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BACKGROUND: Gastric cancer (GC) is characterised by a heterogeneous tumour microenvironment (TME) that is closely associated
with the response to treatment, especially immunotherapies. However, most previous GC molecular subtyping systems need
complex gene signatures and examination methods, restricting their clinical applications. Thus, we developed a new TME-based
molecular subtype using only two genes.
METHODS: Nine independent GC cohorts at the tissue- or single-cell level with more than 2000 patients were used in this study,
including data we examined by single-cell sequencing, quantitative RT-PCR and immunochemistry/immunofluorescence staining.
Nine different methods, five existing molecular subtypes and a series of signatures were used to evaluate the TME and molecular
characteristics of GC.
RESULTS: We established a CTSL/ZBTB7B subtyping system and uncovered the novel CTSLHighZBTB7BLow high-risk subgroup, but
characterised by relative higher immune cell infiltration and lower tumour purity. This subgroup demonstrate higher levels of
immune checkpoints and more enrichment of cancer-related pathways compared with other cases.
CONCLUSIONS: We identified a high-risk subpopulation with unique TME features based on expressions of CTSL and ZBTB7B,
suggesting a counterbalancing phenotype between immunostimulatory and immunosuppressive mechanisms. This subtyping
system could be used to select treatment and management strategies for GC.
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BACKGROUND
Gastric cancer (GC) is one of the most important cancer types
worldwide with high morbidity and mortality, especially in Eastern
Asian countries, including China [1]. High heterogeneity in the GC
tumour microenvironment (TME) obstruct the development of
efficient therapeutic approaches, leading to terrible survival rates
[2]. The highly complex and heterogeneous TME contains not only
cancer cells, but also a variety of immune cells that regulate
tumour growth and metastasis [3]. The TME is also a key factor
affecting the efficiency of cancer immunotherapies, especially
immune checkpoint (IC) inhibitors, because ICs and their ligands
frequently exist in the TME and regulate anti-tumour immune
responses [4]. Prior studies on the Immunoscore demonstrated
that high immune cell infiltrations predicts favourable survival in
gastrointestinal cancer [5, 6]. However, a recent study identified a
unique subtype of high intratumoural CD8 T cell infiltration and a
high density of tumour-associated macrophages that expressed
CD274 in colorectal cancer [7]. Moreover, we also revealed a
unique subpopulation of regulatory T cell with intense CTLA4
expression. This subgroup showed high-risk of recurrence and
death with an immune overdrive TME phenotype, including high

levels of immune infiltration, IC expression, MSI/dMMR status and
TGF-β signalling in colorectal cancer [8]. These tumour tissues pre-
existing in the TME have an abundance of immune responses and
IC activation, which is necessary for IC inhibitor-based immu-
notherapy. Hence, the identification of this novel phenotype is
urgently needed in other cancer types for personalised cancer
immunotherapies, including GC.
TME-based immune molecular subtyping has been developed

for cancer precision therapy in several cancer types, including GC
[9, 10]. However, the signatures of these molecular subtyping
systems usually contain many marker genes and require complex
examination methods. Furthermore, novel technologies used in
these systems, such as single-cell or in situ barcode sequencing,
are expensive and leave much to be desired for large-scale
diagnostic use [11]. In this scenario, it is necessary to develop new
molecular subtyping systems with only a few markers that can be
detected quickly and economically. Intriguingly, recent studies
identified a series of subpopulations in CRC, bladder cancer and
glioma by only single or double marker genes, such as CD8A/
CD274, Siglec15, FOXP3/CTLA4, VTCN1/CD274 and CD8A/
IDO1 stratifications [7, 8, 12–14]. However, as one of most
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prevalent types of gastrointestinal cancer, GC still lacks a TME
molecular subtyping system identified by few marker genes.
In this study, we identified two genes CTSL and ZBTB7B, to

classify GC patients based on multiple independent cohorts,
including public datasets and our validation cohort/sample). We
revealed the unique clinical, TME and molecular characteristics of
tumours identified by CTSL and ZBTB7B in data of clinical GC
tissues and single-cell GC data. Moreover, these subtypes were
validated by a series of wet-lab experiments and a Pan-cancer
analysis.

METHODS
Data and resources
The Cancer Genome Atlas (TCGA) RNA-Seq data of 20 cancer types and
clinical data were downloaded from the Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). Primary tumour samples were used
in this research. Overall survival (OS) data of each TCGA cancer cohort was
obtained from the integrated TCGA Pan-cancer clinical data resource [15].
Abbreviations and patient numbers of each TCGA cancer type were
included in Supplementary Table 1. Seven independent GC datasets
GSE66229, GSE26253, GSE26942, GSE84437, GSE15459, GSE183904 and
GSE163558 were available on Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo). Information of each GEO GC cohort was
included in Supplementary Table 2. A total of 120 GC samples (for the
tissue level expression examination) and one fresh GC sample (for the
single-cell level expression examination) were collected from Affiliated
Hospital of Jiangnan University with informed consent, and this project
was approved by the Clinical Research Ethics Committees of Affiliated
Hospital of Jiangnan University (Supplementary Table 3).

Evaluation of immune infiltrates
Nine different methods were used to evaluate immune infiltrates.
ESTIMATE, 22 immune cell types (LM22) of CIBERSORTx and Pan-cancer
immunogenomic based on single sample gene set enrichment analysis
(ssGSEA) were used as we previously described [8,16–19]. Five cell type
quantification methods, including TIMER, QUANTISEQ, XCELL, MCPCOUN-
TER and EPIC were calculated by TIMER 2.0 (http://timer.cistrome.org/)
[20–25]. ImmuCellAI was used to estimate the abundance of immune cells
from gene expression dataset (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/)
[26]. Lists of Pan-cancer immunogenomic signature and aggregation
schemes for each method were defined as shown in Supplementary
Tables 4 and 5, respectively. A single-cell RNA-seq examination was
performed by experimental personnel in the laboratory of GENECHEM
according to 10× Genomics Single Cell Protocols. Seurat package in R
software was used to perform single-cell cluster and annotation [27]. Cell
types from each patient were annotated according to expression of EPCAM
(cancer cell), MS4A1 (B cell), MS4A2 (mast cell), CD3E (T cell), CD68
(macrophage), DCN (fibroblast), TNFRSF17 (plasma cell), PLVAP (endothelial
cell), CSF3R (neutrophil) and RGS5 (pericyte).

Molecular subtype analysis
Six immune subtypes were identified in more than 10000 tumours across
33 TCGA cancer types by performing an extensive immunogenomic
analysis, including C1 (wound healing), C2 (IFN-g dominant), C3
(inflammatory), C4 (lymphocyte depleted), C5 (immunologically quiet)
and C6 (TGF-β dominant) subtypes [10]. GC was divided into four
molecular classification in previous TCGA study: Epstein–Barr virus (EBV),
microsatellite unstable (MSI), genomically stable (GS) and chromosomal
instability (CIN) tumours [9]. Two distinct molecular subtypes: mesench-
ymal phenotype (MP) and epithelial phenotype (EP) were identified in GC
by analysing genomic and proteomic data [28]. Four clinically relevant
molecular subtypes were established in GC data of Asian Cancer Research
Group (ACRG), including EMT, MSI, MSS/TP53+ and MSS/TP53- subtypes
[29]. Four immune/fibrotic TME subtypes were detected and conserved in
human cancers: immune-enriched/fibrotic (IE/F), immune-enriched/non-
fibrotic (IE), fibrotic (F) and immune-depleted (D) [30].

Enrichment analysis
Hallmark TGF-β signalling, Go biological adhesion, Hallmark EMT, Hallmark
angiogenesis, KEGG pathways in cancer and Vecchi gastric cancer advanced vs
early up signatures were obtained from Molecular Signatures Database v7.0

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Cancer-associated
extracellular matrix (ECM) genes were acquired from prior research [31].
ssGSEA of GSVA package in R software was used to calculate these signatures
in each GC cohort according to previous analysis [19, 32].

Quantitative RT-PCR (qRT-PCR), haematoxylin–eosin (HE),
immunohistochemistry (IHC) and multicolour
immunofluorescence
Total RNA was purified from GC tissues and was reverse transcribed into
cDNA as we previously described [8]. QRT-PCR was used to quantitate the
relative mRNA expression of CTSL and ZBTB7B using UltraSYBR Mixture
(CWBIO, China). β-Actin was used as an internal control. Primers are listed
in Supplementary Table 6. HE and IHC staining assays were performed
based on our previously described method [8, 33]. IHC staining was
applied to determine the relative protein expression of CTSL and ZBTB7B
using anti-cathepsin L (CTSL, Santa Cruz, sc-32320, 1:100) and anti-TH-POK
(ZBTB7B, Santa Cruz, sc-376250, 1:100) anti-bodies, respectively. Multiple
fluorescent immunohistochemical staining kit (absin, abs50012) was used
for immunofluorescence labelling as previously described [34]. Primary
antibodies including anti-cathepsin L (Abcam, ab133641, 1:100) and anti-
CD68 (Santa Cruz, sc-20060, 1:50).

Statistical analysis, code availability and visualisation
OS of ICs, IC score, CTSL or ZBTB7B was evaluated by Kaplan–Meier survival
analysis and log-rank test as previously describe (Supplementary Fig. 1)
[8, 32]: samples were divided into high and low expression groups, P and
hazard ratio (HR) values of OS of based two groups were examined
according to Kaplan–Meier survival analysis. The lowest log-rank P value
was select from the 10th to 90th percentiles of the samples. Pscore and
HRscore was defined as –log (P value) and log2 (HR value), respectively.
Patients’ survival was analysed by R software 4.1.0 and Graphpad prism 9.
Cox regression model analyses were conducted using R software 4.1.0 and
Graphpad prism 9. T test or Mann–Whitney test was used in the two-group
comparison and the Kruskal–Wallis test was used in the three-group
comparison using Graphpad prism 9. All reported P values were two-sided.
Group comparison and Chi-squared test analyses were performed using
GraphPad Prism 9. Analyses were performed using R software 4.1.0 with
GSVA (1.28.0) package (ssGSEA) for Pan-cancer immunogenomic and
enrichment score calculation; survival (2.44-1.1) package for two-group OS
analysis and COX regression model analysis; ESTIMATE (1.0.13) package for
ESTIMATE ImmuneScore and TumorPurity estimation; Seurat (4.0.3)
packages for cluster and annotation in single-cell GC samples. A P value
<0.05 was regarded as statistically significant. Figures were designed,
analysed and visualised by GraphPad Prism 9 and R software 4.1.0.

RESULTS
CTSL and ZBTB7B expression were intensely associated with
IC expression and survival in GC
Activation of ICs induces an immunosuppressive TME and
promotes tumour progression, suggesting that high expression
of ICs is associated with poor disease outcomes [35]. Thus, we
performed survival analyses for nine ICs in the TCGA GC cohort
according to a previously TME study [14]. First, we explored the
expression levels of these ICs and identified a co-expression
pattern in the TCGA GC cohort (Supplementary Fig. 2a). Then, we
grouped patients based on each IC expression level as we
previously described [8]. The optimal cutoff of each IC expression
was applied to best stratify patients into two groups, respectively
(Supplementary Fig. 1). Interestingly, most ICs were associated
with a favourable OS or did not show an obvious relationship with
survival (Pscore < 1.3, equivalent to log-rank test P > 0.05), except
that PDCD1LG2 showed a relative weaker relationship to poor
survival (P= 0.036, Supplementary Fig. 2b–j). Then, we estimated
whether combined factors integrated by ICs could serve as a good
indicator for a poor prognosis in GC. IC score was generated by
ssGSEA based on expressions of these nine ICs. High IC score
group was significantly associated with favourable survival and
showed higher ICs expression compared with low IC score group
(Supplementary Fig. 3). These analyses revealed that it may
inappropriate to use ICs directly as a basis for stratification and
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prognosis evaluation in GC. It is necessary to develop indirect
methods to associate the ICs expression with poor
prognosis in GC.
Thus, we used a systemic biological approach to identify two

genes (CTSL and ZBTB7B) that representing positive or negative
correlations, respectively (Supplementary Fig. 4a). First, 60483
genes were found in the TCGA GC RNA-Seq data, and 4755 genes
were identified after reducing the background noise. Then, we
analysed the correlations of these genes to IC scores one by one. A
total of 456 and 34 genes were identified as IC positively and
negatively correlated genes, respectively. There are two paths in
the next set of analyses. For the IC negatively correlated genes,
only ZBTB7B was identified as favourable survival-related. Of the
456 IC positively correlated genes, 18 candidate genes were
significantly associated with patient poor survival, and we further
identified seven upregulated genes. CTSL showed the highest HR
and was highly correlated with the IC score. As expected, the
expression level of CTSL increased as the IC score and expression
levels of each IC increased, whereas the expression of ZBTB7B
decreased as the IC score and expression levels of each IC
increased (Supplementary Fig. 4b). Furthermore, high expression
of CTSL or ZBTB7B was associated with poor or favourable OS,
respectively, in multiple independent GC cohorts (Supplementary

Figs. 4c, d and 5). Moreover, both the expression of both CTSL and
ZBTB7B was dysregulated in GC (Supplementary Fig. 4e, f). To
further validate these findings, an independent cohort of 120 GC
patients was collected and subjected to a qRT-PCR assay.
Consistent with above observations in public GC cohorts, CTSL
was upregulated in GC and associated with poor survival, whereas
ZBTB7B was downregulated in GC and associated with favourable
survival (Supplementary Fig. 6). These results demonstrate the
potential of CTSL and ZBTB7B expression to associate ICs with
survival outcomes of GC.

Stratification based on the expression of CTSL and ZBTB7B
was associated with GC prognosis
We next applied the optimal cut-offs for CTSL and ZBTB7B to
stratify patients into different risk subgroups. When dichotomising
patients using the optimal cut-offs of CTSL and ZBTB7B in the
TCGA GC cohort, the CTSLHighZBTB7BLow subgroup was associated
with a worst OS, while the CTSLLowZBTB7BHigh subgroup showed a
best OS (Fig. 1a). To validate the existence of these distinctive
subgroups in GC, additional GEO datasets and our validation
cohort were analysed, and confirmed these results in the TCGA GC
cohort (Fig. 1a, b and Supplementary Fig. 7). Notably, survival
prediction among combination of CTSL/ZBTB7B was better than
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single CTSL or ZBTB7B according to P values. To further explore
the clinical prognostic value for each subpopulation of the CTSL/
ZBTB7B stratification, we estimated the recurrence risk in the three
subgroups. Our results revealed that the CTSLHighZBTB7BLow

subgroup had a higher risk of relapse, while the CTSLLow

ZBTB7BHigh subgroup showed a lower risk of relapse in two GEO
datasets (Fig. 1c). Collectively, these data reveal that the
CTSLHighZBTB7BLow and CTSLLow ZBTB7BHigh subgroups were
intensely correlated with survival and recurrence in GC patients.
The TNM staging system has been widely accepted as a

powerful predictor of survival and treatment response in human
cancers. To evaluate the prognostic value of the CTSL/ZBTB7B
system, Kaplan–Meier and stratification analyses were performed
using in GC patients with TNM II+ III stage, and the
CTSLHighZBTB7BLow subgroup still showed poor outcomes in
comparison with the CTSLLowZBTB7BHigh subgroup in public
datasets and validation GC cohort (Fig. 2a, b). Next, Cox regression
models were developed to integrate the CTSL/ZBTB7B stratifica-
tion and TNM staging indexes, and no collinearity was observed
among these factors (tolerance >0.1 and VIF < 10). The CTSL/
ZBTB7B stratification remained an independent prognostic vari-
able for GC patients in both public and validation cohorts (Fig. 2c).
In summary, these data suggest that the stratification based on
the expression levels of CTSL and ZBTB7B was significantly
associated with the GC prognosis.

The CTSLHighZBTB7BLow high-risk subpopulation featured by
high immune infiltrates and low tumour purity
We investigated the TME characteristic in each subgroup using
ESTIMATE method (Fig. 3a, b). The CTSLHighZBTB7BLow subgroup
demonstrated the highest immune infiltrates and lowest tumour
purity, while the CTSLLowZBTB7BHigh subgroup showed the lowest
immune infiltrate in GC cohorts. Moreover, we observed that total
and major immune cell types were also highly infiltrated in the
CTSLHighZBTB7BLow subgroup, and were poorly infiltrated in the

CTSLLowZBTB7BHigh subgroup in most public GC cohorts by using
other evaluation approaches (Supplementary Figs. 8–15). For
instance, CD4 and CD8 T cell levels were highest in the
CTSLHighZBTB7BLow subgroup from most public GC cohorts
according to TIMER, Pan-cancer immunogenomic ssGSEA and
EPIC, whereas the CTSLLowZBTB7BHigh subgroup demonstrated
contrary results. CEACAM5 and KRT20 are considered gastro-
intestinal cancer markers, and we found the CTSLHighZBTB7BLow

subgroup demonstrated the lowest expression levels of CEACAM5
and KRT20 in most public GC cohorts, while the CTSLLow

ZBTB7BHigh subgroup showed the highest levels of these two
markers (Supplementary Fig. 16) [36–39].
To further validate these findings, we performed a single-cell

analysis using primary tumour cases from the GSE183904,
GSE163558 and our validation sample (Supplementary
Figs. 17–19), and found expression of CTSL or ZBTB7B were
almost existed in multiple cell types (Fig. 3c–e left/middle).
Interestingly, GC cell population expressed relatively higher
ZBTB7B, whereas CTSL expression levels were higher in non-
malignant cell types, especially in macrophages. Moreover, CTSL
showed the highest expression level in macrophages, while
ZBTB7B showed the highest expression level in cancer cells
(Fig. 3c–e right). Besides, we defined those cells with detectable
expression of CTSL or ZBTB7B as CTSL+ or ZBTB7B+ cells,
respectively. The ratio of the percentage of CTSL+ to that of
ZBTB7B+ cells in each case was negatively correlated with cancer
cell proportion in the GSE183904 GC dataset, but positively
correlated with immune cells proportion (Fig. 3f). Finally, results of
HE and IHC staining in validation cohort also revealed higher
immune cell infiltration and lower tumour purity in the CTSLHigh

ZBTB7BLow subgroup than in the CTSLLow ZBTB7BHigh subgroup
(Fig. 3g). We noted that a recent study about TME suggest that
macrophages derived from bone marrow or purified from E0771
tumours overexpressed CTSL [40]. Thus, multicolour immuno-
fluorescence staining was performed in GC tissues and confirmed
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that CTSL was co-expressed to macrophage marker CD68 (Fig. 3h).
In summary, our data at both GC bulk tissue and single-cell levels
indicate that the CTSLHighZBTB7BLow high-risk subgroup is
characterised by a TME with high immune cell infiltration and
low tumour purity.

Exploration of potential reasons accounting for the poor
survival in CTSLHighZBTB7BLow patients
To answer why the CTSLHighZBTB7BLow cases with high immune
infiltration and low tumour purity but show the worst survival, we
analysed the expression levels of ICs, because the IC signals could
induce an immunosuppressive TME [35]. Notably, the
CTSLHighZBTB7BLow subgroup expressed the highest levels of ICs
in GC cohorts (Fig. 4a). To further evaluate the TME characteristics
in different CTSL/ZBTB7B subgroups, we investigated the propor-
tions of different immune subtypes, GC molecular classification,
EP/MP subtypes, ACRG subtypes and TME subtypes in each
subgroup of this stratification system using the TCGA GC cohort
[9, 10, 28–30]. The CTSLHighZBTB7BLow subgroup showed higher
proportions of C2, C3, C6, EBV, GS, MP, EMT, IE/F and IE subtypes
than other subgroups (Fig. 4b). Note that the CTSLLowZBTB7BHigh

subgroup does not overlap with the C6 or EBV subtype.
Intriguingly, C2 and C3 cases had strong T cell signals, and C6
cases displayed the highest TGF-β signature. In addition, EBV
subtypes displayed PD-L1/2 (CD274/PDCD1LG2) overexpression
and high levels of immune cell signalling. GS cases are
characterised by higher cell adhesion. MP and EMT subtypes
showed active EMT biological process. IE/F and IE subtypes were
distinguished by high levels of immune infiltrate. In particular, IE/F
features with cancer-associated fibroblast (CAF) activation, high IC
expression and a high response to immunotherapy. High levels of
the TGF-β signature, PD-L1/2, cell adhesion and EMT are
considered tumour-promoting phenotypes and significantly
associated with a poor prognosis. CAF have been reported to
promote tumorigenesis and metastasis by secreting TGF-β and
other mechanisms. Cancer-associated ECM genes dysregulation is
correlated with the activation of the TGF-β signalling in CAFs and
is associated with immunosuppression in otherwise immunologi-
cally active tumours [31]. Thus, we further analysed these
signatures. Both TGF-β signalling and cancer-associated ECM
genes signature levels were the highest in the CTSLHighZBTB7BLow

subgroup and the lowest in the CTSLLowZBTB7BHigh subgroup
(Supplementary Fig. 20a, b). Besides, we estimated gene
signatures of adhesion and observed the highest adhesion levels
in the CTSLHighZBTB7BLow subgroup compared with other GC
subgroups (Supplementary Fig. 20c). Notably, the CTSLHighZBTB7-
BLow subgroup showed the highest EMT and angiogenesis activity,
with the CTSLLowZBTB7BHigh subgroup showing the lowest
(Supplementary Fig. 20d, e). Then, the CTSLHighZBTB7BLow

subgroup had the highest levels of CAFs in the multiple public
GC cohorts (Supplementary Fig. 21). Moreover, the CTSLHighZBTB7-
BLow subgroup exhibited the highest levels of pathway in cancer
and advanced tumour progression signatures (Supplementary
Fig. 20f, g). Taken together, the CTSLHighZBTB7BLow patients
featured by a comparatively higher immunosuppressive TME and
enriched cancer/tumour metastasis-related pathways, which
further explains why the CTSLHighZBTB7BLow subgroup demon-
strates poor clinical outcomes despite high immune cell infiltra-
tion and low tumour purity.
C2, CIN, MP and D cases occupied the largest proportion in the

TCGA GC cohort based on their matched molecular subtype.
Interestingly, the CTSL/ZBTB7B stratification system still stratified
C2, CIN, MP or D cases into different subgroups, respectively. The
CTSLHighZBTB7BLow subgroup was associated with poor 5-year OS
compared with the CTSLLowZBTB7BHigh subgroup in C2, CIN or MP
GC patients, respectively (Fig. 4c). These data demonstrates that
CSTL/ZBTB7B stratification has additional and independent prog-
nostic implications beyond these classification.

Pan-cancer prognostic significance of the CTSL/ZBTB7B
stratification system
To estimate the prognostic effect of the CTSL/ZBTB7B stratification
system in human cancer types, we analysed more than 7000
primary tumour cases of other 19 cancer types from the TCGA
RNA-Seq dataset as described in our previous study [8]. The
CTSLHighZBTB7BLow subpopulation showed worse survival than the
CTSLLowZBTB7BHigh subpopulation in THCA, BLCA, HNSC and OV,
whereas kidney cancers, PAAD, melanoma and PRAD showed the
opposite results (Fig. 5a). Because the CTSLHighZBTB7BLow

subgroup only comprised six cases (1%) in THCA, we selected
BLCA, HNSC and OV for subsequent analyses. The CTSLHighZBTB7-
BLow subgroup had the worst survival, with the CTSLLowZBTB7BHigh

subgroup showing the best prognosis, though three-group
P= 0.0608 in OV (Fig. 5b). Further analyses demonstrated that
the CTSLHighZBTB7BLow subpopulation showed the highest
immune infiltration, lowest tumour purity and IC activation in
these three cancer types (Fig. 5c, d). These data support the
proposal that the CTSL/ZBTB7B stratification system could identify
different prognostic subgroups with high immune infiltrates and
low tumour purity in certain cancer types.

DISCUSSION
GC is a heterogeneous disease featured by a complicated TME and
molecular characteristics. Thus, several TME-based immune
molecular subtypes have been constructed for patient selection
to apply precision therapy [9, 10]. Currently, the main anti-cancer
drugs for GC treatment comprise chemotherapy and targeted
therapy. Recently, IC inhibitors related immunotherapy has
emerged as a revolutionary and promising treatment approach
in some cancer types [35]. In this study, two genes CTSL and
ZBTB7B were identified based on the expression of ICs in the
TCGA GC cohort. Based on the expression of CTSL and ZBTB7B, we
further constructed a two-gene stratification system that could
efficiently identify a high-risk subgroup with high immune
infiltrates and low tumour purity in multiple GC cohorts and
other TCGA cancer types (Fig. 6).
CTSL, a human cysteine proteases gene, is dysregulated and

associated with malignant phenotypes in human cancers. A recent
study showed that CTSL promotes angiogenesis and tumour
growth in GC [41]. ZBTB7B, also named as ThPOK, is a CD4-lineage
transcription factor gene that has been reported to suppress GC
cell viability and promote the proliferation of T cells [42]. By using
multiple public GC cohorts and clinical samples we collected, we
found that CTSL was upregulated in GC, while ZBTB7B was
downregulated in GC. According to an approach applied in our
previous studies, GC patients were divided into two groups based
on the expression of CTSL or ZBTB7B, and CTSLHigh or ZBTB7BLow

cases exhibit poor OS [8, 32]. According to this method, a CTSL/
ZBTB7B subtyping system was developed and applied to other
seven GC cohorts at tissue level, including six public cohorts and
our validation cohort. The CTSLHighZBTB7BLow subgroup was
associated with the worst clinical outcomes, while the
CTSLLowZBTB7BHigh subgroup showed best clinical outcomes.
These results are also consistent with those previous studies that
showed CTSL as a tumour-promoting factor, while ZBTB7B as a
tumour-suppressor [41, 42]. It is noted that there are different
optimal cut-off peaks for CTLS or ZBTB7B in different GC cohorts,
and the percentage of each CTSL/ZBTB7B subgroup was also
dynamic in different GC cohorts. These dynamic percentages may
reflect heterogeneity in each GC cohort, such as TME character-
istics, methodological difference and region specificity. Thus, this
finding needs further validation in a large prospective patient
population to define a standard cut-off for the CTSLHighZBTB7BLow

subgroup.
The TME is the crucial for studying the immunotherapy

response, and an active response to IC inhibitors requires immune
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infiltration [43, 44]. In this study, nine independent methods
(ESTIMATE, TIMER, CIBERSORTx, ssGSEA based on Pan-cancer
immunogenomic, QUANTISEQ, XCELL, MCPCOUNTER, EPIC and
ImmuCellAI) were used to evaluate the immune-related activity of
each CTSL/ZBTB7B subgroup. Interestingly, the CTSLHighZBTB7BLow

subgroup was positively correlated with immune cell infiltrates in
most GC cohorts, while the CTSLLowZBTB7BHigh subgroup showed
negative correlations. CTSLHighZBTB7BLow cases demonstrated the
lowest, while CTSLLowZBTB7BHigh cases showed the highest
tumour purity. These TME phenotypes seem contradict the
functions of the two genes according to recent studies that CTSL
promotes tumour progression, whereas ZBTB7B inhibits cell
proliferation in GC [41, 42]. However, these studies were mainly
focused on malignant phenotypes in GC cell lines and did not
focus on the TME of GC tissues. Thus, we need to further explore
why does the CTSLHighZBTB7BLow subpopulation have high
immune infiltration and low tumour purity phenotypes, but a
poor prognosis. Our analyses of single-cell data from the public
and we collected sample revealed that CTSL expression levels
were higher in nonmalignant cell types, especially in macro-
phages, while ZBTB7B was mainly expressed in cancer cells. This
result further explained our findings at the bulk tissue level from
GC cohorts. HE, IHC and multicolour immunofluorescence results
in our validation samples also confirm these results to a certain
extent. Interestingly, a recent study about TME reported that
tumour-associated macrophages derived from bone marrow or

purified from E0771 tumours overexpressed CTSL and harboured
hyperactive cysteine protease activity in their lysosomes, resulting
in decreased CD8 T cell activation and enhanced tumour growth
[40]. In our study, CTSL/ZBTB7B is the top poor/favourable clinical
outcomes gene in our identification analysis, and represents
immune infiltrates/tumour purity level, respectively. These two
genes were used to develop an effective and readily implemented
subtyping system to identify high-risk patients with high immune
infiltrates and low tumour purity in GC. Nevertheless, the
interaction between CTSL and ZBTB7B for poor prognosis in GC
is yet to be determined and may further require dynamic single-
cell analysis and some transgenetic mouse model of immune
contexture in the future. Nonetheless, our findings do not
contradict, but rather extend the function of CTSL and ZBTB7B,
also suggesting that some tumour-promoting genes affect
tumorigenesis and progression by regulating the functions of
nonmalignant cell populations. The second possible explanation is
that expression levels of IC genes were highest in the
CTSLHighZBTB7BLow subgroup compared with the CTSLLow

ZBTB7BHigh subgroup according to analyses in GC cohorts. ICs
provide negative signals that limit T cell immune responses and
are used by tumour cells to mediate tumour escape [35]. Third,
parts of cell types are associated with immunosuppression
phenotypes. For instance, Tregs and CAFs were enriched in the
CTSLHighZBTB7BLow subgroup of GC cohorts. Tregs exhibit
immunosuppressive activities. CAFs have pro-tumorigenic
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and immunosuppressive properties in most cases [35]. Fourth,
immunosuppressive and cancer-related pathways were active in
the CTSLHighZBTB7BLow subgroup. Prior studies explored and
identified several molecular subtyping systems in TCGA, and we
found that the CTSLHighZBTB7BLow high-risk subgroup encom-
passed higher proportions of C2, C3, C6, EBV, GS, MP, EMT, IE/F
and IE subtypes than the CTSLLowZBTB7BHigh subgroup. These
molecular subtypes are associated with a series of cancer-related
pathways or phenotypes, such as a high TGF-β signature, ECM,
high IC expression, cell adhesion and active EMT process. In
particular, increased TGF-β signalling is one of the primary
mechanisms mediating immune escape. The TGF-β signalling also
plays an important role in inducing EMT, which is critical in tumour
invasion and metastasis [8, 45]. EMT also contributes to immune
evasion via multiple routes, including the establishment of the
TME, TGF-β and decreased sensitivity to immune effector cells
[11]. Besides, cancer-associated ECM genes are associated with the
activation of the TGF-β signalling in CAFs [31]. These features of
the CTSLHighZBTB7BLow high-risk subgroup seems similar to an
immune overdrive TME phenotype in previous studies, suggesting
a counterbalancing phenotype between immunostimulatory and
immunosuppressive mechanisms [7, 8]. Nonetheless, previous
immune overdrive TME phenotypes were usually identified based
on unique T cell populations-related TME, such high intratumoural
CD8 T cell infiltration and a high density of tumour-associated
macrophages that expressed CD274, as well as Tregs with

overexpressed CTLA4 [7, 8]. In this study, CTSL and ZBTB7B were
identified at tissue levels and mainly expressed in different cell
types, which were dissimilar to previous immune overdrive TME
phenotypes.
The CTSL/ZBTB7B subtyping system displayed certain interesting

aspects, advantages, and significance. First, nine GC datasets were
used in this study, including Western and Eastern GC populations,
and they were analysed by multiple approaches of gene expression
examination, such as RNA-Seq (bulk and single-cell), microarray,
qRT-PCR, IHC and multicolour immunofluorescence. Moreover, nine
independent immune algorithms were used in analyses. These
factors make the conclusions of this research more robust and
reliable. Second, an accurate prognostic estimate is a critical
prerequisite for selecting appropriate treatment strategies, such as
TNM stage. The CTSL/ZBTB7B stratification remain an independent
prognostic variable for survival after adjusting for TNM stage.
Besides, this stratification has additional and independent prog-
nostic implications beyond a series previous molecular subtypes.
Third, the CTSL/ZBTB7B subtyping system can identify high
immune infiltration and low tumour purity GC patients with relative
higher ICs level, which may provide a guideline for the GC patients’
selection in immunotherapies. The effectiveness of immunomodu-
latory strategies lies in the presence of anti-tumour immune
responses. Patients of the CTSLHighZBTB7BLow subpopulation
demonstrated poor clinical outcomes, high immune cell infiltration
and levels of ICs, suggesting that anti-tumour immune responses

lC inhibitor combination treatment and
related therapeutic strategies
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pre-exist in the TME, which could provide fertile ground for
effective IC inhibitor-based monotherapy or combination therapy
[7, 8, 11, 46]. Moreover, the CTSLHighZBTB7BLow high-risk subpopu-
lation showed high TGF-β signalling and an active EMT process,
hinting that targeting TGF-β and EMT pathway could augment the
effectiveness of IC inhibitor-based therapies in these patients, such
as simultaneous targeting of TGF-β/PD-L1 [47]. Besides, the
CTSLHighZBTB7BLow high-risk cases probably benefit from cysteine
proteases inhibit related therapy [40]. Besides, we performed a Pan-
cancer analysis to explore the prognostic effect of the CTSL/ZBTB7B
stratification system in human cancer types. BLCA, HNSC and OV
showed similar results to GC, while kidney cancer and melanoma,
etc. showed contrasting results. The reason behind this could be
strongly tumour heterogeneous TME among cancer types. These
findings suggest that the CTSL/ZBTB7B stratification system could
be used for certain cancer types and need further validation in extra
cohorts. Fourth, most previous molecular subtyping systems
contain many marker genes and require complex examination
methods. Additionally, novel techniques are costly and far from
suitable for large-scale diagnostic use [11]. Thus, new molecular
subtypes containing only a few marker genes have been identified
in some cancer types, such as CD8A/CD274, Siglec15, FOXP3/CTLA4,
VTCN1/CD274 and CD8A/IDO1 stratifications [7, 8, 12–14]. In this
study, our subtyping system only needs to examine the expression
levels of CTSL and ZBTB7B by performing qRT-PCR, which is
commonly used in cancer diagnosis and treatment.
Collectively, our comprehensive analyses uncover a new CTSL/

ZBTB7B subtyping system that could classify patients into high
immune infiltrates and low tumour purity high-risk subgroup in
GC. Notably, combined evaluation of CTSL and ZBTB7B expression
is a strong predictor of survival and recurrence in GC patients. This
study further provides a personalised prognostic method and may
contribute to precision cancer therapies. Patients from the
CTSLHighZBTB7BLow subpopulation may benefit from more active
IC inhibitor-based combination treatment, which will also help in
the development of related therapeutic strategies.

DATA AVAILABILITY
Available of public GC datasets are described in the ‘Methods’ section. The data that
support this study are available from the corresponding author upon reasonable
request.
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