem

junctions, that promotes efficient readthrough production of CP-RTD. A potential fourth green PRTE/DRTE

interaction may also occur (not depicted), which would extend the quasi-continuous helix to the stop codon. See text

for details.

https://doi.org/10.1371/journal.ppat.1010888.g010
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PEMV1 sg mRNA. Cloned cDNA of the full-length PEMV1 genome [32,45] (Kindly provided

by W. Allen Miller, Iowa State University) was used to create genomic mutants, as well as wt

PEMV1 sg mRNA and its mutant derivatives. All viral mutants utilized in this study were

sequenced to confirm that only the intended modifications were present.

Full-length PEMV1 genome construct gHA, contained three tandem HA-tag sequences

(UACCCAUACGAUGUUCCAGAUUACGCU) introduced at the N-terminal region of CP

ORF (genome coordinates 4015–4095, immediately downstream from the first 6 codons of

CP). gHA was then utilized as a backbone to insert PRTE-DRTE compensatory nucleotide

substitutions, thereby creating gHA7, gHA8 and gHA9.

Mutants constructed to investigate CP-RTD production from the PLRV sg mRNA [51]

were derived from PLRV genome cDNA (gene bank: KP090166.1) that was kindly provided

by Michelle Heck (Cornell University).

Synthesis of viral RNAs in vitro

All of the PEMV1 genome and sg mRNA constructs investigated in this study contained a T7

promoter at the 50-end of the viral sequence and a unique PstI restriction enzyme cut site at its

30-end. PstI-linearized wt and mutant clones were treated with T4 DNA polymerase (NEB) to

remove the 30-overhang left after PstI cleavage and then were transcribed in vitro using Ampli-

Cap-Max T7 High Yield Message Maker Kit (Cellscript) to create 50-capped sg RNAs and Mes-

sageMax T7 ARCA-Capped Message Transcription Kit (Cellscript) to create 50-capped

genomic RNAs, both with authentic viral 30 ends.

The PLRV sg mRNA constructs utilized in this study contained a T7 promoter at the 50-end

of the viral sequence and a unique 30-terminal ScaI restriction enzyme cut site. ScaI-linearized

wt and mutant cDNAs were transcribed in vitro using AmpliCap-Max T7 High Yield Message

Maker Kit (Cellscript) to create 50-capped sg mRNAs with authentic viral 30 ends.

In vitro translation assays

To test readthrough levels of CP-RTD, 0.5 pmol of 50-capped transcripts of wt or mutant

PEMV1 sg mRNAs (sub-saturating levels) were incubated in wheat germ extract (wge, Pro-

mega) in the presence of [35S]-Methionine at 25˚C for 1 hr according to the manufacturer’s

instructions, except that the concentration of KOAc was increased to 133 mM for each reac-

tion to optimize translation and readthrough efficiency. The viral proteins translated during

the incubation were detected and quantified through 12% SDS-PAGE and phosphorimaging,

respectively [52,53]. Imaging was carried out using Typhoon FLA 9500 Variable Mode Imager

(GE Healthcare). QuantityOne software (BioRad) was used to quantify protein bands, from

which ratios of the readthrough product CP-RTD and the pre-readthrough product CP were

calculated for each tested mRNA. Percentages of the mutant ratios relative to the wt ratio were

determined and used as relative readthrough levels (Rel. RT). Three independent repeats were

carried out for each of the in vitro translation experiment and means with standard errors (SE)

were calculated.

The same steps were followed as above for obtaining readthrough levels of CP-RTD from

PLRV sg mRNAs in vitro, except that 0.4 pmol of 50-capped transcripts (sub-saturating levels)

was used per in vitro translation reaction.

Pea protoplast transfection

Pea protoplasts were isolated from 12-day old, fully expanded Pisum sativum leaves by first

removing the lower epidermis and then incubating the remaining tissue in a cellulase mixture

at 26˚C for 4 hours [54,55]. Two million protoplasts were transfected with 20 μg of 50-capped
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PEMV1 transcripts using polyethylene glycol (PEG 1450) and CaCl2 and incubated at 22˚C for

40 hours under constant fluorescent light [55]. After the incubation, one half of the infection

was used for total protein isolation and western blotting and the other half for total nucleic

acid extraction and Northern blotting.

Western blotting

Total proteins were separated by 12% SDS-PAGE and transferred to membrane (Amersham

Hybond P 0.45 PVDF). Ponceau S staining was carried out for visualizing total proteins and

confirming equal loading and transfer prior to proceeding with blotting. HA-tagged CP and

CP-RTD were detected by blotting with Anti-HA-peroxidase high affinity (3F10) rat monoclo-

nal antibodies (Roche) at 1:2000 dilution. CP and CP-RTD bands were detected using ECL

Select western blotting detection reagent (GE Healthcare) and captured through MicroChemi

imager (DNR Bio-Imaging Systems). Detected viral protein bands were quantified using

QuantityOne software. Three independent repeats of pea protoplast infections/western blot-

ting were carried out and means with SE were calculated. Rel. RT levels were calculated as

described for in vitro translation assays.

Northern blotting

Total nucleic acids were extracted from infected protoplasts, separated by agarose gel electro-

phoresis, and transferred to nylon membrane (Hybond-N+, Amersham), after ensuring even

loading via monitoring rRNA levels. Coding sense PEMV1 genome and sg mRNA were

detected by blotting with nine oligonucleotide probes 50-end-labeled with [γ -32P] complemen-

tary to both the genome and sg mRNA (genome coordinates: 4004–4031, 4324–4359, 4401–

4434, 4681–4708, 4749–4780, 4936–4968, 5122–5389, 5406–5439, 5679–5703). Northern blots,

from three independent repeats, were captured using Typhoon FLA 9500 Variable Mode

Imager and viral RNA bands were quantified using QuantityOne software. Sg mRNA levels of

each mutant PEMV1 were calculated to generate average values with SE.

SHAPE RNA structure analysis

Selective 20-hydroxyl acylation analyzed by primer extension (SHAPE) was performed and the

data was used to model the RNA secondary structures of PRTE and DRTE regions in full-

length PEMV1 sg mRNA, as described previously [33,6,53]. SHAPE was carried out using

1-methyl-7-nitroisatoic anhydride (1M7) that modifies flexible (i.e. single stranded) nucleo-

tides. Two primers, fluorescently labeled at their 50-ends, one complementary to a region

downstream from the PRTE (genome coordinates– 4828–4857) and the other to a region

downstream from DRTE (genome coordinates –5504–5533), were used for primer extension

reactions following 1M7 treatment of wt PEMV1 sg mRNA. After fluorescent capillary electro-

phoresis of the products of primer extension, the raw data was analyzed using the ShapeFinder
software [56] to generate relative reactivities for each nucleotide. These reactivity values were

normalized against the ten highest reactivities in the pool. The SHAPE experiment was per-

formed twice, with consistent results, and averaged values of the two repeats were used for sec-

ondary structure prediction. The RNAStructure web server was used [34] to combine SHAPE

reactivity data (slope = 1.8 kcal/mol; intercept = -0.6 kcal/mol) with thermodynamic predic-

tion to generate secondary structure models of PEMV1 PRTE and DRTE in the sg mRNA con-

text. RNA2Drawer software was utilized to draw RNA secondary structure models depicted

throughout the paper [57].
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