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BACKGROUND: The aetiologic role of circulating proteins in the development of breast cancer subtypes is not clear. We aimed to
examine the potential causal effects of circulating proteins on the risk of breast cancer by intrinsic-like subtypes within the
Mendelian randomisation (MR) framework.
METHODS: MR was performed using summary statistics from two sources: the INTERVAL protein quantitative trait loci (pQTL) Study
(1890 circulating proteins and 3301 healthy individuals) and the Breast Cancer Association Consortium (BCAC; 106,278 invasive
cases and 91,477 controls). The inverse-variance (IVW)-weighted method was used as the main analysis to evaluate the associations
between genetically predicted proteins and the risk of five different intrinsic-like breast cancer subtypes and the weighted median
MR method, the Egger regression, the MR-PRESSO, and the MRLocus method were performed as secondary analysis.
RESULTS: We identified 98 unique proteins significantly associated with the risk of one or more subtypes (Benjamini–Hochberg
false discovery rate < 0.05). Among them, 51 were potentially specific to luminal A-like subtype, 14 to luminal B/Her2-negative-like,
11 to triple negative, 3 to luminal B-like, and 2 to Her2-enriched-like breast cancer (ntotal= 81). Associations for three proteins
(ICAM1, PLA2R1 and TXNDC12) showed evident heterogeneity across the subtypes. For example, higher levels of genetically
predicted ICAM1 (per unit of increase) were associated with an increased risk of luminal B/HER2-negative-like cancer (OR= 1.06,
95% CI= 1.03–1.08, BH-FDR= 2.43 × 10−4) while inversely associated with triple-negative breast cancer with borderline significance
(OR= 0.97, 95% CI= 0.95–0.99, BH-FDR= 0.065, Pheterogeneity < 0.005).
CONCLUSIONS: Our study found potential causal associations with the risk of subtypes of breast cancer for 98 proteins.
Associations of ICAM1, PLA2R1 and TXNDC12 varied substantially across the subtypes. The identified proteins may partly explain
the heterogeneity in the aetiology of distinct subtypes of breast cancer and facilitate the personalised risk assessment of the
malignancy.
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INTRODUCTION
Breast cancer is the leading cause of global cancer incidence in
women with an estimated 2.3 million new cases being diagnosed
worldwide in 2020 [1]. Although the aetiology of breast cancer is
not fully understood, it is widely recognised that breast cancer is a
heterogeneous disease with distinct histological and molecular
characteristics [2]. However, the majority of studies did not
account for this heterogeneity when investigating the aetiology or
risk factors for breast cancer.
Circulating proteins have been linked to breast cancer risk. For

example, a large pooling study showed that levels of circulating
insulin-like growth factor-1 (IGF-1) were associated with a 30%

increased risk of breast cancer (highest versus the lowest fifth of
IGF-1 levels) [3], suggesting the insulin/IGF-1 axis plays in a critical
role in breast carcinogenesis [4]. We previously conducted a
genetic instrumental analysis to search for novel circulating
protein biomarkers for breast cancer risk [5]. A panel of 56
proteins was found significant, many of which are involved in the
oestrogen receptor (ER) signalling and insulin resistance-related
pathways. However, in these studies, the associations were not
examined according to specific subtypes. Thereby important
findings might be missed, and it remains unclear whether the
identified biomarkers are subtype-specific or shared by different
subtypes.
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In this study, we evaluated the associations between 1890
circulating proteins and breast cancer risk within five distinct
intrinsic-like subtypes by conducting Mendelian randomisation
(MR) analysis. MR was developed as an effective tool to evaluate
the causal relationship between an exposure and outcome of
interest when randomised clinical trials (RCT) are not feasible.
Similar to RCT, it is designed to minimise the impact of
confounding, reverse causation, and other biases, providing more
definitive evidence for causal inference [6]. Through the analysis,
we aimed to identify potential subtype-specific proteins and those
shared by different subtypes of breast cancer, which may help
explain the heterogeneity in the disease aetiology and ultimately
facilitate an effective risk assessment of breast cancer.

MATERIALS AND METHODS
Data source and study population
The study flowchart is shown in Fig. 1. We obtained summary statistics of
the associations between genetic variants and circulating protein
concentrations from a large-scale protein quantitative trait loci (pQTL)
study conducted in 3301 healthy subjects of European descent [7].
Circulating proteins were quantified using the SOMAscan platform. The
original GWAS reported 1927 significant pQTL associations for 1478
circulating proteins [7]. We extracted all the genetic variants associated
with a specific protein with a P < 5.0 × 10−8. We excluded genetic variants
with an imputation quality score (R2) < 0.8 and a minor allele frequency
<0.05 from the current analysis. Summary statistics of selected pQTL
variants in associations with risks of breast cancer intrinsic-like subtypes
were obtained from a recent genome-wide association study (GWAS)
conducted in the BCAC (106,278 invasive cases and 91,477 controls) [8].
Both data, from the pQTL study and BCAC, were used previously to identify
the 56 proteins associated with overall breast cancer risk [5]. To obtain
independent genetic variants associated with a specific protein, linkage
disequilibrium (LD) pruning was then performed to filter out those in
LD > 0.1 based on the data of CEU populations in the 1000 Genomes
Project. Breast cancer intrinsic-like subtypes were determined based on the
status of hormone receptors (i.e., ER, progesterone receptor [PR], and
human epidermal growth factor receptor 2 [HER2]) and grade of primary
breast cancer. Invasive cases were categorised into five distinct subtypes,
including luminal A-like (ER+ and/or PR+, HER2−, Grades 1 and 2), luminal
B/Her2-negative-like (ER+ and/or PR+, HER2−, grade 3), luminal B-like (ER
+ and/or PR+, HER2+), HER2-enriched-like (ER− and PR−, HER2+), and

triple-negative (ER−, PR−, HER2−). Summary statistics of GWAS of breast
cancer intrinsic-like subtypes were downloaded from the BCAC website
(http://bcac.ccge.medschl.cam.ac.uk/bcacdata/). Our analyses were limited
to the women of European ancestry included in the BCAC as the
participants of the consortium were predominantly white. Details of the
genotyping protocols in the BCAC have been published elsewhere [8–10].
All the BCAC data were imputed by IMPUTE version 2 [11], using the 1000
Genomes Project (October 2014 version 3 release) dataset as the reference
panel. All participating studies of the BCAC were approved by their
corresponding ethics review boards and all subjects provided informed
consent.

Statistical analysis
The inverse-variance (IVW)-weighted method [12] was performed as the
main analysis. Three additional MR approaches, i.e., the weighted median
MR method [13], the Egger regression [14], the MR-PRESSO [15] and
MRLocus, were conducted as secondary analyses. The IVW approach
assumes that all genetic variants used as instruments are valid. To address
the potential violation of this assumption, we performed the weighted
median approach, which accepts that up to half of the genetic instruments
included are invalid [13]. In addition, the Egger regression and MR-PRESSO
were applied to detect and correct for pleiotropic effects [14, 15] (another
common violation of assumption in MR analysis).
The number of genetic variants used as instruments for proteins ranged

from 1 to 51. Approximately 49.3% (932/1890) of the instruments were
constructed using three or more pQTL variants. Odds ratios (ORs), 95%
confidence intervals (CIs), and corresponding p-values were obtained for
all four approaches unless the number of genetic variants were under the
minimum requirement for certain methods (e.g., a minimum of three
variants is required for median/Egger regression method). Associations
with a Benjamini–Hochberg false discovery rate (BH-FDR) of <0.05 for the
IVW method within each intrinsic-like subtype were considered significant
in a two-sided test. These associations also had a P < 0.05 (weighted
median, MR-Egger, or MR-PRESSO) or nonzero effect (MRLocus) in two of
the four remaining MR approaches. Suggestive associations were defined
as those had a BH-FDR >0.05 using IVW method, while their P < 0.01
(weighted median, MR-Egger and MR-PRESSO) or nonzero effect (MRLocus)
in two MR approaches in the secondary analysis. Full results of the four MR
approaches were presented in Supplementary Tables S2 and 3. We further
conducted bidirectional MR analysis [16] with the genetic instruments
associated with breast cancer subtypes (P < 5.0 × 10−8 & LD < 0.1) for the
proteins found significant in the MR analysis mentioned above. Test of
heterogeneity was performed to detect potential subtype-specific

IVW MR for 1890 circulating proteins
with 5 subtypes of breast cancer Summary statisticsSummary statistics

IVW BH-FDR < 0.05
& P value < 0.05 (median-weighted, Egger, MR-PRESSO) or 
nonzero effect (MRLocus) in two or more sensitivity analyses

unless the analyses were not feasible

IVW BH-FDR > 0.05
P value < 0.01 (median-weighted, Egger, MR-PRESSO) 

or nonzero effect (MRLocus) in two or more sensitivity
analyses

INTERVAL pQTL study:
3301 healthy individuals

BCAC breast cancer subtype GWAS:
106,278 invasive cases and 91,477 controls

98 proteins significantly 
associated with risk of one 

or more subtypes 

23 proteins associated with risk 
of one or more subtypes with 

suggestive evidence

Potential subtype-specific 
associations for 81 proteins

Cross-subtype associations 
for 17 proteins

Considerable heterogeneity 
found for 3 proteins across the 

subtypes

None of the 98 proteins was 
associated with breast 
cancer subtypes in the 

bidirectional MR analysis 

Fig. 1 The flowchart of the current study. This flowchart describes what has been done for the study and summarises the main findings.
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associations. Proteins identified with a Pheterogeneity < 0.05 and effect
estimates showing opposite directions across subtypes were visualised
by scatter plots. The web-based tool Panther [17] was used to assess
whether the evaluated and identified proteins were overrepresented/
enriched at the pathway level. STRING [18] was used to show reported
interactions between the identified proteins. The linkage disequilibrium
(LD) patterns between the pQTL variants used as instrumental variables in
this study for the identified proteins and previously reported breast cancer
susceptibility variants in the European populations of the 1000 Genomes
reference panel (1000G Phase3 v5, EUR) were assessed [8, 10, 19, 20]. All
the statistical analyses were completed using R 4.1.1 (R packages:
MendelianRandomization, version 0.5.1; MR-PRESSO, version 1.0; mrlocus).

RESULTS
We first performed pathway enrichment analysis for the 1890
circulating proteins and found that they were enriched in 204 and

31 pathways in Reactome and PANTHER database, respectively
(FDR <0.05). The top enriched ones were the immune system,
cytokine signalling, interleukin signalling, innate immune system,
and angiogenesis-related pathways (Supplementary Table S1). We
then re-evaluated the associations of 56 previously reported
proteins [5] with risk of breast cancer by intrinsic-like subtypes
(Fig. 2a and Supplementary Table S2). After adjustment of multiple
comparisons within each subtype, 24 of the 56 proteins were
found to be significantly associated with the risk of one or more
subtypes using IVW method (BH-FDR <0.05). The majority of the
significant associations were driven by luminal A-like and/or triple-
negative breast cancer (22/24, Supplementary Fig. S1). We also
found that two proteins, Fms-related receptor tyrosine kinase 4
(FLT4, alias VEGFR3) and copine 1 (CPNE1), were exclusively
associated with risk of luminal B/Her2-negative-like breast cancer.
Associations shared by two or more subtypes were identified for
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Fig. 2 Heatmaps of MR estimates of proteins significantly associated with risk of one or more breast cancer subtypes. a Associations for
previously reported proteins in Shu et al. [5]. b Newly identified associations. *BH-FDR < 0.05. MR estimates obtained from the IVW approach
were presented in the figure. The full results of the four MR approaches are shown in Supplementary Tables S2 and S3.
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nine proteins with risk of luminal A-like and triple-negative breast
cancer, and one with luminal A-like, Her2-enriched-like, and triple-
negative breast cancer. The association direction was consistent for
these associations (Fig. 2a and Supplementary Table S2). In addition,
suggestive associations were found for six proteins with risk luminal
A-like breast cancer; two for luminal B/Her2-negative-like breast
cancer; two with Her2-enriched-like breast cancer; and three within
triple-negative breast cancer (Supplementary Table S2).
We next evaluated the associations of the remaining 1834

proteins with the risk of breast cancer intrinsic-like subtypes. In total,
we found significant associations between 74 additional proteins
and risk of one or more subtypes (BH-FDR < 0.05, Fig. 2b and
Supplementary Table S3), of which 67 were potentially subtype-
specific and dominated by those associated with risk of luminal
A-like (n= 43), luminal B/Her2-negative-like triple (n= 12), or triple-
negative breast cancer only (n= 7) (Supplementary Fig. S2).
Associations shared across subtypes were also found. For example,
the association between agouti signalling protein (ASIP) and risk of
triple-negative breast cancer (OR= 1.11, 95% CI= 1.08–1.14, BH-
FDR= 4.51 × 10−10, per unit of increase) was the most significant
association identified in this analysis. The protein was not associated
with the risk of luminal A-like, luminal B/HER2-negative-like, or
HER2-enriched-like breast cancer but was associated with luminal
B-like breast cancer (OR= 1.10, 95% CI= 1.06–1.14, BH-FDR= 8.93
× 10−5). The summary of identified proteins in the current study
and their overlapping with previously reported associations with
overall breast cancer risk were shown in Table 1. A total of 118
associations were identified for 98 unique proteins with risk of one
or more subtypes. Among them, 81 were specific to one subtype.
Three proteins, thioredoxin Domain Containing 12 (TXNDC12),

phospholipase A2 Receptor 1 (PLA2R1), and intercellular adhesion
molecule 1 (ICAM1), showed strong heterogeneity for their
association estimates across the intrinsic-like subtypes (Fig. 3,
Supplementary Table S3 and Supplementary Fig. S3). For example,
higher levels of genetically predicted ICAM1 were associated with
an increased risk of luminal B/HER2-negative-like cancer (OR= 1.06,
95% CI= 1.03–1.08, BH-FDR= 2.43 × 10−4) while inversely asso-
ciated with triple-negative cancer with borderline significance
(OR= 0.97, 95% CI= 0.96–0.99, BH-FDR= 0.065). Furthermore, the
genetically predicted levels of PLA2R1 were positively associated
with luminal A-like cancer while inversely with triple-negative
cancer; and TXNDC12 was positively associated with luminal B/
HER2-negative-like cancer while inversely with HER2-enriched-like
and triple-negative cancer.
The bidirectional MR analysis found no significant association

for the 98 identified proteins (Supplementary Table S4). The
identified proteins associated with the risk of luminal A-like breast
cancer were found statistically significantly enriched in the
immune system and insulin signalling pathways based on the

overrepresentation analysis using data from the Reactome and
PANTHER database (Table 2, see 'Methods'). Protein–protein
interaction analysis highlighted interaction hubs for luminal
A-like breast cancer, including clusters of cytokine receptors,
cell-cell adhesion molecules, and growth factor receptors (Sup-
plementary Fig. S4). We also compared LD patterns between the
pQTL variants used in this study for the 98 significantly associated
proteins and those reported breast cancer susceptibility variants.
We found that the instrumental variables of eight proteins showed
a moderate LD (r2: 0.25–0.63) with the known breast cancer
susceptibility variants (Supplementary Table S5).

DISCUSSION
In this study, we evaluated the relationships between circulating
proteins and risks of breast cancer intrinsic-like subtypes by
conducting a MR analysis. Through the analyses, we identified 74
novel associations of proteins with the risk of one or more
intrinsic-like subtypes of breast cancer and confirmed 24 proteins
that were also previously reported to be associated with overall
breast cancer risk. Only a small proportion of the identified
associations were driven by known breast cancer susceptibility loci
(Supplementary Table S5). Among the identified proteins, three
(ICAM1, PLA2R1 and TXNDC12) showed strong evidence of
heterogeneity among intrinsic-like subtypes.
It is well recognised that breast cancer is highly heterogeneous,

as it consists of subtypes with distinct pathological and molecular
features [21, 22]. Previous studies have reported differences in risk
factors for breast cancer molecular subtypes. For example, body
mass index was reported to be inversely associated with luminal A
breast cancer but positively associated with basal-like breast
cancer in premenopausal women [23]. The greatest association of
family history of breast cancer was found for basal-like breast
cancer compared to that for other subtypes [23, 24]. Hetero-
geneity for the distinct subtypes of breast cancer was also
consistently reported for reproductive risk factors [25, 26]. These
findings support that different subtypes of breast cancer have
distinguished etiologies, and identifying risk factors for breast
cancer subtypes has important implications for the prevention of
more aggressive subtypes such as luminal B, HER2 and basal-like
cancers.
We previously conducted a genetic instrument analysis and

showed significant associations of 56 proteins with risk of overall
breast cancer [5]. This study is the first to extensively examine the
potential causal role of circulating proteins played in the
development of molecular subtypes of breast cancer. According
to our findings, most of the identified associations were luminal A-
like, luminal B/Her2-negative-like, or triple-negative breast cancer-
specific. Associations shared by subtypes were also identified. As

Table 1. Summary of identified associations between proteins and risk of breast cancer intrinsic-like subtypes.

BC subtypes Significant associations with risks of overall BC
and BC subtypes*

Novel associations with risk of BC
subtypes only*

Total

Luminal A-like relevant (specific) 18 (8) 48 (43) 66 (51)

Luminal B-like relevant (specific) 0 (0) 4 (3) 4 (3)

Luminal B/HER2-negative-like
relevant (specific)

2 (2) 15 (12) 17 (14)

HER2-enriched-like relevant
(specific)

1 (0) 3 (2) 4 (2)

Triple-negative relevant (specific) 14 (4) 13 (7) 27 (11)
*The significance of the associations with risk of breast cancer subtype was determined if BH-FDR < 0.05, based on the P values from the inverse-variance
weighted MR method. The associations between circulating proteins and risk of overall breast cancer were retrieved from a previous study conducted by Shu
et al. [5]. In all, 98 unique proteins were associated with one or more subtypes among the totalled 118 significant associations identified.
The number in parentheses indicates the associations specific to the subtype of interest (also see Supplementary Figs. S1 and S2). A total of 81 subtype-
specific protein associations were identified.
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Fig. 3 Scatter plots of MR associations of TXNDC12, PLA2R1 and ICAM1 with risk of five breast cancer intrinsic-like subtypes.
Heterogeneity test was performed based on the MR estimates from the four approaches on each of the five subtypes.
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an example, ASIP was significantly associated with increased risk
of both triple-negative and luminal B-like breast cancer. A meta-
analysis of GWAS of breast cancer identified a susceptibility locus
at 20q11 where ASIP and another two genes reside closely,
showing the variant was more strongly associated with ER-
negative breast cancer especially triple-negative breast cancer
than overall breast cancer [27]. While the previous GWAS was
unable to discern the potential causal gene player in the region
[27], our findings serve as strong evidence supporting the
potential causal role of ASIP in this locus. The same locus was
also previously linked to pigmentation traits and risk of both
cutaneous melanoma and basal cell carcinoma [28], suggesting a
possible shared genetic susceptibility between triple-negative
breast cancer and skin cancers.
Among the identified associations, estimates for three proteins

varied substantially across the subtypes. The exact biological
mechanisms that underlie these associations especially regarding
subtype heterogeneity are not clear; thus, further investigations
are warranted. For example, the biological function of ICAM1 in
breast cancer remains controversial. ICAM1 is a cell surface
transmembrane glycoprotein receptor, belonging to the immu-
noglobulin superfamily. The protein was reported to be involved
in T-cell priming, transendothelial trafficking, and facilitating
lymphocyte adhesion with tumour cells [29]. Ogawa et al. also
reported that expression of ICAM1 was negatively associated with
tumour infiltration, nuclear pleomorphism, as well as lymph node
metastasis in breast cancer [30]. Conversely, it has been proposed
that the downregulation of ICAM1 could attenuate the metastatic
ability of MCF-7 cells, leading to a decreased migration and
invasiveness of the cancer cells [31, 32]. In an in vitro experiment,
Guo et al. also demonstrated that ICAM1 might be an effective
therapeutic target by delivering small interfering RNA to triple-
negative breast cancer MDA-MB-231 cells, resulting in an
inhibition of cancer progression [33].
The overrepresented test indicated that the identified proteins

were enriched for immune-related and insulin signalling pathways
for luminal A-like breast cancer. Pathway analyses of GWAS data
have highlighted the involvement of immune-response pathways
in susceptibility to overall breast cancer [10]. Our findings
provided new evidence at protein level, supporting their role in
breast cancer aetiology, especially in the development of luminal
A-like breast cancer. Whether the proteins enriched in immune-
related pathways in the current study having clinical implication in
patient management or treatment decision deserves future
investigations.
Our study had several strengths. To our knowledge, no study

has examined the relationship between circulating proteins and
risk of breast cancer intrinsic-like subtypes via MR approaches. We
employed different MR approaches to address potential issues of
pleiotropy and invalid instruments in our analyses. Further, the
large sample size included in the current study could improve the
precision of association estimates. The bidirectional MR analysis
provided further evidence that reverse causality was unlikely to
have a strong impact on our findings. Nevertheless, we also
recognise several limitations in our approach. Although Egger
regression and MR-PRESSO were applied to detect and address
potential pleiotropic effects, we cannot completely rule out the
possibility of residual pleiotropic effects for the genetic instru-
ments used in the analysis. Pleiotropic effects could be more
appropriately addressed if individual-level data is available. In
addition, the surrogate intrinsic-like subtypes of breast cancer
were defined by histopathological information on ER, PR, HER2
and grade status instead of on the basis of actual molecular
profiles [34], which may introduce misclassifications. This mis-
classification is also expected to be non-differential, leading to a
null association if exists, given the data used in our two-sample
MR analysis were collected from two independent populations.
Another limitation was that the sample size for the subtypes otherTa
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than luminal A-like in the BCAC was still relatively small. It is
possible that proteins identified to be associated with luminal
A-like breast cancer only in this study may also be associated with
other subtypes if the sample size of other subtypes increased.
Moreover, we lacked information on certain risk factors which
precluded analysis in subgroups such as stratification by
menopausal status or age at diagnosis. Also, as the circulating
protein levels in whole blood may not accurately reflect its levels
in the relevant issues such as breast tissues, additional investiga-
tions focused on tissue pQTLs are warranted to further study the
relationship between proteins and breast cancer risk. Furthermore,
our study could not evaluate other important circulating proteins
that are not included in the SomaScan panel. Further investigation
should be conducted once more comprehensive pQTL data
became available.
In conclusion, this MR study investigated the potential causal

relationship between circulating proteins and the risk of breast
cancer intrinsic-like subtypes and identified 98 proteins associated
with the risk of one or more subtypes. Levels of three proteins,
ICAM1, PLA2R1 and TXNDC12, showed a strong heterogeneity for
their associations, as the estimates varied significantly across the
subtypes. These findings revealed the importance of accounting
for subtype heterogeneity when investigating risk factors and
searching for biomarkers for breast cancer, which in turn may be
instrumental in effective risk classification and personalised
screening.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data used in this study are publicly available summary-level data, with the relevant
studies cited.
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