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Abstract——A reliable translation of in vitro and pre-
clinical data on drug absorption, distribution, metabo-
lism, and excretion (ADME) to humans is important for
safe and effective drug development. Precision medicine
that is expected to provide the right clinical dose for the

right patient at the right time requires a comprehensive
understanding of population factors affecting drug dispo-
sition and response. Characterization of drug-metaboliz-
ing enzymes and transporters for the protein abundance
and their interindividual aswell as differential tissue and
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cross-species variabilities is important for translational
ADME and precision medicine. This review first provides
a brief overview of quantitative proteomics principles in-
cluding liquid chromatography–tandem mass spectrome-
try tools, data acquisition approaches, proteomics sample
preparation techniques, and quality controls for ensuring
rigor and reproducibility in protein quantification data.
Then, potential applications of quantitative proteomics in
the translation of in vitro and preclinical data as well as
prediction of interindividual variability are discussed in
detail with tabulated examples. The applications of quan-
titative proteomics data in physiologically based pharma-
cokinetic modeling for ADME prediction are discussed
with representative case examples. Finally, various con-
siderations for reliable quantitative proteomics analysis

for translational ADME and precision medicine and the
future directions are discussed.

Significance Statement——Quantitative proteomics
analysis of drug-metabolizing enzymes and trans-
porters in humans and preclinical species provides
key physiological information that assists in the
translation of in vitro and preclinical data to humans.
This review provides the principles and applications
of quantitative proteomics in characterizing in vitro,
ex vivo, and preclinical models for translational
research and interindividual variability prediction.
Integration of these data into physiologically based
pharmacokinetic modeling is proving to be critical
for safe, effective, timely, and cost-effective drug
development.

I. Introduction

Drug development is a resource-intensive process that
relies on a wide range of in vitro, preclinical, and clinical
experiments, costing approximately 1.5 billion dollars
over a period of 10–12 years. A poor translation of
in vitro and preclinical data to humans and high interin-
dividual variability in drug disposition and response
pose significant challenges in drug development. Trans-
lational absorption, distribution, metabolism, and excre-
tion (ADME) encompasses quantitative understanding
and integration of in vitro, preclinical, and exploratory
human drug disposition data to predict the right dose
for the right patient at the right time toward precision
medicine. Because drug disposition and response can be
affected by genetic and nongenetic factors, precision
medicine is considered a promising approach for safe
and effective drug development and pharmacotherapy.
Although physiologically based pharmacokinetic

(PBPK) modeling is emerging as a promising ap-
proach for predicting drug disposition using in vitro
data, it requires a myriad of physiological data in-
cluding protein abundance of drug-metabolizing en-
zymes and transporter (DMET) proteins in the
in vitro models and tissues as well as their interindi-
vidual variability and differential tissue abundance.
In vitro data are often generated using recombinant
systems (e.g., Supersomes), cell lines or vesicles over-
expressing transporters, and human-derived models

(e.g., microsomes or cultured hepatocytes). However,
these models differ in the protein abundance of
DMET proteins from the corresponding human tis-
sues (Xu et al., 2018). Similarly, a quantitative under-
standing of interspecies differences in DMET abundance
is required for a reliable allometry scaling of drug disposi-
tion and tissue distribution data from preclinical models
to humans, especially for interpreting drug toxicity data.
For example, SGX-523, an investigational mesenchymal-
epithelial transition factor inhibitor, was discontinued af-
ter the phase 1 clinical trials due to nephrotoxicity, which
was not captured during the animal toxicity studies.
SGX-523 is primarily metabolized by aldehyde oxidase
(AO) in the human liver; however, human-specific AO
isoform is poorly expressed in preclinical species, particu-
larly in rats and dogs (Diamond et al., 2010; Basit et al.,
2021). Similarly, the renal abundance of organic anion
transporter 2 (OAT2) is >5-fold higher in mice as com-
pared with humans and monkeys (Basit et al., 2019).
Such species differences in DMET abundance often lead
to discordance between preclinical and clinical data.
Quantitative proteomics has emerged as a crucial

technique in the translational ADME and precision
medicine. Typically, quantitative proteomics involves
selective quantification of the proteotypic peptide(s)
unique to the protein(s) of interest by liquid chroma-
tography–mass spectrometry (LC-MS/MS), without
the need for an antibody, thus making it a superior
technique over conventional methods such as western

ABBREVIATIONS: ADME, absorption, distribution, metabolism, and excretion; AO, aldehyde oxidase; AQUA, absolute quantification;
AUC, area under the plasma concentration-time curve; BCRP, breast cancer resistance protein; BSEP, bile salt export pump; CES, carboxy-
lesterases; CKD, chronic kidney disease; CLint, intrinsic clearance; CNV, copy number variation; DDA, data-dependent acquisition; DDI,
drug-drug interaction; DIA, data-independent acquisition; DMET, drug-metabolizing enzymes and transporter; ER, estrogen receptor;
EV, extracellular vesicle; fm, fractional contribution of an enzyme in drug metabolism; ft, fractional contribution of a transporter in drug
transport; IT, ion trap; iTRAQ, isobaric tags for relative and absolute quantification; IVIVE, in vitro to in vivo extrapolation; Km, substrate
affinity; LC-MS/MS, liquid chromatography–mass spectrometry; m/z, mass-to-charge; MPPGL, milligram of protein per gram of liver tis-
sue; MPS, microphysiological systems; MRM, multiple reaction monitoring; OAT2, organic anion transporter 2; OCT1, organic cation trans-
porter 1; PBPK, physiologically based pharmacokinetic; PCA, principal component analysis; P-gp, P-glycoprotein; PK, pharmacokinetics;
PQC, positive quality control; PRM, parallel reaction monitoring; PSAQ, protein standards for absolute quantification; PTM, posttransla-
tional modification; Q, quadruple; QconCAT, quantitative concatemers; RAF, relative activity factor; REF, relative expression factor; SIL,
stable isotope-labeled; SNP, single nucleotide polymorphism; SWATH, sequential windowed acquisition of all theoretical fragment ions;
TMT, tandem mass tags; TOF, time-of-flight; TPA, total protein approach; UGT2B7, UDP-glucuronosyltransferase 2B7; Vmax, velocity
maximum.
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blotting. The technique has been applied for charac-
terizing DMET abundance for the assessment of
(1) interindividual variability, i.e., the effect of age,
genotype and sex, (2) differential tissue variability, (3)
interspecies differences, and (4) the viability of
in vitro models as illustrated with examples in Tables
1–5. Together, these data are important for in vitro to
in vivo extrapolation (IVIVE) and PBPK modeling.
For example, morphine and zidovudine pharmacoki-
netics (PK) and clearance were predicted in the neo-
natal population using ontogeny data of UDP-
glucuronosyltransferase 2B7 (UGT2B7) and organic
cation transporter 1 (OCT1) in pediatric and adult hu-
man liver samples (Emoto et al., 2017; Emoto et al.,
2018; Bhatt et al., 2019). Similarly, the effect of dis-
ease states and genetic variations on drug PK and
clearance have been successfully predicted by inte-
grating quantitative proteomics data in PBPK model-
ing (Emoto et al., 2017; Bhatt et al., 2019; Vildhede
et al., 2020). Moreover, quantitative proteomics data
have also been shown to predict the fractional contri-
bution of individual enzymes (fm) and transporters (ft)
in drug disposition and drug-drug interaction (DDI)
(Jamei et al., 2014; Li et al., 2019a; Anoshchenko
et al., 2020; Kimoto et al., 2020). Similarly, the tech-
nique has been used for the selective quantification of
biomarkers for monitoring drug response and disease
diagnosis (Heo et al., 2007; Warth et al., 2012; Basit
et al., 2020) and for identifying nonsynonymous single
nucleotide polymorphism (SNPs) and post-transla-
tional modification (PTMs) (Shi et al., 2018b). Fur-
ther, the selectivity of quantitative proteomics results
in high signal-to-noise ratio for a sensitive determina-
tion of DMET abundance in a small sample volume
(e.g., 24-hepatocytes on-column, and 10 ng microsom-
al protein on-column) (Ahire et al., 2021).
Here, we provide a summary of various MS techniques,

acquisition methods, and sample preparation approaches
used in quantitative proteomics, with a detailed compila-
tion of the reported applications of the technique in the
in vitro model characterization, IVIVE, interindividual
variability, intertissue differences, interspecies variability,
PBPK modeling, and drug response prediction. Various
considerations and recommendations for a robust quanti-
tative DMET proteomics analysis, including the future di-
rections, are also discussed.

II. Quantitative Proteomics: Basic Principles

Quantitative proteomics has emerged as a major ap-
proach for protein quantification due to the significant
developments in both LC-MS hardware and software.
The technique is primarily based on the bottom-up or
shotgun proteomics that relies on the analysis of di-
gested proteins by a protease enzyme(s) (e.g., trypsin,
trypsin plus Lys-C, chymotrypsin, or proteinase C) in bi-
ologic samples. Due to the limitations of the spectral

counting method of protein quantification (Lundgren
et al., 2010), chemical and metabolic labeling approaches
were developed in the late 1990s for relative and abso-
lute protein quantification (Fig. 1A). The labeling techni-
ques include isotope-coded affinity tag (Gygi et al.,
1999), stable isotope labeling by amino acids in cell cul-
ture (SILAC) (Ong et al., 2002), tandem mass tags
(TMT) (Thompson et al., 2003), and isobaric tags for rel-
ative and absolute quantification (iTRAQ) (Wiese et al.,
2007). The labeling methods provided advantages of
greater accuracy and precision but suffer from limita-
tions of multistep sample preparation, higher cost, and
higher sample requirement. Recent approaches like
absolute quantification (AQUA) or multiple reaction
monitoring (MRM) (Gerber et al., 2003), quantitative
concatemers (QconCAT) (Beynon et al., 2005; Carroll
et al., 2011), protein standards for absolute quantifi-
cation (PSAQ) (Kaiser et al., 2011), and stable isotope
labeling and capture by anti-peptide antibodies (SISCAPA)
address some of these limitations (Beynon et al.,
2005).

A. Liquid Chromatography–Mass Spectrometry
Techniques and Data Acquisition Approaches

The LC separates analytes based on lipophilicity, and
the MS measures the mass-to-charge (m/z) ratio of ions
in the gas phase. In the MS, an ion source first ionizes
analytes in the gas phase, ions are separated in a mass
analyzer(s) based on the m/z ratio, and the product ion
intensity is recorded by a detector. The breakthrough of
electrospray ionization in the 1990s solved the problem
of ion generation from large and nonvolatile analytes
(e.g., proteins and peptides), making it suitable for liquid
chromatography. Atmospheric pressure chemical ioniza-
tion has also been used in the proteomics study, especial-
ly for analysis of smaller peptides, albeit to a lesser
extent than electrospray ionization. Atmospheric pres-
sure chemical ionization is a softer ionization technique
in which the ionization of analytes is performed by pro-
ton transfer at atmospheric pressure outside of the vacu-
um chamber in the MS (Doerge et al., 1996; Toribio
et al., 2000).
Typical mass analyzers used in proteomics are,

(1) quadrupole (Q), (2) ion trap (IT), (3) time-of-flight
(TOF), (4) orbitrap, and (5) Fourier-transform ion cyclo-
tron resonance. Although the analyzers can be used
standalone, hybrid instruments are designed to combine
the unique capabilities of mass analyzers for greater ana-
lytical performance (Supplemental Table 1). The hybrid
MS analyzers include triple quadrupole, hybrid quadru-
pole ITs (Q-q–linear IT or Q-trap), Q-TOF, TOF-TOF,
LTQ orbitrap, and LTQ Fourier-transform ion cyclotron
resonance.
MS-based data acquisition falls under two major

categories: targeted (hypothesis-driven) and untar-
geted (hypothesis-generating) approaches (Fig. 1B).
The selection of the MS acquisition approach depends
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on the experimental goals, such as the need for prote-
ome coverage versus sensitivity and precision (Elias
et al., 2005; Pino et al., 2020). For example, a selected
list of DMET proteins can be quantified by the tar-
geted approaches such as MRM or parallel reaction
monitoring (PRM) for sensitive and precise quantifi-
cation. On the other hand, the untargeted acquisi-
tion approaches [e.g., data-dependent acquisition
(DDA) and data-independent acquisition (DIA)] are
employed for achieving a dynamic peptide coverage.
DDA method acquires MS ions based on their inten-
sities in each sample (e.g., top 10), whereas DIA ac-
quires all theoretical ions irrespective of their
intensities for deeper proteome coverage that is pos-
sible with higher data acquisition speed. In general,
targeted proteomics methods are more sensitive and
precise for a small number of proteins, whereas un-
targeted proteomics is superior for obtaining prote-
ome-wide coverage and simultaneous quantification
of a large number of proteins, thus providing infor-
mation at biologic pathway levels. A detailed com-
parison of different protein acquisition approaches

and conventional immunoquantification is provided
in Supplemental Table 2 and summarized below.

1. Targeted Proteomics. MRM is the most popular
technique for DMET proteomics analysis, in which pro-
teotypic or surrogate peptide(s) unique to the target
protein is quantified (Fig. 1C) (Wolf-Yadlin et al., 2007;
Kamiie et al., 2008). MRM is performed on a triple
quadrupole or Q-trap mass spectrometers, where the
first quadrupole is set to allow only a selected m/z ratio
of a precursor ion into the second quadrupole. The MS
fragmentation of the selected ion by collision-induced
dissociation in the second quadruple yields characteristic
product ions. The product ions are filtered in the third
quadrupole and detected by a MS detector (e.g., photo-
multiplier tube). Generally, the top 3 high intensity
product ions are monitored for a reliable peptide quanti-
fication (Lange et al., 2008; Vidova and Spacil, 2017).
Although MRM-based proteomics is selective and pre-
cise, it can only quantify a limited number of product
ions (10–100) concurrently. Scheduled or dynamic MRM
partially addresses this problem by analyzing target ions
in a prefixed elution time window, thus allowing analysis

TABLE 1
Successful examples of applications of quantitative proteomics for characterization of in vitro ADME models

Organ Study Objective Target DMET Protein Quantified Reference

Liver Effect of pregnancy related hormones on protein
abundance of UGTs in primary human hepatocytes

UGTA1 and UGT2B7 Khatri et al., 2021

Hepatocyte model selection to predict the uptake and
biliary efflux of drugs in suspended, plated, and
sandwich-cultured human hepatocytes

OATP1B1, NTCP, MRP3, and BSEP Kumar et al., 2019

Characterization of HepG2 3D spheroid model for
hepatotoxicity

CYPs, UGTs, GSTs, MRP1, and MRP4 Hurrell et al., 2019

Comparison of protein abundance between human
liver microsomes and hepatic cell lines (e.g., HepG2,
Hep3B, and Huh7)

CYPs, UGTs, SULTs, AKRs, GSTs,
ALDHs, ADHs, AO, CESs, PONs, and
EPXs

Shi et al., 2018a

Comparative proteomics analysis of HLM and HLS9
fractions for in vitro drug metabolism studies

CYPs, UGTs, SULTs, AKRs, GSTs,
ALDHs, ADHs, AO, CESs, PONs, and
EPXs

Wang et al., 2020

Effect of pregnancy-related hormones and induction
of CYP3A activity over the course of pregnancy in
HepaRG and SCHHs cells

CYP3A Zhang et al., 2015b

Test primary hepatocytes as a suitable model for
hepatic drug metabolism study

CYPs, UGTs, MDR1, MRPs, BCRP, NCP,
OCTs, OATPs, CNTa, ENT1, and ATE1

Schaefer et al., 2012

Interindividual variability in DMEs in HLMs CYPs and UGTs Ohtsuki et al., 2012
Compare protein abundance between hepatic cell

lines (HepG2, Hep3B, and Huh7)
CYPs, UGTs, and ALDHs Shi et al., 2018a

Intestine Drug metabolizing capabilities of human primary
intestinal monolayers

CYP3A4, UGT1A1, UGT1A10, UGT2B17,
and CES2

Speer et al., 2019

Effect of culture duration on transporter abundance
in Caco-2 cells

MDR1, BCRP, PEPT1, OSTa and OSTb,
MRP2, MRP4, OATP2B1 and MCT1

Uchida et al., 2015

Regional DMEs protein changes along the line of the
small intestine using cryopreserved human
intestinal mucosa (CHIM) model

UGTs, CESs, and SULTs Zhang et al., 2020a

Brain Determine the protein abundance of transporters and
receptors in human brain microvessels

BCRP and P-gp Uchida et al., 2011

Protein abundance of key membrane proteins in
hCMEC/D3 cells and human brain microvessels

ABCA2, MDR1, MRP4, BCRP, GLUT1,
4F2hc, MCT1, and ENT1

Ohtsuki et al., 2013

Identify DMET protein expression in brain
microvascular endothelial cells

GLUT1, EAAT1, EAAT2, BCRP, MDR1,
CYP1B1, CYP2U1, GSTP1, COMT,
GSTM3, GSTO1, and GSTM2

Shawahna et al., 2011

Quantification of brain transporter abundance in
brain microvascular endothelial cells

BCRP, P-gp, OATP2B1, ENT1, and
GLUT1

Billington et al., 2019

Skin Characterization of in vitro models of human skin CYPs, ADHs, ALDHs, AKRs, AO, CESs,
EPHx, and PONs

Couto et al., 2021

Eye (retina) Transporter protein abundance in the plasma
membranes of the human retinal pigment
epithelium cells and immortalized arpe19 cell line)

MRP1, MRP5, GLUT1, 4F2hc, TAUT,
CAT1, LAT1, MPR7, OAT2, MCT1,
MCT4, MRP4, RFC1, and MATE1

Pelkonen et al., 2017
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TABLE 2
Successful examples of the application of quantitative proteomics for the characterization of interindividual variability in DMET abundance

Enzyme/Transporter Fold Change Reference

Effect of age (liver): fold change (relative to infants)

CYP1A2 >2-fold (adults); >1- to 2-fold (juveniles) Sadler et al., 2016
CYP2A6 >2-fold (adults)
CYP2B6 >2-fold (juveniles)
CYP3A5 >2-fold (juveniles, adults)
UGT1A1 >1- to 2-fold (adults)

Bhatt et al., 2019UGT1A4 >2-fold (children, adolescents, adults)
UGT1A6 >2-fold (children, adolescents, adults)
UGT1A9 >2-fold (adults)
UGT2B7 >2-fold (adolescents, adults)
UGT2B15 >2-fold (adults)
UGT2B17 >2-fold (children, adolescents, adults); Bhatt et al., 2018
ALDH1A1 >1- to 2-fold (children, adolescents) Bhatt et al., 2017
ADH1B >2-fold (children); >1- to 2-fold (adolescents, adults)
ADH1C >2-fold (children, adolescents, adults)

CES1 >2-fold (adults); >1- to 2-fold (children, adolescents) Boberg et al., 2017

FMO3 >1- to 2-fold (children, adult) Zane et al., 2018
SULT1A1 >1- to 2-fold (children) Ladumor et al., 2019a
SULT1A2 >1– to 2-fold (adolescents, adults) Dubaisi et al., 2019
SULT1B1 >2-fold (infants, children, adolescents, adults) Ladumor et al., 2019a)

OCT1 >1- to 2-fold (adolescents, adults) Prasad et al., 2016; van Groen et al., 2018

OATP1B3 >1- to 2-fold (children, adolescents, adults) Prasad et al., 2016; van Groen et al., 2018
P-gp >1- to 2-fold (adolescents, adults) Prasad et al., 2016; van Groen et al., 2018

MRP3 >1- to 2-fold (adult) Prasad et al., 2016; van Groen et al., 2018

Effect of age (kidney): fold change (relative to infants)

P-gp >1- to 2-fold (children, adults) Cheung et al., 2019
URAT1 >2-fold (children)
OAT1 >1- to 2-fold (children, adults)
OAT3 >1- to 2-fold (children, adolescents, adults)
OCT2 >1- to 2-fold (children)

Effect of genotype: fold change (relative to the corresponding reference allele)

BCRP <0.5-fold (rs2231142 (C421A)) Prasad et al., 2013
MRP2 >1- to 2-fold (SNP 21214G>A (V417I) Deo et al., 2012
OATP1B1 >2-fold (SNP c.463C>A); >1- to 2-fold (388 A>G,

c.597C>T)
Prasad et al., 2014

CYP2A6
>1- to 2-fold (*1/*4, " *1/*9); <1–0.5-fold (*1/*17, *1/*2) Tanner et al., 2017; Tanner et al., 2018

FMO3 >1- to 2-fold (E158K:G308G) Xu et al., 2017

UGT2B17
>1- to 2-fold (*1/*2); < 0.5-fold (*2/*2) Gaedigk et al., 2018

Effect of sex: fold change (male versus female adults)

BCRP >1- to 2-fold Prasad et al., 2013
UGT2B17 >2-fold Tanner et al., 2017
CYP2A6 <1- to 2-fold
FMO3 >1- to 2-fold Xu et al., 2017

Effect of disease condition: fold change (relative to healthy adults)

Alcoholic liver disease (CPS A) >2-fold (P-gp); < 0.5-fold (BSEP, MRP2, OAT2,
OATP1B1, OATP2B1)

Wang et al., 2016; Drozdzik et al., 2020

Alcoholic liver disease (CPS B) >2-fold (P-gp); <0.5-fold (BSEP, MRP2, NTCP, OCT1,
OCT3, OAT2, OATP1B1, OATP1B3, OATP2B1)

Drozdzik et al., 2020

Alcoholic liver disease (CPS C) >2-fold (P-gp, MRP3, BCRP, OCT3); <0.5-fold (MRP2,
NTCP, OAT2, OATP1B1, OATP2B1)

Drozdzik et al., 2020

Nonalcoholic fatty liver disease <0.5-fold (CYP3A4) Ali et al., 2017
Nonalcoholic steatohepatitis >2-fold (OATP1B1, MRP4); <0.5-fold (NTCP,

OATP1B3)
HCV >2-fold (MRP3, MRP4, P-gp); <0.5-fold (CYP3A4,

CYP2C9, CYP2E1, CYP1A2, CYP2A6, CYP2C8,
UGT1A4, UGT1A6, UGT2B7, UGT2B15, CES1,
ADH1B, ADH1C)

Wang et al., 2016

HCV (CPS A) >2-fold (P-gp); <0.5-fold (BSEP, MRP1, MRP2, BCRP,
NTCP, OCT1, OCT3, OATP1B1, OATP2B1)

Drozdzik et al., 2020

HCV (CPS B) >2-fold (P-gp, MRP1); <0.5-fold (BSEP, MRP2, OCT1,
OCT3, OATP1B3, OATP2B1)

HCV (CPS C) >2-fold (P-gp, MRP3); <0.5-fold (BSEP, MRP1, NTCP,
OCT1, OCT3, OATP1B3, OATP2B1)

Primary biliary cirrhosis; PSC (CPS A)

(continued)
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of >300 transitions per 30 minutes (Carr et al., 2014;
Ronsein et al., 2015). PRM or MRM high resolution pro-
vides a more advanced alternative due to its ability to
quantify all fragment ions from a single or multiple pre-
cursor ions simultaneously (Fig. 2) (Peterson et al.,
2012). PRM offers advantages such as the ability to
quantify 100s–1000s of proteins, higher specificity, and
high-throughput quantification (Peterson et al., 2012;
Kim et al., 2016) without the need for additional method
development and optimization efforts (Rauniyar, 2015).
Skyline (Genome Sciences, University of Washington, Se-
attle, WA) is currently the most used open-access soft-
ware for targeted proteomics method development and
analysis.
Proteotypic or surrogate peptide selection is the first

step in both MRM and PRM (Kamiie et al., 2008). Brief-
ly, the proteotypic peptides should be unique, have an
optimum length of 7–22 amino acids, should be devoid
of transmembrane region, and should not be prone to
PTM or change by a SNP site. Ideally, unstable amino
acid residues (e.g., C, M, W), ragged ends (RR, KK, RK,
and KR), or potential missed cleavage sites are avoided.
The peptide should also have an optimum hydrophobicity
(�30% hydrophobic residues) to be retained on a chro-
matographic column (Fig. 2). In MRM, a synthetic sta-
ble isotope-labeled (SIL) or heavy peptide with 13C
and/or 15N-labeling at the carboxyl-terminal of lysine
or arginine residues are used as internal standards to
normalize the matrix effect (MS ion suppression) and
other postdigestion variables (Lange et al., 2008).
Alternatively, an external multipoint calibration curve
of a standard light peptide can be used for absolute
peptide quantification, especially when the linearity is
warranted over a large dynamic range.

2. Untargeted Proteomics. Untargeted proteomics
is a hypothesis-independent approach that utilizes
high-resolution MS data in conjunction with bioinfor-
matics tools such as MaxQuant (Max Planck Institute
of Biochemistry, Germany) for unbiased system-wide
proteome identification and quantification (100s–1000s
of proteins). Untargeted proteomics data are acquired
using one of the two techniques, i.e., DDA and DIA. In
DDA, full-scan mass spectrum determines the number
of peptides present in a sample, and the most abundant

precursor ions (e.g., Top 10) are selected and frag-
mented in the second stage. Although DDA is selective
for high-intensity peptides, it is not efficient in the
quantification of low-abundant proteins (Meyer, 2019;
Smith et al., 2019; Tiwary et al., 2019). Further, each
peptide species in DDA is purposefully detected only a
few times, resulting in limited precision. On the other
hand, DIA is a more advanced approach that allows for
the detection of all theoretical masses in the preselected
m/z windows, which are fragmented and analyzed to re-
cord all theoretical second stage scans (Reubsaet et al.,
2019). DIA generally involves one of the two ap-
proaches: sequential windowed acquisition of all theo-
retical fragment ions (SWATH) and collision energy
alteration (LC-MSE). In SWATH, the full mass range is
divided into several smaller m/z windows, and all pre-
cursor ions in a preselected m/z isolation window are
fragmented (Ludwig et al., 2018; Smith et al., 2019).
During each cycle time (2–4 seconds), the precursor
ions are selected and fragmented multiple times, pro-
viding time-resolved product ions of all eluted precursor
ions. In MSE, the precursor and product ions are ana-
lyzed at low- and high-collision energy scans, and the
precursor ions are fragmented within a selected m/z
range. DDA and DIA data are generally analyzed using
open-access software, e.g., MaxQuant and OpenSWATH.

B. Protein Quantification Approaches

Protein quantification can be achieved utilizing ei-
ther labeled-based or label-free approaches. The first
approach is based on chemical or metabolic labeling
for a sensitive and reproducible relative or absolute
quantification. For example, in stable isotope labeling
by amino acids in cell culture, the heavy amino acids
(lysine, arginine, or both) are introduced into the pro-
teins in the cell culture for one condition (e.g., test),
whereas the cells are grown in regular media for an-
other condition (control). The harvested cells are
mixed and homogenized before digestion (Ong et al.,
2002). The light to heavy peptide signal ratio provides
an estimate of quantitative changes in test versus
control. Isotope-coded affinity tag utilizes chemical la-
beling of cysteine residues (Gygi et al., 1999), whereas
in iTRAQ and TMT, the digested peptides are labeled

TABLE 2—Continued

Enzyme/Transporter Fold Change Reference

>2-fold (P-gp, BSEP, MRP3, OCT3, OATP1B3); <0.5-
fold (MRP2)

PSC (CPS B) >2-fold (P-gp, MRP3, OCT3); <0.5-fold (MRP2,
OATP1B3)

Autoimmune hepatitis (AIH) (CPS A) >2-fold (P-gp, MRP3, BCRP, OCT3); <0.5-fold (MRP1,
MRP2)

AIH (CPS B) >2-fold (P-gp, MRP3, BCRP, OCT3); <0.5-fold (MRP2)

AIH (CPS C)
>2-fold (P-gp, MRP3, OCT3); <0.5-fold (MRP2, NTCP,

OCT1, OATP1B1)
Ulcerative colitis <0.5-fold (MCT1) Erdmann et al., 2019
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TABLE 3
Common single nucleotide polymorphism in DMET proteins that affect their activity or abundance

Protein

Nucleotide Change; Allele;
Amino Acid Change (rs

Number) MAF (Caucasians, %) Activity (Abundance) Clinical Application References

CYP1A1 3801 T>C; *2A; I462V
(rs4646903)

19 Increased (unknown) Predictor for clinical
outcome in liver
cancer patients
treated with EGFR-
TKI therapy

Zhou et al., 2009

CYP1A2 �163C>A; *1F; NA
(rs762551)

33.3 Increased (increased) Associated with the risk
for colorectal
adenomas in humans

Sachse et al., 2003;
Moonen et al., 2005;
Pilgrim et al., 2012

�246T>delT; *1D; NA 4.82 Decreased (decreased) Higher olanzapine
plasma concentration

Sachse et al., 2003; Uslu
et al., 2010; Czerwensky
et al., 2015

CYP2C9 430 C>T; *2; R144C
(rs1799853)

19.0% *1/*2 1.6% *2/
*2 1.8% *2/*3

Decreased (unknown) Poor warfarin
metabolism

Aithal et al., 1999;
Hillman et al., 2004;
Lindh et al., 2009

1075A>C; *3; I359L
(rs1057910)

9 Decreased (unknown) Decrease metabolism of
phenytoin compared
with reference
genotype

Scordo et al., 2001; van
der Weide et al., 2001;
Rosemary et al., 2006

CYP2C19 681G>A; *2; splicing
variant I331V
(rs4244285)

16 Decreased (unknown) In Asians with ulcer
treatment of
Helicobacter pylori
infection with
omeprazole varying
treatment
effectiveness

Aynacioglu et al., 1999

�806C>T and
-3402C>T; *17; I331V

(rs12248560)

18 Increased (increased) Increase clinical
response to
clopidogrel treatment
by better antiplatelet
activity and higher
risk of bleeding

Sibbing et al., 2010;
Santos et al., 2011

CYP2D6 1749A>G, 2549delA; *3;
frameshift mutation,

N166D; 259 (rs1135824)

2.04 Decreased (decreased) Decreased metabolism of
risperidone

Sachse et al., 1997

1846G>A; *4; P34S;
L91M; H94R; Splicing

variant; S486T
(rs3892097)

20.7 Decreased (decreased) Poor metabolism of
tricyclic
antidepressants may
lead to increased
toxicity in Caucasians

Sachse et al., 1997; Bijl
et al., 2008

100C>T; 1039C>T;
1661G>C; 1846G>A;
4180G>C; *4D; P34S;
Splicing variant; S486T

(NA)

3.4 Decreased (decreased) Shimada et al., 2001

100C>T; 997C>G;
1661G>C; 1846G>A;
4180G>C; *4L; P34S;
Splicing variant; S486T

(NA)

4.5 Decreased (decreased) Shimada et al., 2001

whole gene deletion; *5;
CYP2D6 deleted (NA)

4.1 Deletion (deleted) Require dose adjustment
of CYP2D6 substrates

Griese et al., 1998

1707delT; *6; frameshift
mutation, 118F
(rs5030655)

1.3 Nonfunctional
(decreased)

Person may experience
haloperidol-induced
extrapyramidal side
effects

Griese et al., 1998; �Simi�c
et al., 2016)

2935A>C; *7; H324
(rs5030867)

1 Decreased (unknown) Evert et al., 1997

2615-2617delAAG; *9;
K281del (rs5030656)

2 Decreased (unknown) Griese et al., 1998

100C>T; *10; P34S;
S486T (rs1065852)

8 Decreased (unknown) Griese et al., 1998;
Raimundo et al., 2004

2988G>A; *41; R296C;
Splicing variant; S486T

(rs28371725)

8 Decreased (decreased) Raimundo et al., 2004

CYP2A6 NA; *12; substitutions
10aa (esv2663194)

2.9 Decreased (unknown) Haberl et al., 2005

NA; *1B; NA;NA 32.6 Increased (unknown) Faster nicotine
metabolism

Mwenifumbo et al., 2008;
Djordjevic et al., 2013

1799 T>A; *2; L160
(rs1801272)

2.3 Decreased (unknown) Shifting of coumarin
metabolism from 7-
OH coumarin to 2-
hydroxyphenylacetic
acid

Hadidi et al., 1997;
Ingelman-Sundberg,
2001

(continued)
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TABLE 3—Continued

Protein

Nucleotide Change; Allele;
Amino Acid Change (rs

Number) MAF (Caucasians, %) Activity (Abundance) Clinical Application References

NA; *4; deletion Deletion (deleted) Impairment of nicotine
metabolism

Ingelman-Sundberg, 2001

�48 T>G; *9; TATA
box (rs28399433)

7.1 Decreased (decreased) Schoedel et al., 2004

CYP3A4 566T>C; *17; F189S
(rs4987161)

Decreased (unknown) Decreased metabolism of
nifedipine

Dai et al., 2001

NA; *1B; NA
(rs2740574)

17 Increased (unknown) Higher docetaxel
metabolism

Kadlubar et al., 2003;
Tran et al., 2006

664T>C; *2; S222P
(rs5585340)

2.7 Decreased (unknown) Sata et al., 2000

CYP3A5 6986A>G; *3C; Splicing
defect (rs776746)

81.3 Decreased (decreased) Prognosis of non–small
cell lung cancer
patients undergoing
chemotherapy and
surgery

Quaranta et al., 2006;
Jiang et al., 2016

6981A>G, 29748T>C;
*3k / *10; Splicing

defect; F446S
(rs41279854)

2.0 Decreased (decreased) Lee et al., 2003

CYP2B6 64C>T; *2; R22C;
rs8192709

5.3 Increased (unknown) Hiratsuka et al., 2002;
Honda et al., 2011

1459C>T; *5; R487C
(rs3211371)

14.0 Decreased (unknown) Decreased S-
mephenytoin N-
demethylase activity

Lang et al., 2001

785A>G; *4; K262R
(rs4802101)

5.0 Increased (unknown) Lang et al., 2001;
Kirchheiner et al., 2003

516G>T, 785A>G; *6;
Q172H; K262R

(rs3745274, rs2279343)

25.2 Decreased (unknown) Lang et al., 2001;
Kirchheiner et al., 2003

�1456T>C, -750T>C,
.785A>G, 1459C>T; *7;
Q172H; K262R; R487C
(rs3745274, rs2279343,

rs3211371)

Decreased (unknown) Decreased S-
mephenytoin N-
demethylase activity

Hiratsuka et al., 2002;
Lamba et al., 2003

Gene deletion, *2; NA
(rs10025771)

Decreased (decreased) Bhatt et al., 2018

UGT2B17 �155G>A,840A>T,
788G>T, 2603T>G; H2/
H2; NA (rs7436962,

rs9996186, rs4860305,
and rs28374627)

22 Increased Bhatt et al., 2018

UGT1A1 NA; *28; TATA box
(rs8175347)

26–31 Decreased (decreased)
Decreased
glucuronidation of
bilirubin to about 30%
of wild-type levels,
adverse
reactions to irinotecan
treatment

Bosma et al., 1995;
Marques and Ikediobi,
2010

SULT2A1 187G>C, 679A>G,
781G>A; NA; A63P,
K227D and A261T

(rs6639786, rs2270112,
and rs17268988)

Decreased (NA) Decreased metabolism of
tibolone

Thomae et al., 2002;
Miller et al., 2018;
Wong et al., 2018

GSTP1 313A>G; NA; I105V
(rs1695)

0.08–0.33 Decreased (unknown) Alters the
pharmacokinetics of
cyclophosphamide

Sharma et al., 2014

UGT2B7 802C>T; *2; H268Y
(rs7439366)

50 Decreased (NA) Higher exposure of
epirubicin

Bhasker et al., 2000;
Parmar et al., 2011;
Uchaipichat et al., 2013

UGT2B15 253G>T; *2; D85Y (NA) 50 Decreased (NA) Interindividual
variability in the
clearance of oxazepam
and lorazepam

BCRP 421C>A; NA; Q41K
(rs2231342)

4.5–12 Decreased (decreased) AUC of sulfasalazine,
simvastatin, and
rosuvastatin >2-fold
higher in comparison
with reference allele

Prasad et al., 2013;
Tanaka et al., 2015

(continued)
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by chemical tags at the free amines (Gygi et al., 1999;
Thompson et al., 2003). The labeled samples are
mixed for multiplexed analysis by targeted or untar-
geted proteomics approaches. Because the tags are
isobaric in iTRAQ and TMT, no mass shift is detected
in the labeled peptides in the full parent ion scan,
and the signals from a single peptide from all samples
are summed, whereas the distribution of isotopes in
the different tags represents the tag-specific “reporter”
ion intensity. The ratio of MS signal intensities from
the tags provides the relative amounts of the peptide
in different samples (Wiese et al., 2007).
Isotope dilution is another approach that utilizes

spiked-in SIL peptide standards (St€ocklin et al., 1997;
Brun et al., 2007). A known and consistent amount of
SIL peptides is spiked into all samples, and the ratio is
monitored to estimate the absolute levels. However,
isotope dilution assay can only be used for a limited
number of proteins because of the cost (Li et al., 2016;
Vildhede et al., 2018; Wi�sniewski et al., 2019). AQUA,
QconCAT, and PSAQ all use the isotope dilution or
spiked-in standards, where AQUA standards consist of
synthetic peptides that are spiked into the sample af-
ter proteolysis (Gerber et al., 2003), QconCAT conca-
temers are chimeric proteins that are composed of
different proteotypic peptides from multiple target pro-
teins (Beynon et al., 2005), and PSAQ standards are
full-length protein(s) that match the biochemical prop-
erties of the target protein(s) and spiked in at the be-
ginning of the analytical process (Kaiser et al., 2011).
The total protein approach (TPA) is an emerging

global quantitative proteomics strategy that utilizes a
computational method to convert spectral intensities
to protein concentrations (Vildhede et al., 2018). First
used in 2012 (Wi�sniewski et al., 2012), TPA has been
applied in protein quantification for a variety of appli-
cations in ADME research (Wi�sniewski and Rakus,
2014; Bryk and Wi�sniewski, 2017; €Olander et al.,

2020). TPA is centered on the quantification of individual
proteins and groups of functionally related proteins in
any protein mixture without the use of spike-in stand-
ards. Thus, TPA protein quantification approach can be
applied to diverse large-scale proteomic data with reason-
able precision. However, TPA is reliant on the depth of
the proteomic analysis, which, in theory, requires com-
plete digestion of all proteins in a sample using more
than one protease to achieve precise protein quantifica-
tion (Wi�sniewski et al., 2019).

C. Proteomics Sample Preparation Approaches

Efficient and reproducible sample preparation is the
key to quantitative proteomic analysis. Although many
sample preparation approaches are used for the repro-
ducible quantification of proteins (Supplemental Table
3), DMET proteins pose unique challenges in the sample
preparation because of the transmembrane nature of
DMET proteins. Quantitative proteomics analysis of
transmembrane proteins is often challenging because
these proteins are coagulated during the protein precipi-
tation step, making them non-accessible to the proteolyt-
ic enzymes. To achieve optimum digestion, membrane
proteins require additional treatments such as mem-
brane solubilization or enrichment using immunopre-
cipitation, centrifugation, or cell surface biotinylation.
Membrane solubilization utilizes MS-compatible deter-
gents, organic solvents, and organic acids (Han et al.,
2001; Blonder et al., 2002) to make them more accessi-
ble for proteolysis. Plasma membrane enrichment by
surface biotinylation and enrichment via streptavidin
beads is another method that reduces the contamina-
tion from other subcellular organelles and enhances the
quantification efficiency (Shin et al., 2003; Zhang et al.,
2003; Zhao et al., 2004; Kumar et al., 2017b). For exam-
ple, the biotinylation approach has been used to enrich
the apical and basolateral membrane transporters of
rat kidney collecting ducts before LC-MS/MS analysis

TABLE 3—Continued

Protein

Nucleotide Change; Allele;
Amino Acid Change (rs

Number) MAF (Caucasians, %) Activity (Abundance) Clinical Application References

OATP2B1 388A>G, 521T>C and
388A>G; c.521T>C,

Asn130Asp; p.Val174Ala;
*1b, *5, and *15; N130D,

V174A, (rs2306283,
rs2306283)

30, 16 and 14 Decreased (NA) Interindividual
variability in statin
therapy

Gao et al., 2017; Mori
et al., 2019

OATP1B1 463C>A; *14; R155C
(rs149535236)

2 Increased (increased) Cerivastatin-induced
rhabdomyolysis

Couvert et al., 2008;
Romaine et al., 2010;
Tamraz et al., 2013

OCT1 181C>T, 1201G>A,
1393G>A, 1257delATG;
*2, *3, *4, *5; R61C,
G401S, G465R and
deletion of M420
(rs12208357,

rs34130495, rs34059508,
rs35167514)

9, 3, 16 Decreased (NA) Impaired metformin
uptake and lower
morphine clearance in
pediatrics

Saadatmand et al., 2012;
Fukuda et al., 2013;
Arimany-Nardi et al.,
2015

OCT2 808G>T; NA; A270S
(rs316019)

NA (NA) Meyer et al., 2017)
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TABLE 5
Interspecies differences in DMET abundance (pmol/mg protein)

Tissue DMET Proteins Human Monkey Dog Rat Mouse References

Liver MDR1/Mdr1a 0.40 ± 0.20 0.46 ± 0.10 0.59 ± 0.11 0.26 ± 0.03 — Wang et al., 2015
0.12 ± 0.01 0.02 ± 0.04 0.01 ± 0 Hammer et al., 2021

MATE1/Mate1 0.48 ± 0.15 — — 0.72 ± 0.15 — Wang et al., 2015
MRP2/Mrp2 1.54 ± 0.64 5.15 ± 1.53 1.93 ± 0.19 7.33 ± 1.16 — Yin et al., 2015

2.84 ± 0.44 Hammer et al., 2021
MRP3/Mrp3 0.51 ± 0.15 0.76 ± 0.21 0.38 ± 0.05 BLQ — Wang et al., 2015

0.08 ± 0.01 0.13 ± 0.06 Hammer et al., 2021
MRP4/Mrp4 BLQ BLQ BLQ BLQ —

Wang et al., 2015OCT1/Oct1 4.45 ± 1.89 18.8 ± 6.8 0.50 ± 0.30 2.14 ± 0.47 —
BSEP/Bsep 2.11 ± 0.50 4.45 ± 1.48 1.87 ± 0.37 2.31 ± 0.45 —

0.23 ± 0.01 1.02 ± 0.16 0.94 ± 0.26 Hammer et al., 2021
NTCP/Ntcp 2.17 ± 0.93 1.90 ± 0.24 — 7.91 ± 1.36 — Wang et al., 2015

0.21 ± 0.03 1.74 ± 0.23 19.21 ± 3.52 Hammer et al., 2021
Oatp1a2 0.70 ± 0.17

Wang et al., 2015Oatp1b4 10.4 ± 2.3
OATP2B1/Oatp2b1 1.7 ± 0.6 0.30 ± 0.10 4.55 ± 2.00
OATP1B1/Oatp1b1 2.0 ± 0.9 12.7 ± 1.4
OATP1B3/Oatp1b3 1.1 ± 0.5 14.4 ± 2.1

Oatp1a1 3.91 ± 0.84
Oatp1a4 5.56 ± 1.40
Oatp1b2 6.43 ± 1.40

CYP1A1/Cyp1a1 0.09 ± 0.01 0.05 ± 0
Hammer et al., 2021CYP1A2/Cyp1a2 5.93 ± 0.45 1.3 ± 0.49

CYP2B6 0.59 ± 0.04
CYP2C8 7.01 ± 0.55
CYP2C9 14.87 ± 0.67
CYP2C19 2.29 ± 0.07
CYP2D6 4.35 ± 0.25
CYP2E1 3.81 ± 0.2
CYP3A4 4.8 ± 0.2
CYP3A5 0.77 ± 0.04
Cyp2b10 0.21 ± 0
Cyp2c29 8.07 ± 0.93
Cyp2c38 0.03 ± 0
Cyp2c39 0 ± 0
Cyp2c55 0.01 ± 0 0.18 ± 0.03
Cyp2d9 18.4 ± 1.8
Cyp2d10 16.7 ± 2.0
Cyp2e1 5.86 ± 0.97 32.8 ± 2.2
Cyp3a25 0.24 ± 0.09
Cyp2b1 0.1 ± 0.03
Cyp2c11 57.8 ± 15.7
Cyp2c12 0.43 ± 0.41
Cyp2c13 2.7 ± 2.7
Cyp2d3 11.1 ± 2.2
Cyp3a9 0.48 ± 0.15
Cyp3a18 1.0 ± 0.4

AO 11.96 17.87 Basit et al., 2021
CES1 569.06 153.55
CES2 64.85 491.69

SULT1A1 5.97 23.01
SULT1B1 0.23 0.31
SULT1E1 1.07 1.60
SULT2A1 18.59 17.63
SULT1A3 1.98
UGT1A1 0.87 0.29
UGT1A3 0.3 0.28
UGT1A6 1.02 5.70
UGT2B4 5.83 32.25
UGT2B7 6.01 20.73
UGT2B15 3.76 7.92
UGT2B17 0.21

Kidney MDR1/Mdr1a 2.11 ± 0.68 1.86 ± 0.34 1.08 ± 0.35 1.13 ± 0.28 0.56 ± 0.21
Basit et al., 2019MATE1/Mate1 5.21 ± 2.11 5.76 ± 1.75 — — —

MRP4/Mrp4 0.91 ± 0.62 2.58 ± 0.74 — 1.09 ± 0.21 0.32 ± 0.14
OAT1/Oat1 5.21 ± 1.82 8.51 ± 1.59 2.37 ± 0.94 8.96 ± 1.97 5.19 ± 3.25
OAT2/Oat2 0.97 ± 0.32 0.96 ± 0.3 — BLQ 4.12 ± 1.37
OAT3/Oat3 3.84 ± 1.3 4.44 ± 1.03 — — —
OAT4/Oat4 0.51 ± 0.23 0.62 ± 0.2 — — —
OCT2/Oct2 8.16 ± 2.34 16.72 ± 4.84 7.32 ± 1.76 14.7 ± 4.88

OCTN1/Octn1 1.32 ± 0.51 0.63 ± 0.3 — — —
OCTN2/Octn2 0.64 ± 0.2 1.55 ± 0.33 0.53 ± 0.18 2.8 ± 0.59 1.48 ± 0.31
SGLT2/sglt2 3.68 ± 1.51 6.39 ± 1.34 11.89 ± 2.87 11.6 ± 2.25 13.66 ± 2.91

AO 1.53 3.10 Basit et al., 2021
CES1 3.65 44.14

(continued)
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(Yu et al., 2006) as well as for the quantification of plas-
ma membrane transporters expressed in CHO and
MDCK cells (Kumar et al., 2017b).

D. Technical Challenges and Quality Controls

Rigor and reproducibility are important attributes
of a quantitative method. The selection of optimum
quality controls provides confidence in the results by
minimizing technical variability in data. Interlabora-
tory variability in protein quantification is common in
the absence of harmonized guidelines for quantitative
proteomics. The factors contributing to the inter- or
within-laboratory variability in protein quantification
typically include the use of different matrices (e.g., ho-
mogenate versus cell fractions), different digestion pro-
tocols [e.g., filter-assisted sample preparation (FASP)
versus immunoenrichment], different measurement
techniques (targeted versus untargeted), variability in
sample extraction efficiency, and inadequately opti-
mized proteotypic peptides. Therefore, the use of inter-
nal and external quality controls (discussed below) is
required for minimizing the technical variability in pro-
tein quantification results.

1. Multiple Proteotypic Peptides and Multiple Product
Ions. The use of multiple proteotypic peptides of a
protein provides confidence in protein quantification by
eliminating bias caused by changes in amino acid due
to SNP, PTM, and peptide stability. A good correlation
between the responses of multiple peptides across sam-
ples can be used to rule out peptide-specific variability.
Similarly, the selection of multiple product ions of a pep-
tide should be measured for reproducible protein quan-
tification. A strong correlation (generally r2 > 0.99)

between the responses of the selected product ions con-
firms the absence of any background interferences.

2. Reanalysis of Incurred Samples. Reanalysis of a
sample with known concentrations of proteins of in-
terest [also referred to as positive quality control (PQC)
sample] assists in evaluating the batch-to-batch vari-
ability. Data normalization by the PQC sample mini-
mizes intra- and interday variations in the sample
preparation and analysis steps. Further, the use of a
universal PQC sample for data normalization can be
implemented to reduce interlaboratory variability.

3. Peptide and Protein Internal Standards. Exter-
nally added SIL peptides as an internal standard ad-
dress the variations due to postdigestion factors such
as the matrix effect, MS instrument sensitivity, reten-
tion time shift, and sample evaporation. Similarly, the
spiking of an exogenously added protein (e.g., bovine
serum albumin) during the digestion can serve as an
internal control for the predigestion, sample process-
ing, and instrumentation variability.

4. Data Normalization by Marker Proteins. Subcel-
lular fractions (e.g., tissue homogenate, S9 fractions,
cytosol, and microsomes) used for in vitro drug metab-
olism and transporter studies are susceptible to inter-
batch or interlaboratory variability, which often leads
to a poor IVIVE. For example, to extrapolate enzyme-
mediated drug clearance from subcellular fraction to
a tissue or organ clearance, universal scaling factors
[e.g., a milligram of protein per gram of liver tissue
(MPPGL)] are required. Identification of marker
(housekeeping) proteins (Supplemental Table 4) can be
used to calculate recovery, enrichment, and purity in
the in vitro preparations (Xu et al., 2018). The marker
proteins can also be utilized for characterizing the

TABLE 5—Continued
Tissue DMET Proteins Human Monkey Dog Rat Mouse References

CES2 35.1 72.48
SULT1A1 BLQ 2.97
SULT1B1 BLQ 0.15
SULT1E1 BLQ 1.05
SULT2A1 BLQ 0.40
SULT1A3 BLQ
UGT1A1 BLQ 0.06
UGT1A3 BLQ 0.04
UGT1A6 0.22 0.41
UGT2B4 BLQ 0.23
UGT2B7 1.74 2.46
UGT2B15 BLQ 1.17

Intestine AO BLQ 1.25 Basit et al., 2021
CES1 3.5 62.37
CES2 224.34 388.08

SULT1A1 3.44 15.18
SULT1B1 1.74 1.25
SULT1E1 1.08 5.29
SULT2A1 4.88 7.56
SULT1A3 6.8
UGT1A1 0.97 4.32
UGT1A3 0.03 4.58
UGT1A6 BLQ 0.88
UGT2B4 BLQ 0.12
UGT2B7 1.88 0.83
UGT2B15 2.23
UGT2B17 1.31
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Fig. 1. Absolute and relative LC-MS/MS–based protein quantification (A) and proteomics data acquisition (B) approaches. (C) Schematic depiction of
various mass-spectrometry data-acquisition approaches for targeted and untargeted proteomics. MRM can be performed using low-resolution MS ana-
lyzers such as triple quadrupole and Q-trap, but PRM, DDA, and DIA require high-resolution MS analyzers such as orbitrap or TOF. AQUA, absolute
quantification.
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in vitro subcellular fraction that is critical for IVIVE.
Similarly, the marker proteins can identify variability
in tissue sampling in heterogeneous tissue, e.g., kidney
(Li et al., 2019b).

5. Identifying Sample Integrity Issues. Tissue sam-
ples are particularly susceptible to quality issues. Prin-
cipal component analysis (PCA) is a dimensionless
method that reduces the complexity of a large number
of variables by transforming them into smaller ones
(principal components, e.g., PC1, PC2, etc.). Since
smaller data sets are easy to visualize and analyze,
the overall variability can be interpreted by machine
learning algorithms in PCA (Rao and Li, 2009). Thus,
PCA can be used not only to interpret data for changes
caused by biological factors but also in identifying poor
quality samples in a big sample cohort (Yan et al.,
2008; Rao and Li, 2009; Bhatt and Prasad, 2018).

III. Applications of Quantitative Proteomics in
Translational Absorption, Distribution,

Metabolism, and Excretion and Precision
Medicine

A. Characterization of In Vitro Models

In vitro models are crucial for ADME screening be-
cause of their ability to recapitulate human mecha-
nisms, generate data in a cost-effective and high-
throughput manner, avoid cross-species differences,
and minimize animal use. Human liver microsomes,
cytosol, hepatocytes, recombinant proteins, and trans-
porter-expressing cell lines or vesicles are commonly
used for in vitro screening of drug metabolism and
transport as well as for predicting in vivo clearance
and DDI potential. However, the in vitro models suf-
fer from several limitations e.g., (1) pooled human mi-
crosomes or cytosol do not represent the population

variability, (2) DMET abundance or activity changes
with cell culture conditions or between lots, and
(3) DMET abundance in recombinant enzyme systems
or transporter-overexpressing cell lines and vesicles is
not similar to corresponding human tissue. To ad-
dress these limitations, quantitative proteomics has
been used to assess the effect of cell culture conditions
on transporter abundance in human hepatocytes in
relation to the freshly isolated or cryopreserved hu-
man hepatocytes (Kumar et al., 2019). Similarly,
quantitative proteomics allows the determination of
the relative expression factor (REF) values between
the recombinant models and human tissue for tissue-
specific extrapolation of the intrinsic clearance data
(Parvez et al., 2021).
Microsomal enrichment and recovery are influenced

by the processing variables such as the choice of homog-
enizer, buffer composition, and centrifugation speed re-
sulting in technical variability in the enzyme abundance
or activity (Xu et al., 2018). Interestingly, the impact of
microsomal or cytosolic processing variables is not
consistent for different enzymes as it depends on the
subcellular localization of proteins. For example, car-
boxylesterases (CESs) are soluble endoplasmic reticu-
lum luminal proteins, which are susceptible to release
into cytosolic fraction during the microsome prepara-
tion. Although microsomal fraction is used for CES ac-
tivity, it does not account for the loss into the cytosolic
fraction during the microsomal preparation. Plasma
membrane isolation for transporter quantification suf-
fers from similar challenges of contamination from
other subcellular organelles (Kumar et al., 2015).
Multiplexed quantification of subcellular markers
(Supplemental Table 4) by quantitative proteomics is
capable of assessing the purity of microsomal, cytosol-
ic, and membrane preparations (Xu et al., 2018).

Fig. 2. Steps involved in proteotypic peptide selection for the targeted quantitative proteomics. First, protein sequence is acquired from databases such
as Uniprot (https://www.uniprot.org/). MRM transitions are predicted using Skyline (https://skyline.ms/project/home/begin.view?). Finally, proteotypic
peptides can be selected based on criteria listed on the top-right corner using a series of software tools such as SRM Atlas (https://db.systemsbiology.net/
sbeams/cgi/PeptideAtlas/GetTransitions), Protein Prospector (https://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=mshomology), sequence-
specific retention calculator (SSRC) (http://hs2.proteome.ca/SSRCalc/SSRCalcx.html), or Protter tool within Skyline. SRM, Selected ReactionMonitoring.
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Overexpressed cell lines (MDCK or LLC-PK1 cells)
are commonly used in vitro models to characterize
transporter substrate or inhibitor potential of new
drugs. However, large interlaboratory differences in
transporter expression across laboratories reduce confi-
dence in translating these data to humans. Quantita-
tive proteomics has been used to delineate differences
between the overexpressed in vitro models and tissue
preparations (Table 1). Breast cancer resistance pro-
tein (BCRP/ABCG2) and bile salt export pump (BSEP/
ABCG11) were quantified in overexpressing insect
membrane vesicles and rat, dog, monkey, and human
liver samples for the extrapolation of PK parameters
of biliary excretion from in vitro models to humans (Li
et al., 2009). Similarly, systemic characterization of
four different P-glycoprotein (P-gp)-overexpressing cell
lines for the abundance resolved IVIVE disconnect in
another study (Li et al., 2021).
Because of the high cost and logistical challenges

of obtaining good quality human tissues and primary
cells, cell lines such as Caco-2, HepG2, HepaRG,
HUH7, and LS180 cells are also used in ADME as-
says. Characterization of the ability of these models
to metabolize or transport drugs, including the effect
of culture conditions on the DMET abundance, is im-
portant for better translation of the in vitro data
(Table 1). Recently, advances in cell culture and mi-
crofluidics techniques have led to the development of
microphysiologic systems (MPS) that are proving to
be promising in drug screening. However, accurate
determination of DMET proteins in MPS models is
essential for the validation of these tools. Proteomic
characterization in MPS models is often challenging
due to low initial cell counts (5000–20 000 cells), es-
pecially using the modest sensitivity of conventional
LC-MS instruments. Advances in LC-MS/MS sensi-
tivity and miniaturized sample preparation are ex-
pected to address this limitation.

B. In Vitro to In Vivo Extrapolation

Although in vitro models play crucial roles in the
early screening of undesirable characteristics of an
NCE, accurate scaling of in vitro data to humans is
critical for safer and cost-effective drug development.
In vitro metabolic or transporter-mediated clearance
data are used to predict in vivo clearance, DDI, as
well as in vivo human PK to estimate the first-in-hu-
man dose. However, the lack of knowledge concerning
physiologic differences, including DMET abundance
between in vitro models and human tissues, often
leads to the poor scaling of in vitro data. The relative
activity factor (RAF) approach (eq. 1) that relies on
differential activity measured using a probe sub-
strate between recombinant system and human tis-
sue is used for IVIVE of drug intrinsic clearance.
However, specific probe substrates are not available
for the majority of DMET proteins. Moreover, this

approach is not viable for transporter assays as the
uptake and efflux activity cannot be measured in tis-
sue samples.

RAFApproach

CLinttissue ¼ CLintrecombinant �
CLintprobe substrate inHLM½ � pmol=min

mg

� �

CLintprobe substrate in recombinant enzyme½ � pmol=min
mg

� �

�MPPGL ðmg=gramÞ � organweight gmð Þ (1)

REFApproach

CLintHLM ¼ CLintrecombinant �
Enzyme abundance HLM½ � pmol

mg

� �

Enzyme abundance recombinant½ � pmol
mg

� �

�MPPGL ðmg=gramÞ � organweight gmð Þ (2)

Proteomics-informed IVIVE utilizing the REF ap-
proach (eq. 2) is an emerging alternative to address the
limitations of the RAF approach. Typically, the enzyme
or transport kinetics data in the recombinant system
provide an estimation of in vitro velocity maximum
(Vmax) and substrate affinity (Km) values to derive in-
trinsic clearance (CLint). Since Vmax is proportional to
the protein expression, and Km is considered constant
between systems (tissue versus in vitro system), the
REF approach can be used to normalize the kinetics
data by protein abundance in tissues to estimate tissue-
intrinsic clearance by individual enzymes (eq. 2). The
DMET abundance–normalized CLint data can be extrap-
olated to organ clearance by multiplying it with two sys-
tems scaling factors, e.g., MPPGL or cytosolic protein
per gram of liver (CPPGL) and organ weight (eqs. 1 and
2). Proteomics-informed scaling of in vitro transport
data from OCT1-transporter–expressing HEK293 cells
and plated human hepatocytes resulted in a reasonable
prediction of in vivo clearance (Sachar et al., 2020). Like-
wise, IVIVE of transporter-mediated renal clearance of
26 OAT substrates by proteomics-based REF approach
was able to predict the renal clearance within 2- to 3-
fold of the observed values (Kumar et al., 2021). Quanti-
tative proteomics data can also be used to predict tissue-
specific toxicity by integrating DMET abundance and
in vitro metabolism and transporter data. For example,
selective intestinal toxicity of SN-38 can be explained
by the higher abundance of CES2 relative to UGT1A1
in the intestine in comparison with the liver (Parvez
et al., 2021). Further, quantitative proteomics analysis
of microbial gut b-glucuronidases showed a good corre-
lation with higher intestinal toxicity of SN38 as the
former facilitates the conversion of SN38-glucuronide
to the toxic SN38 (Parvez et al., 2021). DMET proteins
are expressed in various tissues besides the liver.
Quantification of DMET proteins in different tissues
can be used to determine tissue-specific fm or ft to tease
out the effect of DDIs and pharmacogenetic variability
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on local tissue concentration and toxicity. For example,
MK-7246, a selective CRTH2 prostaglandin 2 antagonist,
was discontinued from clinical development due to high
variability in PK (Wang et al., 2012). Although MK-7246
is metabolized by multiple UGTs in the liver, retrospec-
tive pharmacogenetic data suggested 96% metabolism by
UGT2B17 (fm 5 0.96), which could only be explained by
the high intestinal abundance of UGT2B17 resulting in
the high first-pass metabolism of the investigational
drug (Wang et al., 2012). Similarly, proteomics data were
important for explaining preferential MRP2-mediated
biliary secretion of androgen glucuronides of testosterone
and other androgens. Although vesicle data indicated the
predominant role of sinusoidal MRP3 in the excretion of
androgen glucuronides into the blood, the higher abun-
dance of canalicular MRP2 suggested a preferential elim-
ination of androgen glucuronides into the intestinal
lumen and explained the enterohepatic recycling (Li
et al., 2019a). Quantitative proteomics has also been
used to assess the impact of genetic variability on clinical
outcomes. For instance, the interindividual variability in
the in vitro metabolism of (S)-mephenytoin and clopidog-
rel catalyzed by CYP2C19 in the human liver was suc-
cessfully predicted by the changes in CYP2C19 protein
abundance (Shirasaka et al., 2016).
Primary human hepatocyte culture is considered the

gold standard for the evaluation of enzyme induction po-
tential of new chemical entities, which relies on specific
substrates for the activity assays. However, the selective
probe substrates are often not available, especially for
the highly homologous proteins, such as CYP3A4,
CYP3A5, and CYP3A7. Although mRNA expression
could predict changes in transcription, it often does not
provide quantitative changes in protein abundance.
Quantitative proteomics serves as a better alternative to
determine the enzyme or transporter induction potential
because it offers multiplex protein quantification with
greater throughput, sensitivity, and robustness as com-
pared with the currently recommended methods (mRNA
and activity assay) by the regulatory agencies. Quantita-
tive proteomics was used for the accurate determination
of the induction potential of CYP1A2, CYP2B6,
CYP3A4, and CYP3A5 in human hepatocyte incubations
(Williamson et al., 2011). Similarly, immunoaffinity-
based proteomic approach was used in another study for
the assessment of enzyme induction potential in a small
sample amount (MacLean et al., 2017). Recent data fur-
ther validate the use of quantitative proteomics for as-
sessing the induction of the enzyme protein abundance
in human hepatocytes, which reasonably precited the
in vitro enzyme activity data using probe substrates
(Stresser et al., 2021; Savaryn et al., 2022). Because pro-
tein quantification better reflects the functional activity
as compared with mRNA, multiplexed DMET quantifi-
cation by quantitative proteomics has the potential to

screen the protein induction and suppression potential
during routine early drug discovery stages.

C. Prediction of Interindividual Variability

Drug ADME and response is influenced by several
population factors such as age, sex, genotype, disease
conditions, and other health conditions like pregnan-
cy. However, due to ethical, logistical, and financial
reasons, clinical trials are typically performed on a
limited number of adult subjects. With the emergence
of PBPK modeling, potential interindividual variabili-
ty in drug metabolism and PK can be predicted using
virtual populations as far as the physiologic data like
DMET protein abundance in different populations are
known. Table 2 provides a compilation of the quanti-
tative proteomics studies used for predicting interin-
dividual variability in drug disposition. The principle
of drug clearance translation from healthy adults to a
special population, such as pediatric, depends on the
fact that most of the extrinsic and intrinsic factors
(Fig. 3) affect protein abundance or Vmax without
influencing Km. Therefore, characterization of the in-
fluence of population factors on DMET abundance is
critical information for a successful prediction of the
interindividual variability using PBPK modeling.

1. Effect of Age. It is well recognized that children
are not small adults. Age is associated with multifac-
torial physiological changes, especially during early
life, and the abundance of different DMET proteins
changes with age in a nonmonotonic fashion, result-
ing in variable drug clearance and unpredictable drug
toxicity or efficacy. For example, the underdevelop-
ment of UGT enzymes has been shown to correlate
with the immature glucuronidation activity in neo-
nates and infants, which could lead to toxicity of UGT
substrates when prescribed based on body weight or
body surface area–normalized doses. Chloramphenicol
caused cardiovascular collapse characterized by Gray
baby syndrome in neonates due to the poor glucuroni-
dation capacity of younger children (Mulhall et al.,
1983). Similarly, lower levels of UGTs are associated
with higher exposure of zidovudine in neonates and
infants, leading to hematological toxicity (Capparelli
et al., 2003). Further, age-dependent maturation of
DMET abundance could confound the effect of genetic
variability in the case of highly polymorphic enzymes
or transporters (e.g., CYP2D6, UGT2B17, OATP1B1,
and OCT1). The well-documented adverse effects of
codeine in breastfed infants can be explained by ex-
tensive maternal CYP2D6 activity as well as the low
abundance of the detoxifying enzyme UGT2B7 in in-
fants (Bhatt et al., 2019).
Age-dependent changes in DMET quantitative

proteomics data in the human liver are compiled in
Table 2 and Fig. 4. The developmental patterns of
DMET proteins are generally characterized into
three groups. Some proteins show the highest
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abundance in neonates which decreases with age.
For example, CYP3A7 sharply decreases during the
first year of life and is rarely detected in adults.
Similarly, BCRP is decreased with age in the human
liver, but the change in its abundance remains within
�2-fold between neonates and adults. The second
group of DMET proteins is relatively constant (<1.5-
fold change) throughout the development. Examples of
these proteins include CYP2C9, CYP2E1, CYP3A5,
SULT1A1, SULT2A1, OATP1B1, OATP2B1, NTCP,
BSEP, and MATE1. However, the majority of DMET
proteins belong to the third group, which mature with
age (group 3). The group 3 proteins include CYP1A2,
CYP2A6, CYP2B6, CYP2C8, CYP3A4, UGT1A1,
UGT1A4, UGT1A6, UGT1A9, UGT2B7, UGT2B15,
UGT2B17, ADH1A, ADH1B, and ADH1C and show a
>5-fold difference in the abundance from neonatal
stage to adulthood. These ontogeny data, which are
now routinely derived using quantitative proteomics,
have been integrated into PBPK software such as
Gastroplus and Simcyp for the extrapolation of adult
PK data to children. Since the regulatory agencies
are encouraging clinical trials in children (https://
www.nichd.nih.gov/research/supported/bpca), protein
abundance–informed pediatric PBPK modeling is
important for designing safer clinical studies in
children.

2. Effect of Genetic and Epigenetic Factors. Genetic
polymorphisms in DMET proteins contributes signifi-
cantly to the PK variability of drugs. In general, there
are approximately 14–16 million SNPs that are ob-
served every 300–1000 nucleotides across the human
genome (Roden and George, 2002). The Vmax of me-
tabolism/transporter is affected by a direct effect on
the protein abundance as a result of changes such as a
mutation in transcription factor–binding site or promo-
tor region, insertion of a new stop codon in an exon,
gene deletion, loss of start codon, mRNA splicing, or
protein degradation (Fig. 3), although the nonsyno-
nyms SNPs can also affect Km. The influence of genetic
polymorphism on drug PK may require dosing adjust-
ment for certain individuals, especially for the narrow
therapeutic index drugs (Collins, 1991). For example,
genetic variations in patients have been shown to be
associated with unpredictable toxicity or the lack of ef-
ficacy (Shuldiner et al., 2009; Avivi et al., 2014). Table
2 presents representative examples of clinically rele-
vant SNPs, copy number variation (CNV), and epige-
netic changes that are commonly associated with
population variability in drug PK and/or response.
Genetic polymorphisms that are caused by variations

at a SNP or haplotype in a gene of a DMET protein are
one of the most common causes of interindividual vari-
ability in PK. For example, CYP2D6 exhibits more than

Fig. 3. Effect of internal and extremal factors on CLint of drugs via changes in DMET protein abundance or substrate affinity. Most of these factors affect
the velocity maximum (Vmax) by altering protein abundance (E), whereas substrate affinity (Km) can be affected by changes in amino acid sequences at ac-
tive site by factors such as PTMs or nonsynonymous SNPs affecting active site. Kcat, turnover number; miRNA,microRNA.
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100 genetic variants due to point mutations, duplica-
tions, and insertion or deletion of single or multiple nu-
cleotides. Individuals with different CYP2D6 allelic
variants are classified as poor metabolizers (PMs), inter-
mediate metabolizers (IMs), extensive metabolizers
(EMs), and ultrarapid metabolizers (UMs), correspond-
ing to the extent of involvement of these variants in
drug metabolism (Zhou et al., 2008). For example, ta-
moxifen, a selective estrogen receptor (ER) modulator
used in ER1 breast cancer patients, is extensively me-
tabolized by CYP2D6 to endoxifen (Filipski et al., 2014).
Due to the genetic variability in CYP2D6, ultrarapid
metabolizers experience a higher plasma level of endoxi-
fen than poor metabolizer and intermediate metabolizer
patients and encounter severe hot flashes and a higher
risk of disease relapse (Goetz et al., 2005). In addition,
SNPs in the coding region of an enzyme or transporter
could change the Km without changing the protein
abundance. For example, CYP2D6*17 allele, which car-
ries T107I, R296C, and S486T mutations, leads to a re-
duced function of CYP2D6 by increasing the Km

(decreased affinity) for bufuralol and dextromethorphan
(Marcucci et al., 2002).
CNV is a structural variation in which a section of

the gene is repeated or deleted (�1 kb to 3 Mb).
CNVs are reported for several DMEs such as
CYP2A6, CYP2C19, CYP2D6, CYP3A5, UGT2B17,

GSTM1, GSTT1, and SULT1A1 (M�enard et al., 2009;
Zhou et al., 2010; Santos et al., 2018). Interestingly,
UGT2B17 shows a very high ethnic variability in the fre-
quency of individuals with the gene deletion (*2/*2) (Xue
et al., 2008), i.e., �25% in the African and European pop-
ulations but >70% in the East Asian population (e.g.,
>90% in the Japanese population). Not only CNV, but
several SNPs (rs9996186, rs4860305, and rs28374627)
are also associated with UGT2B17 abundance (Bhatt
et al., 2017). Similarly, the changes in CYP2C19 abun-
dance due to genetic polymorphisms strongly correlated
(r2 5 0.984) with (S)-mephenytoin hydroxylase activity
(Fig. 5A) (Shirasaka et al., 2016). The activity score of
CYP2D6 also showed a reasonable correlation with the
protein abundance (Fig. 5B) (Gaedigk et al., 2018). Sev-
eral other proteins such as OATP1B1, BCRP, MRP2,
and FMO3 show a strong association of genetic poly-
morphism with protein abundance that correlates with
the in vivo activity (Table 3). Like the expression quan-
titative trait loci (eQTLs) for the association of genotype
and transcript levels, the protein abundance quantita-
tive trait loci (pQTLs) can be used as a noninvasive
approach to assess the effect of pharmacogenomic variabil-
ity. The epigenetic modifications such as DNA methyla-
tion, histone modification, and microRNA (miRNA) also
contribute to interindividual variability in drug PK due to
their effects on DMET protein abundance (Kacevska

Fig. 4. Age-dependent changes in the abundance of CYPs (A), UGTs (B), transporters (C), and other non-CYPs (D) in the liver from human donors rep-
resenting neonatal, infants, early-childhood, middle-childhood, adolescents, and adults.
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et al., 2012). For example, miR-491-3p regulates UGT1A3,
UGT1A6, and UGT1A1 expression and alters enzyme ac-
tivity (Dluzen et al., 2014). Thus, integration of quantita-
tive proteomics data into PBPK modeling is an important
noninvasive approach to predict the effect of genetic and
epigenetic variability on drug PK and response, hence
providing a promising approach for precision medicine.

3. Effect of Sex. Sex-dependent changes in DMET
protein abundance can also contribute to variability
in human PK study, drug efficacy, and toxicity.
Erythromycin is primarily metabolized by CYP3A4
in the human liver to N-demethylated metabolite,
which showed 40% more metabolism in women than
men. Other CYP3A4 substrates such as verapamil,
nifedipine, mirtazapine, cyclosporine, and diazepam
also show higher metabolic clearance in women
(Nicolas et al., 2009). Regarding phase 2 metabo-
lism, acetaminophen clearance is 22% higher in
men than women due to the higher glucuronidation
rate (Miners et al., 1983), whereas aspirin exhibits
higher bioavailability in women due to the reduced con-
jugation by glucuronic acid and glycin (Gonz�alez-Correa
et al., 2007). The levels of UGT2B17 in the human liver
quantified by quantitative proteomics showed �3-fold
higher abundance in men (Bhatt et al., 2018). Likewise,
BCRP, CYP2A6, and FMO3 showed �1- to 2-fold higher
abundance in men (Table 2). Although the sex differ-
ences in DMET proteins are small in humans, more
dramatic sex-dependent changes have been reported in
rodents. In particular, quantitative proteomics data re-
vealed the highest sex-dependent changes in kidney
transporters in mice, followed by rats and dogs. Kidney
OAT1 is �3.2- and 1.3-fold higher in male mice and
rats, respectively, whereas OAT2 is 1.6-fold higher in
male mice than in female mice. Mdr1 is 2- and 1.4-fold
higher in the kidneys of female mice and dogs, respec-
tively (Basit et al., 2019). These proteomics data in

preclinical species correlate with the in vivo PK and
toxicity data (Diamond et al., 2010; Lolkema et al.,
2015). Overall, quantitative tissue proteomics data on
sex-dependent differences in DMET proteins in both hu-
man and preclinical species are emerging to fill this
critical knowledge gap.

4. Effect of Disease States. Disease states such as
cirrhosis, chronic kidney disease (CKD), cancers, gas-
trointestinal disorders, autoimmune diseases, and di-
abetes can alter PK by changing blood flow to organs,
plasma protein binding, and apparent volume of dis-
tribution, as well as the protein abundance of DMET
(Sharma et al., 2020). In particular, the changes in
DMET protein abundance can lead to a subtherapeu-
tic response, drug toxicity, DDI, and variable PK pro-
file of drugs. However, it is both ethically and
logistically challenging to measure the impact of a
disease condition on PK/PD and measure such
changes in clinical trials in the disease population.
For example, mild, moderate, and severe hepatic or
renal dysfunction differentially impacts ADME pro-
cesses. Since biobanks of postmortem tissues from de-
identified donors are becoming increasingly available
for research purposes, quantitative proteomics is ex-
pected to find broader applications in characterizing
disease effects on DMET proteins.
Hepatic dysfunction is one of the major diseases in

the United States affecting �2% adult population
(https://www.cdc.gov/nchs/fastats/liver-disease.htm). The
causes of hepatic dysfunction are diverse, including
chronic alcohol abuse, viral/bacterial infection, fatty liv-
er disease, and drug-induced injury. Liver diseases sig-
nificantly affect PK of drugs cleared via hepatic
metabolism, albeit the change in the PK depends upon
disease severity, mechanisms of drug elimination, and
alteration in fm and ft. Understanding the impact of var-
ious liver diseases on DMET abundance is important to

Fig. 5. Activity and protein abundance correlation of CYP2C19 (A) and CYP2D6 (B) in human liver microsomes (HLMs) (Shirasaka et al., 2016; Gae-
digk et al., 2018).
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predict drug disposition in a patient with liver disease.
The quantitative changes in DMET proteins in hepatic
dysfunction are summarized in Table 2. In general, the
abundance of DMEs is decreased in the disease state,
whereas transporter protein abundance is variable (in-
creased or decreased). The Child-Pugh Class C liver
damage is associated with an increase in the expression
of P-gp and MRP4 by >200% and a decrease in MRP2,
NTCP, OCT1, OATP1B1, and OATP2B1 by <25%–46%.
Whereas in the alcoholic liver disease, MRP2, NTCP,
OAT2, OATP1B1, OATP1B3, and OATP2B1 are down-
regulated by 26%–76%. Other hepatic conditions such
as Hepatitis C, primary biliary cholangitis, primary
sclerosing cholangitis, and autoimmune hepatitis are
associated with a reduction in BSEP and OATP2B1 and
increase in P-gp and MRP4 (Drozdzik et al., 2020).
Wang et al. (2016) used a targeted quantitative proteo-
mics approach and observed a reduced transporter pro-
tein expression (except MRP3) in alcoholic cirrhosis
patients. Similarly, the effect of nonalcoholic fatty liver
disease (NAFLD) of DMET protein expression in steato-
sis and nonalcoholic steatohepatitis (NASH) liver condi-
tion revealed the reduced abundance of OATP1B1/1B3/
2B1, OAT2, and NTCP in liver diseases, whereas MRP3
expression was elevated (Vildhede et al., 2020).
CKD is associated with changes in drug PK due to its

effect on glomerular filtration rate, protein binding, wa-
ter loading capacity, and changes in transporter abun-
dance and activity. For example, mirabegron area under
the plasma concentration-time curve (AUC) is increased
by 1.7-fold in renal impairment patients due to the alter-
ation in P-gp abundance (Dickinson et al., 2013). Simi-
larly, pitavastatin (an OATP substrate) showed 1.4-fold
elevated AUC in CKD patients (Morgan et al., 2012).
Thus, CKD not only impacts renal elimination of drugs
but also modulates the nonrenal clearance of drugs. The
impairment of drug metabolism and transport in CKD
is considered to be an effect of alterations in protein
translations and enzyme degradation, reduced hemopro-
tein biosynthesis, cofactor depletion, and competitive in-
hibition of DMEs by circulating uremic constituents
(Elston et al., 1993; Nolin et al., 2008). Tan et al. re-
ported a 60% reduction in OPTP1B activity, which can
modulate the clearance of nonrenally eliminated drugs
such as pitavastatin, repaglinide, etc. (Tan et al., 2019).
However, limited quantitative proteomics data are avail-
able on the effect of CKD on DMET proteins due to the
difficulty in obtaining disease tissue samples for the
study. Relying on clinical studies to monitor these multi-
factorial effects is a resource and cost-demanding effort.
Therefore, quantitative proteomics of tissue samples
coupled with PBPK modeling is being considered as a
promising alternate to clinical studies for predicting dis-
ease effects (Prasad et al., 2018; Ladumor et al., 2019b;
Rowland Yeo et al., 2020; Effinger et al., 2021).

D. Physiologically Based Pharmacokinetic Modeling

The use of PBPK modeling in drug development
and regulatory filing is continuously increasing as ev-
ident by more than a twofold increase since the year
2013 (Perry et al., 2020). Although the concept of
PBPK modeling is not new (Teorell, 1937), there has
been tremendous progress in the application of PBPK
models in the recent past. A reliable prediction of
drug PK using PBPK modeling requires knowledge of
quantitative physiologic data, including DMET abun-
dance. Once validated, these models are considered
promising in drug development, such as for dose opti-
mization and clinical study design (Wang et al., 2019).
Knowledge of the abundance and activity of DMET
proteins in tissues such as the liver, kidney, and intes-
tine is critical for accurate prediction of drug PK in
healthy and special populations, such as patients
with renal or hepatic impairment, children, and preg-
nant women (Al Feteisi et al., 2015; Prasad et al.,
2017). The proteomics information has been integrat-
ed into PBPK modeling (Fig. 6) for predicting drug
disposition in special populations (Table 4).
Pediatric PBPK modeling accounts for 20% of all Food

and Drug Administration submissions (Zhang et al.,
2020b). There are multiple examples of drugs (Table 4)
with successful applications of DMET ontogeny data in
predicting neonatal and infant PK. For example, a pro-
teomics-based PBPK model successfully predicted the
metabolic profile of acetaminophen (a substrate of
UGTs, SULTs, and CYPs) in various age groups from
neonates to adults (Ladumor et al., 2019a). The abun-
dance data of UGT, SULT, and CYP enzymes were in-
corporated into the PBPK model to predict the age-
dependent change in the fraction of acetaminophen me-
tabolized by individual enzymes (fm). Because fm is di-
rectly proportional to the relative enzyme abundance,
the nonmonotonic patterns of enzyme maturation with
age is associated with the metabolic switching, i.e., a
PBPK model predicted acetaminophen fm, ratio values
(i.e., fm,UGT/fm,SULT) of 0.46, 0.56, and 1.71 in neonates,
children, and adults, respectively, which was consistent
with the observed clinical data. A PBPK model was
used to predict morphine PK in newborns (age 0 days)
by using age-dependent changes in the organic cation
transporters OCT1 and UGT2B7 (Balyan et al., 2017;
Bhatt et al., 2019). Similarly, proteomics-based PBPK
modeling has been applied to predict the impact of dis-
ease conditions on hepatic drug clearance of drugs such
as bosentan, olmesartan, repaglinide, zidovudine, mor-
phine, and telmisartan (Li et al., 2015; Prasad et al.,
2018).

E. Characterization of Interspecies Differences in
Drug Metabolism and Transport

Interspecies differences in physiologic parameters
including DMET protein abundance/activity result in
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the poor translation of animal data. For example, bili-
ary excretion of drugs or metabolites varies signifi-
cantly in animals versus humans due to species
differences in hepatic blood flow and bile flow along
with transporter abundance, and it is difficult to pre-
dict drug or metabolites hepatic excretion of drugs
and metabolites (Fallon et al., 2016). For example, an
eightfold higher in vitro bile canalicular clearance of
2,4-dinitrophenyl-S-glutathione was observed in rats
than dogs in hepatocytes (Ishizuka et al., 1999).
Therefore, the characterization of interspecies differ-
ences in drug metabolism and transport is useful in
(1) better translation of preclinical to clinical data,
(2) distinguishing toxicity mechanisms, and (3) avoid-
ing clinically relevant DDIs. Quantitative proteomics
has been used to determine species differences in
DMET proteins for better interpretation and scaling
of animal data (Table 5). For example, the abundant
expression of AO in human and monkey explain high-
er metabolite formation and toxicity in these species
as compared with dogs and rats (Diamond et al.,
2010; Basit et al., 2021). In particular, the ability to
quantify multiple proteins and the high precision of
the quantitative proteomics approach allows for an
accurate determination of interspecies differences in
DMET protein abundance, which can be integrated
into the PBPK model to extrapolate PK parameters in
humans. However, it is important to consider that not
only the abundance of DMET proteins is different be-
tween animals and humans, but the Km can also vary
due to differences in the amino acid sequence at the
active sites. Therefore, when scaling the intrinsic
clearance data from animal to human, both Km and
abundance differences between the species must be
considered as illustrated in eqs. 3–5. Where, Kcat is
the turnover number, i.e. the number of times each

enzyme site converts substrate to product per unit
time and [S] is the substrate concentration.

CLint, animal ¼ Vmax

Km

� �
animal

¼ Enzyme abundancea � Kcat

Km;a
(3)

CLint, human ¼ Vmax

Km

� �
human

¼ Enzyme abundanceh � Kcat

Km;h
AssumeKcat is similar in human and animal

(4)

CLint, human ¼ CLint, animal � Enzyme abundanceh � Km;a

Enzyme abundancea � Km;h
(5)

F. Protein Quantification in Liquid Biopsies and
Extracellular Vesicles

Biofluids such as blood and urine serve as liquid bi-
opsies to characterize interindividual differences and
offer a multitude of safety and logistical advantages
due to the ease of access and the involvement of less
or noninvasive procedures. Biomarker quantification
in biofluids is a fundamental approach in drug discov-
ery and development for monitoring drug effective-
ness, safety, and toxicity. Since most biomarkers are
proteins, quantitative proteomics has emerged as one
of the most powerful techniques for biomarker discov-
ery and quantification. For example, CD14 and a-feto-
protein were identified as potential biomarkers of
hepatocellular carcinoma in high-risk cohort serum
samples using iTRAQ-based quantitative proteomics
(Guo et al., 2017). Similarly, the utility of quantitative
proteomics in the characterization of protein induced
by vitamin K antagonist-II (PIVKA-II) biomarker for
blood clotting factor deficiency, vitamin K–related dis-
orders, and diagnosis and monitoring of hepatocellu-
lar carcinoma (Basit et al., 2020). Further, the
multiplex quantification of protein biomarkers in bio-
fluids can provide information on changes in both indi-
vidual proteins as well as biologic pathways perturbed

Fig. 6. Schematic workflow of proteomics-informed PBPK model development and validation for extrapolation of interindividual variability in DMET
abundance to predict the effect of population variability on drug pharmacokinetics from healthy adult population data. The model structure is based
on a middle-out approach, and the reported clinical PK study data or in-house experimental data can be used as input parameters (i.e., system- and
drug-specific parameters). CL, intrinsic clearance; HA, healthy adults; SP, special populations such as pediatric, pregnant women, geriatric, and pa-
tients with organ dysfunction/disease state.
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by a drug or disease, hence allowing for systems-level
information.
Protein quantification in extracellular vesicles (EVs)

secreted in blood or urine from individual tissues is
emerging as a promising approach in precision medicine.
EVs are small extracellular, nonreplicating nanovesicles
that are considered a rich source of biomarkers. EVs con-
tain a collection of proteins, DNA, mRNA, and lipids de-
rived from the cell of origin. EVs are broadly classified
into three classes based on their sizes, such as exosomes
(50–150 nm), microvesicles (100–1000 nm), and apoptotic
bodies (50–5000 nm) (Y�a~nez-M�o et al., 2015), and they
can be distinguished from other EVs from their surface-
expressed set of tetraspanins (CD9, CD63, and CD81).
The EV isolation technique typically involves (1) ultracen-
trifugation, (2) size-exclusion chromatography, (3) resin
precipitation, and (4) membrane affinity chromatography
(Fig. 7) (Rodrigues et al., 2021). The immunocapture or
immunoprecipitation methods are particularly useful be-
cause of their ability to selectively enrich exosomes from a
specific tissue using antibodies against a marker protein
that is exclusively expressed in the tissue of interest.
Besides monitoring disease severity and drug re-

sponse, EVs have been recently used to quantify DMET
proteins. For example, the quantification of DMET pro-
teins in EVs has been successfully used to quantify the
effect of genetic polymorphism (Rodrigues and Rowland,
2019), DDI (Rodrigues and Rowland, 2019), and overall
interindividual variability (Achour et al., 2021). The to-
tal plasma exosomes from rifampicin-dosed individuals
have shown a strong correlation between CYP3A4 exo-
somal expression (mRNA and proteins) versus midazo-
lam oral clearance (Rowland et al., 2019). Similarly,
rifampicin-mediated induction of CYP3A4 in HepaRG
cells was precited by analyzing exosomes. The utility of
quantitative proteomics in liquid biopsy analysis has

also been shown for the determination of the effect of
pregnancy on DMET abundance (Rodrigues et al., 2021),
which revealed that CYP3A4 is induced; however,
CYP2D6 and OATP1B1 showed no apparent induction
during pregnancy. Other studies investigated alcohol-in-
duced oxidative stress (Cho et al., 2017) and drug-in-
duced toxicity (Kumar et al., 2017a) using CYP2E1 in
EVs or plasma exosomes as a marker. Similarly urinary
exosomes were used to quantify makers of IgA nephrop-
athy (Moon et al., 2011) and thin basement membrane
nephropathy (Rahman et al., 2019). Thus, liquid biopsy
is a promising technique, which, in conjunction with
quantitative proteomics, has potential for broader appli-
cations in biomarker research. In particular, the use of
liquid biopsies can be applied for patient stratification
based on their individual ability to metabolize or excrete
drugs for precise drug dosing. Because of the noninva-
sive nature of the liquid biopsy approach, the technique
can also be potentially applied to characterize the effect
of chronic diseases and the long-term use of medication
on DMET proteins.

IV. Recommendations for the Reproducible Use
of Quantitative Proteomics

Although quantitative proteomics is a promising
technique to predict interindividual variability,
these data can be confounded by the quality of tis-
sue samples. Banked tissues can often be affected
by confounding variables associated with harvest-
ing, processing, and storage. Similarly, the presence
of scarred tissue, medication use, and zonal (spa-
tial) variability in DMET abundance can confound
the determination of interindividual variability us-
ing banked tissues. Harmonized protocol of tissue
collection and storage should be employed along

Fig. 7. Utilizing circulating small extracellular vesicles (sEVs) for predicting tissue DMET abundance for noninvasive prediction of drug disposition,
DDI, and effect of genetic polymorphism. To isolate sEVas liquid biopsy from plasma, samples are centrifuge or enriched using size exclusion chroma-
tography or immunocapture to obtain concentrated sEV collection from individual (Rodrigues et al., 2021).
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with the collection of critical demographic and med-
ical records to allow the comparison of data from
different laboratories. In the case of a heterogenous
tissue (e.g., placenta or kidney), the localization of
DMET proteins is an important factor. For instance,
the expression pattern of DMET proteins is differ-
ent in the kidney cortex versus the medulla. Hence,
to account for the contamination from the medulla
in the cortex during fraction preparation, anatomic
markers (e.g., aquaporins) can be used to account
for the contamination.
The purity of subcellular fractions such as microsomes

is often not characterized for contamination from other
organelles, e.g., cytosolic contamination in microsomes.
Quantitative proteomics can help in detecting contami-
nation by measuring marker proteins, e.g., calnexin and
calreticulin as markers of the ER membrane and ER lu-
men, respectively. CYPs are present in the ER mem-
brane, and non-CYP enzymes are present in the cytosol
or lumen of cellular organelles (Xu et al., 2018). There-
fore, it is recommended that DMET proteins should be
ideally quantified directly in tissue homogenate (Prasad
et al., 2016). Optimization of tissue-specific homogeniza-
tion methods, buffers, the volume of extraction buffer
per gram of tissue, and optimized temperature condi-
tions are important for generating reliable models. The
use of EVs as a source of DMET protein quantification
can be confounded by cell debris, which could be ad-
dressed by considering the shedding factor for normaliza-
tion of DMET protein abundance (Achour et al., 2021).
Interday variability due to subtle changes in the sam-

ple preparation and LC-MS platforms may result in
trypsin digestion variability. The use of an external pro-
tein standard such as bovine serum albumin as an in-
ternal control can resolve this issue (Bhatt et al., 2018).
Solubility and stability of SIL peptides should also be
checked and validated experimentally for the accurate
estimation of peptide concentration in the biologic ma-
trix. Also, contamination of light peptides in the heavy
peptide standard should be checked to avoid false-posi-
tive results. Absolute protein abundance is affected by
several factors such as trypsin digestion efficiency, qual-
ity of the calibrator peptides, and differential enrich-
ment across laboratories. These challenges require that
a common calibrator, for example, a well-characterized
pooled human tissue sample, can be used to monitor
such crosslaboratory variability. Digestion efficiency can
also be assessed using codigestion of exogenously added
proteins such as bovine serum albumin or QconCAT.

V. Conclusions and Future Directions

Applications of quantitative proteomics in transla-
tional ADME and precision medicine have been in-
creasingly reported in the recent past. With its ability
to support IVIVE and PBPK modeling, as well as
characterization of in vitro models, intertissue, and

interspecies DMET protein variability and disease pro-
gression, quantitative proteomics serves as a key tool
from early stages of drug discovery to clinical develop-
ment and pharmacotherapy. Furthermore, an evolving
trend of the use of quantitative proteomics in liquid bi-
opsy (exosomes) allows the noninvasive quantification of
DMET proteins to monitor real-time disease progression
and therapeutic response. Increased sensitivity of LC-
MS and miniaturized sample preparation are expected
to be useful in the analysis of DMET proteins in the
samples harvested using microsampling techniques.
High interlaboratory variability in DMET proteomics
data are a concern, which requires collective efforts to
develop robust protocols and quality controls. Further,
there is a need for harmonized protocols for biospecimen
collection, archiving, sample preparation, and MS data
analysis to avoid crosslaboratory variability. A universal
control sample can be developed to be shared across
sites to ensure interlaboratory reproducibility. Global
proteomics data are emerging in the literature that can
be archived in well-open access libraries for future use.
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