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Relaxin family peptides significantly regulate reproduction, nutrient metabolism, and immune response in mammals. The present
study aimed to identify and characterize the relaxin family peptides in cattle and buffalo at the genome level. The genomic and
proteomic sequences of cattle, buffalo, goat, sheep, horse, and camel were accessed through the NCBI database, and BLAST
was performed. We identified four relaxin peptides genes (RLN3, INSL3, INSL5, and INSL6) in Bos taurus, whereas three
relaxin genes (RLN3, INSL3, and INSL6) in Bubalus bubalis. Evolutionary analysis revealed the conserved nature of relaxin
family peptides in buffalo and cattle. Physicochemical properties revealed that relaxin proteins were thermostable, hydrophilic,
and basic peptides except for INSL5 which was an acidic peptide. Three nonsynonymous mutations (two in RLN3 at positions
A16>T and P29>A, and one in INSL6 at position R32>Q) in Bos taurus, whereas two nonsynonymous mutations (one in
RLN3 at positions G105>w and one in INSL3 at position G22>R) in Bubalus bubalis, were identified. INSL3 had one indel
(insertion) at position 55 in Bos taurus. Gene duplication analysis revealed predominantly segmental duplications (INSL5/
RLN3 and INSL6/INSL3 gene pairs) that helped expand this gene family, whereas Bubalus bubalis showed primarily tandem
duplication (INSL3/RLN3). Our study concluded that relaxin family peptides remained conserved during the evolution, and
gene duplications might help to adapt and enrich specific functions like reproduction, nutrient metabolism, and immune
response. Further, the nonsynonymous mutations identified potentially affect these functions in buffalo.

1. Introduction

The relaxin peptide family comprises seven peptides with
significant structural similarities but low sequence resem-
blance. It includes seven genes, relaxin like RLN1, -2, and
-3, and insulin-like INSL3, -4, -5, and -6 in most mammals
[1], but their number varies. These peptides show a high
sequence resemblance with insulin due to the presence of
six cysteine residues that provide the 2 interchain and 1
intrachain disulphide linkages. Each relaxin peptide family
member is constituted of two chains called A and B chains

[2]. These chains are connected by two disulfide bonds pres-
ent between them and one disulfide bond within the A
chain. Each chain contained the cysteine residues together
with distinctive disulfide bonding, which are found con-
served across all family members [2].

The RLN1 and RLN2 are present in humans and higher
primates like apes. Both are referred to as relaxin as human
RLN2 is an orthologue to RLN1 in other mammals [1, 3].
RLN3 was first identified in 2002 and is considered the com-
mon ancestral gene for all relaxin peptides [2, 4]. RLN1 and
its orthologue RLN2 play an important role in reproduction
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in mammals [5], but in bovines, these genes have been lost
during the evolution and have no traces in the genome [6].
RLN3 has been shown to play a role in nutrient metabolism
in cattle [7]. INSL3 plays a crucial role in testicular descent
by promoting the growth and development of the guberna-
culum ligament [8]. INSL4 is highly expressed in the pla-
centa and might be involved in bone development [5, 9].
Its receptor is yet to be identified. INSL5 with its cognate
receptor RXFP4 has been suggested to play important role
in immune response regulation, signal transmission to
CNS through the vagus nerve, and autocrine/paracrine func-
tion within the intestinal tract [10]. INSL6 role in sperm pro-
duction has been determined in buffalo [11].

Relaxin family peptides have important role in ruminant
reproduction and nutrient metabolism as mentioned above.
The availability of genomic data has provided opportunity to
perform genome-wide characterization of protein families
using the different available bioinformatics tools. Many
studies have been conducted to identify the evolutionary
relationships, physicochemical characteristics, comparative
amino acid analysis, effects of mutations, and gene duplica-
tions in important protein families in ruminants [12–15].
The present study was conducted to characterize relaxin
family peptides in cattle (Bos taurus) and buffalo (Bubalus
bubalis) at genome-wide level in order to better understand
their evolutionary significance, physicochemical properties,
and gene duplications events.

2. Materials and Methods

2.1. Genome-Wide Identification of Relaxin Peptides. The
whole genome and proteomic sequence data of buffalo
(UOA WB 1), cattle (ARS-UCD1.2), sheep (Oar rambouillet
v1.0), goat (ARS1), camel (CamDro3), and horse (Equ-
Cab3.0) were obtained from the National Center for Bio-
technology Information (NCBI) database [16]. A genome-
wide BLAST and HMM search was performed to look for
all putative relaxin peptide genes in Bos taurus, Bubalus
bubalis, and other targeted species [17]. The cattle (Bos tau-
rus), buffalo (Bubalus bubalis), goat (Capra hircus), sheep
(Ovis aries), horse (Equus caballus), and camel (Camelus
dromedarius) relaxin peptide sequences were also validated
through the UniProt database search [18]. All accession
numbers of sequences used for this study are presented in
Table S1. No information was available for INSL5 gene
annotation of Bubalus bubalis in the databases.

2.2. Phylogenetic Analysis. Relaxin peptide amino acid
sequences from Bos taurus, Bubalus bubalis, Capra hircus,
Ovis aries, Equus caballus, and Camelus dromedarius were
aligned in ClustalW. Further, the neighbor-joining (NJ) tree
was constructed through the MEGA7 software [19].

2.3. Gene Structure, Motif Patterns, and Conserved Domain
Analysis of Relaxin Peptide Family. The conserved motifs
in the dataset were analyzed using the MEME suite [20].
As a query, the relaxin protein sequences were submitted
in Fasta format, and a site distribution with one occurrence
of each site was determined for each sequence. The motifs’

minimum and maximum widths were found to be 6 and
50, respectively. The number of themes was limited to ten.
The Gene Structure Display Server (GSDS) [21] was used
to import all CDs and genomic sequences. The final gene
structure was exhibited and illustrated using the genome
annotation data in general feature format utilizing in-house
scripts in the TBtools software (GFF).

2.4. Physicochemical Properties of Relaxin Proteins. The
online available ProtParam tool [22] was used to evaluate
the physicochemical characteristics of relaxin peptides
including molecular weight (MW), amino acid count (AA),
isoelectric point (pI), and aliphatic index (A.I.). Besides, it
also included instability index (II) and the grand average of
hydropathicity (GRAVY).

2.5. Multiple Sequence Analysis (MSA). Multiple align show
[23] was used online to explore the mutations and indels
in the relaxin peptides using the aligned sequences of Bos
taurus, Bubalus bubalis, Capra hircus, and Ovis aries.

2.6. Mutational Analysis. Further, the mutations found in
Bos taurus and Bubalus bubalis relaxin peptide sequences
were subsequently examined using several online tools
(PolyPhen-2, MUpro, PROVEAN, IMutant, PhD-SNP,
SIFT, SNAP2, PredictSNP, Meta-SNP, and SNAP) to deter-
mine their effects on protein structure and functions.

2.7. Nuclear Hormone Receptor Sites Identification. The
NHR scan [24] was employed to predict nuclear hormone
receptor binding sites. Using genomic sequences in Fasta
format, NHR scan was performed. The cumulative probabil-
ity of entering match states was 0.01 using the NHR scan.

2.8. Synteny Analysis and Gene Duplications. To find collin-
ear genes, the whole genomes of cattle and buffalo were
blasted to each other. The dual-synteny map was con-
structed using the TBtools after submitting annotation files
for both genomes, including information about collinear
genes and chromosomal IDs.

Chromosomal locations of relaxin genes were obtained
from genomic resources of respective specie. An annotated
genome file was saved as a general feature format (GFF) file
and was fed into the MCScanX programme [25], which was
subsequently used to plot the gene locations on chromo-
somes and presented in TB tools. In addition, the relaxin
peptide gene collinearity plots for Bos taurus and Bubalus
bubalis were generated. Further, for the Bos taurus and
Bubalus bubalis relaxin peptide gene family, pairwise align-
ment of homologous gene pairs of relaxin peptide genes
using MEGA7 [19] with the MUSCLE method was utilized
to analyze the frequency of duplications. DnaSP v6.0 [26]
was also used to determine pairwise synonymous substitu-
tions per synonymous site (ks) and nonsynonymous substi-
tutions per nonsynonymous site (ka) that were corrected for
multiple hits. Synonymous mutations are referred as silent
mutatins which can result in altered DNA sequence but does
not change the encoded amino acid (evolutionary neutral
mutations), whereas nonsynonymous mutations cause
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change in both DNA and protein sequence (evolutionary
important mutations).

3. Results

3.1. Phylogenetic Analysis. Results revealed that relaxin pep-
tide family consisted of four genes (RLN3, INSL3, INSL5,
and INSL6) in all representative species, except for Bubalus
bubalis which had 3 of them excluding INSL5 (Figure 1).
All four genes were clustered into two sister clades. From
top to downward, clade 1 included INSL3 and INSL6,
whereas clade 2 included INSL5 and RLN3. Overall phyloge-
netic analysis of the relaxin peptide family revealed that the
“Bos taurus and Bubalus bubalis,” “Capra hircus and Ovis
aries,” and “Camelus dromedarius and Equus caballus” had
close similarities between them. However, INSL3 showed
more evolutionary similarities between “Bos taurus and Capra
hircus” than between “Bos taurus and Bubalus bubalis.”

3.2. Structural Categorization of the Relaxin Peptide Family.
The examination of gene organization, motif patterns,
and conserved domains in the relaxin peptide family of
four targeted species, including Bos taurus, Bubalus buba-
lis, Capra hircus, and Ovis aries, were performed to carry
out the structural characterization of the relaxin peptide
family while taking account of their evolutionary relation-
ships (Figures 2(a)–2(d)). The top ten MEME-conserved
motifs were investigated to look for conserved domains
(Table 1). No conserved domain was detected in the Pfam
search for these motifs. Further, all genes were investigated
to look for conserved domains across all targeted species

(Figure 3(c)). The insulin/insulin-like growth factor (IIGF)
domain was found conserved across all targeted species,
which was further validated through a conserved domain
database (CDD) BLAST. A gene structural analysis revealed
the evolutionarily conserved nature of relaxin family genes
across the studied species (Figure 3(d)). The same gene
across different species revealed a similar number of introns
and exons.

3.3. Physico-chemical Properties of the Relaxin Proteins. The
physicochemical properties like location on the chromo-
some, exon count, molecular weight (Da), number of amino
acids (A.A) in each peptide, aliphatic index (A.I.), isoelectric
point (pI), instability index (II), and grand average of hydro-
pathicity index (GRAVY) of the relaxin peptides were evalu-
ated in cattle through the ProtParam tool (Table 2). The
molecular weight of relaxin peptides ranged from 14 to
24 kDa. RLN3 and INSL3 were located on chromosomes 7,
whereas INSL5 and INSL6 were located on chromosomes 3
and 8, respectively. All relaxin peptide genes had an exons
count of 2 and a variable length of the peptides with amino
acid residues. The pI values revealed all relaxin peptides
were basic except for INSL5 which was slightly acidic. The
AI values suggested the thermostable nature of all peptides
having AI values greater than 65. Moreover, II values greater
than 40 revealed that all peptide members of the relaxin
family are unstable in vitro. Negative GRAVY values sug-
gested the hydrophilic nature of relaxin peptides.

3.4. Identification of Mutations in Relaxin Peptides. Compar-
ative amino acid analysis was performed by aligning the
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Figure 1: Evolutionary relationship of relaxin peptides (RLN3, INSL3, INSL5, INSL6) in six mammalian species.
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protein sequences of the relaxin peptides of buffalo, cattle,
goat, sheep, camel, and horse in multiple align show to look
for indels and single amino acid variations in Bos taurus and
Bubalus bubalis (Figures 3–3(d)).

In RLN3 protein, mutations were observed in Bos taurus
at positions A16>T, P29>A, and A62>T and Bubalus

bubalis at position G105>W (Figure 3). INSL3 had one
indel (insertion) at position 55 in Bos taurus (Figure 3(b)).
In INSL3, mutations were observed in Bubalus bubalis at
positions G22>R, V86>M, and V88> I, whereas no muta-
tion was observed in Bos taurus (Figure 3(b)). INSL5
sequence of Bubalus bubalis was not found in the database.
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Figure 2: Graphical representation of motif patterns (b), conserved domains (c), and gene structure (d) of relaxin peptide family genes
corresponding to their phylogenetic relationships (a) in four mammalian species.

Table 1: Top ten differentially conserved motifs detected in relaxin peptide family (RLN3, INSL3, INSL5, and INSL6).

Motif Protein sequence Length Pfam domain

MEME-1 REAAATEAARKLCGRHFIRAVVKLCGGSRWSREEG 35 —

MEME-2 RGLSEKCCKKGCTKSELLTLC 21 —

MEME-3 PEYQYPEVBLPFESELEEAVASSEILPLTKEPIEFYGKNTBKIGTPSNLF 50 —

MEME-4 DPALNPAPQPLSQEEAIHNMK 21 —

MEME-5 TQLLSZASEKVESFIPDRSESSQTTFPVW 29 —

MEME-6 MRALVLLLLALAVLL 15 —

MEME-7 LPGGDYELLRKLZGL 15 —

MEME-8 WGNHPQRK 8 —

MEME-9 HLLHGLMA 8 —

MEME-10 GDRDPL 6 —
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INSL6 had a mutation in Bos taurus at position R32>Q,
whereas no mutation was detected in Bubalus bubalis.

Additionally, the mutations observed in Bos taurus and
Bubalus bubalisthrough a comparative amino acid analysis
were further analyzed through different online available muta-
tional analysis tools to predict the functional effects of these

mutations (Table S2). In Bos taurus, a total of three
nonsynonymous mutations were predicted, two in RLN3 at
positions A16>T and P29>A, and one in INSL6 at position
R32>Q. In Bubalus bubalis, a total of two nonsynonymous
mutations were predicted, one in RLN3 at positions
G105>w, G22>R, and one in INSL3 at position G22>R.

(a)

(b)

(c)

(d)

Figure 3: (a–d) Comparative amino acid analysis of the relaxin peptide family(RLN3, INSL3, INSL5, and INSL6) in Bos taurus, Bubalus
bubalis, Capra hircus, and Ovis aries.

Table 2: Physicochemical properties of the relaxin family peptides in Bos taurus.

Gene Chromosome Exon count MW (kDa) A.A pI AI II GRAVY

RLN3 7 2 14.75 135 7.60 86.00 55.82 −0.162
INSL3 7 2 14.38 132 8.69 96.21 67.33 −0.145
INSL5 3 2 15.36 135 6.89 73.04 76.93 −0.389
INSL6 8 2 24.00 205 9.14 77.51 66.54 −0.717
MW: molecular weight; A.A: number of amino acids; pI: isoelectric point; AI: aliphatic index; II: instability index; GRAVY: grand average of
hydropathicity index.
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(a)

(b)

(c)

Figure 4: Continued.
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3.5. NHR Patterns in Relaxin Peptides. The Bos taurus
nuclear hormone receptor sites (NHRs) were searched for
all four relaxin peptides (RLN3, INSL3, INSL5, and INSL6)
(Figures 4(a)–4(d)). A total of 23 NHRs were found of which
RLN3 had 3, INSL3 had 2, INSL5 had 6, and INSL6 had 12.
The number of direct repeats (DR) identified in RLN3,
INSL3, INSL5, and INSL6 were 2, 1, 3, and 6, respectively.
The number of everted repeats (ER) identified in RLN3,
INSL3, INSL5, and INSL6 were 1, 0, 2, and 3, respectively.
The number of inverted repeats (IR) identified in RLN3,
INSL3, INSL5, and INSL6 were 0, 1, 1, and 3, respectively.

3.6. Synteny Analysis and Gene Duplications. Collinearity
analysis showed that relaxin family genes were randomly
distributed over 2 chromosomes in both cattle and buffalo
(Figure 5). In Bos taurus, relaxin peptide genes were present
on chromosomes 7 and 8, whereas in Bubalus bubalis, these
genes were located on chromosomes 3 and 9.

Further, the gene duplication analysis was performed to
look for segmental or tandem duplication gene pairs in the
relaxin peptide family of Bos taurus and Bubalus bubalis
(Table 3). In Bos taurus, two segmental duplication events
were observed between INSL5/RLN3 and INSL6/INSL3 gene

pairs, whereas in Bubalus bubalis, one tandem duplication
was detected between INSL3/RNL3 gene pair. The number
of nonsynonymous substitutions per nonsynonymous site/
number of synonymous substitutions per synonymous site
(ka/ks) ratios was determined for this duplicated event. Bos
taurus segmental duplicated pairs INSL5/RLN3 and INSL6/
INSL3 showed 0.68 and 0.60 ka/ks ratios, respectively,

(d)

Figure 4: NHR scans patterns of RLN3 (a), INSL3 (b), INSL5 (c), and INSL6 (d) in Bos taurus.

Cattle
Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 Chr20 Chr21 Chr22 Chr23 Chr24 Chr25 Chr26 Chr27 Chr28 Chr29 ChrX

Buffalo
Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 Chr13 Chr14 Chr15 Chr16 Chr17 Chr18 Chr19 Chr20 Chr21 Chr22 Chr23 Chr24 ChrX

Figure 5: Synteny plot between Bos taurus and Bubalus bubalis genomes.

Table 3: Analysis of duplicated gene pairs and their ka/ks values of
relaxin peptide family in Bos taurus and Bubalus bubalis.

Bos taurus
Gene pair

Chromosome Duplication ka ks ka/ks

INSL5/RLN3 3/7 SD 0.32 0.47 0.68

INSL6/INSL3 8/7 SD 0.33 0.56 0.60

Bubalus bubalis
Gene pair

Chromosome Duplication ka ks ka/ks

INSL3/RLN3 9/9 TD 0.37 0.50 0.74

ka: number of nonsynonymous substitutions per nonsynonymous site; ks:
number of synonymous substitutions per synonymous site; SD: segmental
duplication; TD: tandem duplication.
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whereas Bubalus bubalis tandem duplication pair INSL3/
RNL3 showed 0.74 ka/ks ratio.

4. Discussion

4.1. Phylogenetic Analysis. In recent years, genomic sequenc-
ing technology, particularly next-generation sequencing, has
advanced significantly, resulting in the accessibility of
sequenced genomes for many important organisms, opening
up a new path for understanding the genomic architecture at
the molecular level of diverse animal species [27]. Compara-
tive genomics allows for the discovery of new genes and
functional components [28, 29]. Advances in bioinformatics
have enabled the utilization of genomic data and look into
the protein family evolutionary history, comparative amino
acid analysis, gene duplications and prediction of mutations,
and their functional and structural effects [12–15].

The relaxin peptide family has been found to contain
seven members in most mammals, including relaxin-like
genes RLN1, RLN2, and RLN3 and insulin-like genes INSL3,
INSL4, INSL5, and INSL6 [30]. In our analysis, we have
found four genes (RNL3, INSL3, INSL5, and INSL6) in Bos
taurus, Capra hircus, Ovis aries, Camelus dromedarius, and
Equus caballus, whereas three genes (RNL3, INSL3, and
INSL6) in Bubalus bubalis from the sequenced genome of
these species. Further, these genes were grouped into two sis-
ter major clades, clade 1 included INSL3 and INSL6, whereas
clade 2 included INSL5 and RLN3. A variable number of
RLN/INSL peptides were also observed in different verte-
brates [31–33]. These variations could be explained on the
basis of gene loss and fixation during the evolution and
adaption to specific niches. Overall phylogenetic analysis of
the relaxin peptide family revealed that the “Bos taurus
and Bubalus bubalis,”, “Capra hircus and Ovis aries,” and
“Camelus dromedarius and Equus caballus” had close simi-
larities between them. Previous studies also revealed evolu-
tionary similarities between these species [12, 13].
However, INSL3 peptide showed more evolutionary similar-
ity between “Bos taurus and Capra hircus” than between
“Bos taurus and Bubalus bubalis”. Researchers have been fas-
cinated by relaxin evolution for decades. Relaxins are
renowned for their high sequence variability across closely
related species, although unexpected parallels have been
found between quite different species like pigs and
whales [34].

4.2. Structural Features of Relaxin Peptides. The examination
of gene organization, motif patterns, and conserved domains
of the relaxin peptide family of four targeted species includ-
ing Bos taurus, Bubalus bubalis, Capra hircus, and Ovis aries
revealed the conserved nature of relaxin genes across the tar-
geted species. The insulin/insulin-like growth factor (IIGF)
domain was found conserved in all relaxin family genes
across all targeted species. The insulin/IGF system (IIGFs)
regulates a wide range of physiological processes, including
development, linear growth, and aging, as well as metabo-
lism, homeostasis, and central nervous system activities
[35, 36]. This domain is important for proper function,
and any dysregulation in this domain can result in abnormal

growth, increased development and progression of numer-
ous cancers, and pathologic ailments associated with chronic
inflammation and fibrosis [37, 38].

4.3. Physico-chemical Properties of Relaxin Peptides. The
physicochemical properties of the relaxin peptide family
proteins were evaluated in Bos taurus through the Prot-
Param tool (Table 2). The molecular weight of relaxin pep-
tides ranged from 14 to 24 kDa. The aliphatic index (AI)
tells about the thermostability of globular proteins, and
values greater than 65 show greater thermostability [39]. In
our study, all relaxin family peptides were found thermosta-
ble. In vitro stability of proteins can be inferred through the
instability index (II), and the II value lower than 40 indicates
the in vitro stability of proteins [40], as in our case, all
relaxin family peptides showed in vitro instability having
values greater than 40. The GRAVY values tell about the
hydropathicity of protein, the negative GRAVY values show
hydrophilic nature, whereas the positive GRAVY values
show hydrophobic nature of proteins [41], as in our case,
all relaxin family peptides showed hydrophilic nature having
negative GRAVY values.

4.4. Comparative Mutational Analysis. Comparative geno-
mics is a large-scale, integrated technology for the compari-
son of two or more genomes. Comparative studies at various
levels of the genomes may be conducted to obtain distinct
perspectives on the organisms [35, 42]. We aligned the
sequences of four species Bos taurus, Bubalus bubalis, Capra
hircus, and Ovis aries in multiple align show to look for
indels and single amino acid variations in Bos taurus and
Bubalus bubalis. All relaxin family peptides were found well
conserved with few amino acid variations in Bos taurus and
Bubalus bubalis. INSL3 had one indel (insertion) at position
55 in Bos taurus. Indels and mutations have all played a part
in the divergence of gene family members from their pro-
genitors [43]. Further, the mutational analysis of observed
single amino acid variations predicted three nonsynon-
ymous mutations (two in RLN3 at positions A16>T and
P29>A and one in INSL6 at position R32>Q) in Bos taurus,
whereas two nonsynonymous mutations (one in RLN3 at
positions G105>w, G22>R, and one in INSL3 at position
G22>R) in Bubalus bubalis. RLN3 gene was observed to
play role in feed efficiency in cattle [7]. INSL3 is a gender-
specific gene that is produced in Leydig cells of male adult
and fetus and plays a key role in testicular descent [44].
Higher level of INSL3 gene was observed in female ruminant
blood with male fetus. Mutations in the INSL3 gene resulted
in failure of testicular descent (cryptorchidism) [45, 46].
INSL6 was detected to play a role during spermatogenesis
[11]. The deficiency of INL6 in mice resulted in a decline
in sperm production and immotility [47]. Mutations in these
genes can interfere with functions like feed metabolism, tes-
ticular descent, and spermatogenesis in bovines.

4.5. NHR Patterns in Relaxin Peptides. Diverse biochemical
mechanisms are involved in gene regulation and informa-
tion flow from the DNA to the protein that is transcription
and translation, and understanding of these mechanisms is
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necessary to explore the cell dynamics [48]. Nuclear recep-
tors bind to target genes at sites referred as hormone
response elements (HREs) and help to regulate the tran-
scription. These HREs are usually located in the 5-flanking
region of target genes. Even though HREs are primarily
found near the primary promoter, they can sometimes be
found several kilobases upstream away from the start of
the transcription site in enhancer regions [49]. Most of the
time, a single NHR has been found to impact many genes,
and sometimes, many NHRs have competition for one target
gene and result in overlapping networks for the target genes
[50]. This competition for the same target gene sometimes
results in reduced expression of the gene. The expression
of the gene can also be reduced if NHR bind with negative
HREs [49]. The pattern of NHR sites in the relaxin peptide
family in Bos taurus was investigated. A total of 23 NHR
sites were detected. In total, 12 direct repeats (DR), 6 everted
repeats (ER), and 5 inverted repeats (IR) were found in the
Bos taurus relaxin genes.

4.6. Synteny Analysis and Gene Duplications. Chromosomal
regions common between two genomes with the same
homologous genes order as in common ancestor sites are
called synteny blocks [51]. Different species originating from
the common ancestor in the same tree of life can be com-
pared using syntenic relationships, which will give an idea
about the chromosomal structure and number variation
between species [52, 53]. Synteny analysis revealed that
relaxin peptide genes were randomly located over 2 chromo-
somes in both Bos taurus and Bubalus bubalis. In Bos taurus,
relaxin genes were present on chromosomes 7 and 8,
whereas in Bubalus bubalis, these genes were located on
chromosomes 3 and 9. Further, the gene duplication events
were examined for Bos taurus and Bubalus bubalis. Gene
duplications have evolutionary significance as it is believed
that during the evolution, whole genome duplications
occurred and only 5 to 10% of duplicated genomes got fixed
to perform specific functions, while others were lost in the
process [54, 55]. These duplication events helped in the
expansion of genome size and increased complexities to per-
form specific functions as indicated by two rounds of dupli-
cations hypothesis (2R hypothesis) [56, 57]. In our study, the
Bos taurus relaxin peptide family showed predominantly
segmental duplications (INSL5/RLN3 and INSL6/INSL3
gene pairs) that helped in the expansion of this gene family,
whereas Bubalus bubalis showed predominantly tandem
duplication (INSL3/RLN3). Our results are in agreement
with Liu et al. [58], and they explained that segmental dupli-
cations are predominant in cattle genome and these duplica-
tions in bovine genomes are enriched with specific biological
processes related to digestion, lactation, immunity, and
reproduction. Further, the ka/ks ratios were lower than 1
for all these observed duplications, indicating the purifying
pressure for these duplication events [59].

5. Conclusions

Our study revealed four relaxin peptide family genes (RLN3,
INSL3, INSL5, and INSL6) in Bos taurus, whereas three

relaxin peptide genes (RLN3, INSL3, and INSL6) in Bubalus
bubalis in contrast to seven genes in most of the mammals.
The loss of genes might be the result of adaptation to specific
niches during evolution. Relaxin family peptides remained
conserved during evolution. Nonsynonymous mutations in
RLN3, INSL3, and INLS6 can interfere with biological func-
tions like spermatogenesis, testicular descent, and feed
metabolism in bovines. The segmental duplication in Bos
taurus and the tandem duplication in Bubalus bubalis of
relaxin family peptides helped in enrichment to specific
functions like reproduction and feed metabolism during
evolution.
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