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Observing ground-state properties of the
Fermi-Hubbard model using a scalable
algorithm on a quantum computer

Stasja Stanisic1, Jan Lukas Bosse1,2, Filippo Maria Gambetta1, Raul A. Santos3,
Wojciech Mruczkiewicz 4, Thomas E. O’Brien4, Eric Ostby4 &
Ashley Montanaro 1,2

The famous, yet unsolved, Fermi-Hubbard model for strongly-correlated
electronic systems is a prominent target for quantum computers. However,
accurately representing the Fermi-Hubbard ground state for large instances
may be beyond the reach of near-term quantum hardware. Here we show
experimentally that an efficient, low-depth variational quantumalgorithmwith
few parameters can reproduce important qualitative features of medium-size
instances of the Fermi-Hubbardmodel.We address 1 × 8 and 2 × 4 instances on
16 qubits on a superconducting quantum processor, substantially larger than
previous work based on less scalable compression techniques, and going
beyond the family of 1D Fermi-Hubbard instances, which are solvable classi-
cally. Consistentwith predictions for the ground state, we observe the onset of
the metal-insulator transition and Friedel oscillations in 1D, and anti-
ferromagnetic order in both 1D and 2D. We use a variety of error-mitigation
techniques, including symmetries of the Fermi-Hubbard model and a recently
developed technique tailored to simulating fermionic systems. We also
introduce a newvariational optimisation algorithmbased on iterative Bayesian
updates of a local surrogate model.

Understanding systems of many interacting electrons is a grand chal-
lenge of condensed-matter physics1. This challenge is motivated both
by practical considerations, such as the design and characterisation of
novel materials2, and by fundamental science3–5. Yet classical methods
are unable to represent the quantum correlations occurring in such
systems efficiently, and accurately solving the many-electron problem
for arbitrary large systems is beyond the capacity of the world’s most
powerful supercomputers.

This problem is thrown into sharp relief by the iconic Fermi-
Hubbard model6,7, the simplest system that includes non-trivial cor-
relations not captured by classical methods (e.g. density functional
theory). Although a highly simplified model of interacting electrons in
a lattice, to date the largest Fermi-Hubbard system which has been
solved exactly consisted of just 17 electrons on 22 sites8. Approximate

methods can address much larger systems, but suffer from significant
uncertainties in computing physically relevant quantities in certain
regimes1.

Quantum computers can represent quantum systems natively,
and may enable the solution of physical problems that classical
computers cannot handle. The Fermi-Hubbard model has been
widely proposed as an early target for quantum simulation
algorithms9–16. As well as its direct application to understanding
technologically-relevant correlated materials, the regularity and
relative simplicity of the Fermi-Hubbard Hamiltonian suggest that it
may be easier to solve using a quantum computer than, for example,
a large unstructuredmolecule; on the other hand, the challenge that
it presents for classical methods makes it an excellent benchmark
for quantum algorithms.
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Small-scale experiments have used quantum algorithms to find
ground states of the interacting Fermi-Hubbardmodel for instances on
up to 4 sites17–19 using up to 4 qubits. These experiments compress the
model based on its symmetries; methods of this form, while having
running time scaling polynomially with system size, are complex
enough that solving apost-classical Fermi-Hubbard instancewould not
be viable on a near-term quantum computer.

Here we instead use an extremely efficient quantum algorithm,
proposed in Ref. [12] based on previous work10,11,20, to study medium-
scale instances of the Fermi-Hubbard model without the need for
compression. The algorithm fits within the framework of the varia-
tional quantumeigensolver21,22 (VQE) using theHamiltonian variational
ansatz10. Based on extensive classical numerics for Fermi-Hubbard
instances onup to 12 sites12, this algorithmmaybe able to find accurate
representations of the ground state of Fermi-Hubbard instances
beyond classical exact diagonalisation by optimising over quantum
circuits where the number of ansatz layers scales like the number of
sites, corresponding to several hundred layers of two-qubit gates.
While substantially smaller than previous quantum circuit complexity
estimates for post-classical simulation tasks, this is still beyond the
capability of today’s quantum computers.

In this work, we demonstrate that a far lower number of ansatz
layers can nevertheless reproduce qualitative properties of the
Fermi-Hubbard model on quantum hardware. We apply VQE to
Fermi-Hubbard instances on 1 × 8 and 2 × 4 lattices, using a super-
conducting quantum processor23, and observe physical properties
expected for the ground state, such as the metal-insulator transition
(MIT), Friedel oscillations, decay of correlations, and anti-
ferromagnetic order. These results rely on an array of error-
mitigation techniques that improve substantially the accuracy of
estimating observables on noisy quantum devices, opening the path
to useful applications in the near future.

Results
Variational algorithm
Our algorithms attempt to approximate the ground state of the Fermi-
Hubbard model,
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〈i, j〉 denotes adjacent sites on a rectangular lattice.

Representing the Fermi-Hubbard Hamiltonian on a quantum
computer requires a fermionic encoding. Here we use the well-known
Jordan-Wigner transform, under which each fermionic mode maps to
one qubit, interpreted as lying on a 1D line. This parsimony in space
comes at the price that, except in 1D, some terms correspond to
operators acting on more than two qubits:
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For Lx × Ly instances with Lx ≥ 2, the “snake” ordering shown in
Fig. 1a (for 2 × 4) can be used to map the rectangular lattice to a line.
Under this mapping, horizontal terms only involve pairs of qubits, but
some vertical terms act on larger numbers of qubits. As onsite terms
always only involve pairs of qubits, we can place the qubits corre-
sponding to spin-down modes after those corresponding to spin-up
without incurring any additional cost for these long-range interactions.

The variational approach we use optimises over quantum circuits
of the following form12 (Fig. 1d). First, prepare the ground state of the
noninteracting (U = 0) Fermi-Hubbard model, which can be achieved
efficiently via a sequence of Givens rotations11, which act on pairs of
adjacent modes. Then repeat a number of layers, each consisting of
time-evolution according to terms in the Fermi-Hubbard model.

TheHamiltonianHhas a natural decomposition into atmost 5 sets
of terms on a rectangular lattice such that all the terms in each set act
on disjoint modes. This, in principle, allows the corresponding time-
evolution steps to be implemented in parallel, although care must be
taken over overlapping Z-strings in the Jordan-Wigner transform.
Evolution times are variational parameters which areoptimised using a
classical optimisation algorithm. Within each layer, the terms within
each set evolve for the same amount of time. For a 1 × Ly instance,
Ly ≥ 3, each layer thenhas3parameters (oneonsite term, and two types
of hopping terms); for a 2 × Ly instance, Ly ≥ 3, each layer has 4 para-
meters; and for a Lx × Ly instance, Lx, Ly ≥ 3, each layer has 5 parameters.

This structure is advantageous in two respects: the small number
of parameters reduces the complexity of the variational optimisation
process, and the variational ansatz respects the symmetries of the
Fermi-Hubbard model, which (as we will see) provides opportunities
for errormitigation. The same decomposition ofH into atmost 5 parts
allows for highly efficient measurement of energies using only 5 dis-
tinct measurements, each implemented via a computational basis
measurement with at most one additional layer of two-qubit gates12.

a b c dJordan-Wigner 
ordering

Horizontal terms, swaps and 
first vertical terms

Swaps and second vertical 
terms

Quantum circuit structure

Fig. 1 | Implementation of the Efficient Hamiltonian Variational ansatz.
a Jordan-Wigner encoding mapping one spin sector of a 2 × 4 lattice to a line.
Mapping is repeated for the other spin sector. b, c Horizontal terms are imple-
mented combined with fermionic swaps (red); then the first set of vertical terms
(blue); then another layer of fermionic swaps; then the second set of vertical terms.
d Quantum circuit structure shown for a 1 × 4 instance at half-filling with one var-
iational layer (actual experiments used up to 16 qubits). G: Givens rotations; O:
onsite gates; H: hopping gates. Onsite and hopping gates correspond to time-
evolution according to onsite and hopping terms in the Fermi-Hubbard

Hamiltonian; the structure of this part is repeated for multiple layers. All onsite
terms have the same time parameter, and for 1 × Ly instances, all hopping terms
occurring in parallel have the same time parameter. When implemented on hard-
ware in a zig-zag configuration, a layer of FSWAP gates is required before and after
the onsite gates. First four qubits represent spin-upmodes, last four represent spin-
down modes. All operations in this diagram are implemented using two hardware-
native two-qubit gates. Circuit is repeatedmultiple times for energymeasurement,
with differing measurement transformations at the end.
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The final component of the VQE framework is the classical opti-
misation routine that optimises over the parameters in the quantum
circuit to attempt to minimise the energy, and hence produce the
ground state. This optimisation process is challenging as measure-
ments are noisy, due to statistical noise and to errors in the quantum
hardware. Here we introduce a new algorithm for this optimisation
procedure, which we call BayesMGD. It enhances the MGD (Model
Gradient Descent) algorithm24,25 by performing iterative, Bayesian
updates of a quadratic, local surrogatemodel to the objective function
to make optimal use of the information gained from noisy measure-
ments at each time step of the algorithm. During each iteration, the
prior knowledge of the local quadratic fit to the objective function is
updated by evaluating the latter in a neighbourhood of the current
parameters. The gradient of this improved quadratic fit is then used to
perform a gradient descent step. This is different from ordinary
Bayesian optimisation, as used in26–28, which uses a non-parametric
global surrogate model and global acquisition functions to find the
next evaluation point instead of gradient descent and the local sur-
rogate models that we use. See section 4 of Supplementary Note 8 for
details of experimental results comparing BayesMGD, MGD and SPSA
(Simultaneous Perturbation Stochastic Approximation29).

Quantum circuit implementation
We carried out our experiments on the “Rainbow” superconducting
quantum processor in Google Quantum AI’s Sycamore architecture,
which had 23 qubits available in the configuration shown in Fig. 2.

We studied Fermi-Hubbard model instances on lattices of shapes
1 × Ly and 2 × Ly. A 1 × Ly Fermi-Hubbard system can be mapped to a
2 × Ly rectangular qubit lattice by associating each site with two adja-
cent qubits for spin-up and spin-down. All hopping and onsite inter-
actions can be implemented locally, leading to a very efficient
quantum circuit. However, on the hardware platform we used, this
configuration would only support a lattice of size at most 1 × 4. To
enable us to study systems of size up to 1 × 8, we used a “zig-zag”
configuration consisting of two nearby lines of length 8 (Fig. 2). Hop-
ping interactions are implemented as local operationswithin each line,
but onsite interactions are non-local and require a layer of swap
operations.

For a 2 × Ly lattice, due to the Z-strings occurring in the Jordan-
Wigner transform, implementing some of the vertical hopping inter-
actions directly would require 4-qubit operations. To remove the need
for these, we use a fermionic swap (FSWAP) network20. A FSWAP
operation rearranges the Jordan-Wigner ordering such that operations
that were previously long-distance can now be implemented via two-
qubit gates. Here, swapping across the horizontal direction of the
lattice allows vertical interactions to be implemented efficiently
(Fig. 1). The overhead for a 2 × Ly lattice is only one additional layer of
FSWAP gates per layer of the variational ansatz, together with some
additional FSWAPs for measurement. However, using the FSWAP net-
work approach does restrict the order in which terms are

implemented, as vertical interactions occur acrosspairs determinedby
the Jordan-Wigner ordering.We therefore give this variational ansatz a
specific name, the Efficient Hamiltonian Variational (EHV) ansatz12.

In terms of quantum circuit complexity, the most complex
instances we address are at or near half-filling, where with one varia-
tional layer, a 1 × 8 instance requires two-qubit gate depth at most 26
and at most 140 two-qubit gates, and a 2 × 4 instance requires two-
qubit gate depth at most 32 and at most 176 two-qubit gates. For
further implementation details, see Methods section.

Error mitigation
Achieving accurate results requires a variety of error-mitigation pro-
cedures, divided into three categories. First, we use low-level circuit
optimisations tailored to the hardware platform. Second, we take
advantage of the symmetries of the Fermi-Hubbard Hamiltonian.
Finally we use a technique for mitigating errors in fermionic Hamilto-
nian simulation algorithms. We explain these below.

Webegin byoptimising thequantumcircuit to contain alternating
layers of one-qubit and two-qubit gates, and selecting a high-
performance set of qubits to use based on an initial test. We then
use a technique based on spin-echo30 where every other layer of two-
qubit gates is sandwiched between layers of X gates on every qubit.
This led to a substantial reduction in error in our experiments, which
we attribute to two possible causes: that these X gates are inverting
single-qubit phase errors that accumulate during the circuit; and that
they modify “parasitic CPHASE” errors occurring on the two-qubit
gates, which are known to be substantial31.

The symmetry-based techniques for error mitigation that we use
exploit number conservation per spin sector, time reversal, particle-
hole and lattice symmetries. Number conservation allows error-
detection by discarding runs where final and initial occupations do
not match. In particular, this detects many errors that occur due to
incorrect qubit readout, a significant source of error in super-
conducting qubit systems. In our 16-qubit experiments, we observed
that between 7% and 29% of runs were retained; see Supplementary
Note 4 for further discussion of sampling overhead and remarks on
scalability, for this and other techniques. The other three symmetries
allow us to average results obtained from a state and its symmetry-
transformed partner.

The last error-mitigation technique we used is targeted at quan-
tum algorithms for general fermionic systems32, and is called Training
with Fermionic Linear Optics (TFLO). TFLO uses efficient classical
simulation of quantum circuits of time-evolution operations by
quadratic fermionic Hamiltonians33 (so-called fermionic linear optics
(FLO) circuits). Expectations of energies, or other observables of
interest, for states produced by FLO circuits can be calculated exactly
classically, and approximately using the quantum computer. These
pairs of exact and approximate energies canbeused as training data to
infer a map from approximate energies computed by the quantum
computer, at points which are not accessible classically, to exact

a b

Fig. 2 | Qubit layout for implementing two Fermi-Hubbard instances. (a) 1 × 8
instance, (b) 2 × 4 instance. In each case two qubits are used to encode each site.
Operations between qubits in variational layers occur in the following pattern. 1 × 8:
blue (FSWAP), red (onsite), blue (FSWAP), red (vert1), green (vert2). 2 × 4: blue

(FSWAP), red (onsite), blue (FSWAP), red (horiz + FSWAP), green (vert), red
(FSWAP), green (vert). Vertical interaction parameters for 2 × 4 depend on the
parity of the row index. Grey circles denote the unused qubits on the 23-qubit
Rainbow chip.
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energies. For this map to be accurate, the FLO circuits should
approximate the real circuits occurring in the algorithm.

TFLO is ideally suited to the Fermi-Hubbardmodel, asmost of the
operations in the VQE circuit are FLO operations, including initial state
preparation, time-evolution by the hopping terms, and measurement
transformations. The only operations in the circuit that are not FLOare
time-evolution by the onsite terms. Therefore, we can find a suitable
training set by choosing arbitrary parameters for the hopping terms
and setting the parameters of the onsite terms to 0. Compared with
previous implementations32, here we improve accuracy by choosing
these parameters carefully to maximise their spread, using a linear
fitting algorithm designed to handle outliers34,35, and implementing a
final step which aims to correct residual error. More details on all our
errormitigation techniques are included in SupplementaryNote 4, and
results are shown in Fig. 3b. As expected, in some cases the inclusion of
an additional error-mitigation technique can actually increase the level
of error. One explanation for this is that our error-mitigation methods
are based on using additional data at other parameter values (for
example by averaging or linear interpolation), and hence if the result
beforemitigationhappens tobe accurate, error-mitigationcouldmake
it worse.

Physical observables
We used the BayesMGD algorithm within the VQE framework to
determine the parameters required to produce approximate ground
states of instances of the Fermi-Hubbard model on up to 8 sites, by
minimising the energy expectation value calculated from the state
produced by the VQE circuit on the quantum processor. Once these
parameters are determined, we have a quantum circuit to produce this
state—which we call the VQE ground state below—and can perform
measurements to determine its properties. We found that BayesMGD
was able to converge on parameters corresponding to the VQE ground
state within a small number of iterations (Fig. 3). Interestingly,
BayesMGD was able to further improve the parameters, as measured
by the exact, simulated energy at the parameters θk, even when the
energy estimates from samples increased instead of decreasing. This
behaviour can be seen in Fig. 3a and its inset. We attribute this phe-
nomenon to the performance of the device changing during the
optimisation process. As a local, gradient-based optimiser which is
constantly updating its parameters, BayesMGD is immune to certain
global fluctuations of the optimisation landscape, for example shifting
by an overall additive or multiplicative constant.

First we compute the energy in the VQE ground state for 1 × 8,
2 × 4 and 1 × 4 systems for all occupation numbers 1 ≤Nocc ≤ 15 (≤7
for the 1 × 4 system) (Fig. 4). In all cases good quantitative agree-
ment is achieved with the exact lowest energy achievable with 1
layer of the VQE ansatz. To validate that the quantum algorithm
goes beyond what is achievable with a straightforward classical
ansatz, we compare with energies achieved by optimised Slater
determinant states (see Supplementary Note 5). Further, in the 1 × 4
case (Fig. 4c), lower energy is achieved with a 2-layer variational
ansatz than is theoretically possible with 1 layer, demonstrating that
increased ansatz depth can lead to higher performance. In general
the lowest energy achievable with 1 VQE layer is larger than the
energy of the first excited state, so energies alone do not certify that
we have prepared a good approximation of the true ground state.
However, the VQE ground state achieves non-trivial fidelity with the
true ground state, in theory, and usually larger fidelity than the best
achievable with a Slater determinant; for example, fidelity ≈ 0.77 for
1 × 8 at half-filling. See Supplementary Note 5 for details of VQE and
Slater determinant fidelities in other cases and section 1 of Sup-
plementary Note 7 for a separate analysis of the hopping and onsite
energies in the best possible VQE states.

Next, we study theonset of theMIT36 betweenhalf-filling and away
from half-filling in a 1 × 8 system (Fig. 4). Although in finite systems

there is no true phase transition, we concentrate on two signals that
are a precursor to this transition. First, aMott gapwhich increaseswith
U, shown by a nonzero derivative of the chemical potential (i.e. the
second derivative of the energy, here approximated as E(Nocc + 1) +
E(Nocc − 1) − 2E(Nocc)) at half-filling (Nocc = 8), when U ≠0 (see insets in
Fig. 4d, e). The physical origin of this can be understood as the energy
penalty imposed for adding an electron on top of a half-filled state,
where all sites are occupied. While in a 1D system of size Lx the energy
difference between states with occupations away from half-filling
scales as O(1/Lx), a fixed gap to charged excitations is a unique char-
acteristic of a Mott insulator. Second, we observe the spatial decay of
normalised charge correlations with distance from the first site,
Ccð1, iÞ := ðhn1nii � hn1ihniiÞ=ðhn2

1 i � hn1i2Þ (Fig. 4f), where ni = ni↑ + ni↓.
The steepest decay appears at half-filling (Nocc = 8), where theMott gap
implies the exponential decay of correlations. Further away from half-
filling, the slower decay is a signature of increased conductivity. We
have also computed these quantities for a 2 × 4 system, where the
results are suggestive but the MIT is not clear (see section 2 of Sup-
plementary Note 7).

Following, we study the behaviour of charge and spin densities
at different sites and occupation numbers (Fig. 5). Boundaries in a
finite-size system break the translational invariance and, as a con-
sequence, induce Friedel oscillations in the charge density of the
ground state37 with twice the Fermi wavevector kF. Therefore, in a 1D
system with even (odd) occupation number Nocc, they result in a
ground-state charge density profile with Nocc/2 ((Nocc + 1)/2) peaks.
Evidence of this behaviour can be clearly seen in the VQE results in
Fig. 5(a). On the other hand, for strong onsite interactions and/or low
fillingsWigner oscillations with wavevector 4kF are also expected as a
consequence of the Coulomb repulsion38,39. In 1D, the latter are
responsible for the emergence of Nocc peaks in the ground-state
charge density and are indeed visible in Fig. 5e, especially forNocc ≤ 4.
Hence, a comparison between Fig. 5a, e suggests that a higher-depth
variational ansatz is required to fully capture strong interaction
effects. We see that, following error mitigation, the density in the
case of equal number of spin-up and spin-down electrons is indeed
close to zero (Fig. 5b) as expected from symmetry, compared with
themore substantial densities for odd occupations (Fig. 5c, d), which
in our case always corresponds to including an extra spin-up particle.
These densities display a similar structure to the charge densities at
the corresponding occupation.

To explore the differences between 1D and 2D,we compute (Fig. 6)
the spin correlations Csði,jÞ := hSzi Szj i � hSzi ihSzj i, where Szi =ni" � ni#, in
the VQE ground state at half-filling for 1 × 8 and 2× 4 lattices with strong
onsite interaction (U =4). We observe antiferromagnetic correlations
compatible with the expected behaviour for that size, which are
stronger in 2D compared with 1D. Antiferromagnetic and charge-
density-wave ordering around half-filling are expected features of the
Mott state in 2D. The charge profile for the 2 × 4 system is reported in
Supplementary Fig. 6 (see also discussion therein). We also explore the
antiferromagnetic character of the ground state for different onsite
interactions and for occupations 7 and 8 (Supplementary Fig. 5) where
we observe that the system is indeed less antiferromagnetic at Nocc = 7
than at half-filling for U =4, 8. Although the VQE ground state does not
capture the value of the total staggered spin correlation in the true
ground state quantitatively, it does follow the same trend.

Discussion
We have shown that fundamental qualitative features of medium-size
instances of the Fermi-Hubbard model, using a number of qubits 4
times larger than Fermi-Hubbard experiments previously reported in
the literature17–19, can be extracted using a quantum computer with a
low-depth variational ansatz and techniques thatmitigate the inherent
noise of near-term quantum hardware. To do this, we implemented a
quantum circuit based on the structure of the Hamiltonian that
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incorporates the restrictions due to the fermionic Jordan-Wigner
string in an efficient way, and deployed a range of error mitigation
techniques to extract a meaningful signal from the noisy measure-
ments on the quantum device. This allowed us to compute energies
relatively accurately for states that can be produced with one

variational layer. It is interesting to note that the features we observe
are visible despite the fidelity between the VQE ground state and the
true ground state—which is a very stringent measure of closeness—
being low enough that, in principle, these features might not still be
present. It is also worth noting that the error in the measured energy

ba
Energy errors for 1 x 8, U = 4

Progress of VQE for 1 x 8 and 2 x 4 Fermi-
Hubbard instances, U = 4, at half-filling

Fig. 3 | Experimental results for the BayesMGD algorithm and final energy
errors with respect to the VQE ground state. a Progress of VQE for 1 × 8 and 2 × 4
Fermi-Hubbard instances at half-filling, asmeasured by the error between energy at
parameters θk and VQE ground energy Emin (main plot log scale, inset linear scale).
“Estimate” is the energy estimated by the BayesMGD algorithm during the VQE
procedure based on measurement results, “exact” is the true energy at the corre-
sponding parameters. b Final errors in measured energy following error mitigation
on thefinal state. “Raw”: no errormitigation. “PS”: only postselectiononoccupation

number. “+Sym”: also time-reversal symmetry. “+TFLO”: also Training with Fer-
mionic Linear Optics32. “+Coh”: also coherent error correction in TFLO. “+PHS”: also
particle-hole symmetry. Raw/PS shown with different scale for clarity. Reduction in
error using all techniques is e.g. ~46× at half-filling. Each errormitigationmethod is
applied as well as all previous methods. Plots show a piecewise linear interpolation
between integer occupations. Error bars were calculated according to the proce-
dure described in Methods section and are often too small to be visible.

Energies, 1 x 8, U = 4 Energies, 2 x 4, U = 4 Energies, 1 x 4, U = 4

Chemical potentials, 1 x 8, U = 4 Chemical potentials, 1 x 8, U = 8 Charge correlations, 1 x 8, U = 4

a b c

d e f

Fig. 4 | Experimental energies, chemical potentials and charge correlations.
“VQE”: experimental data. “Simulated”: the lowest energy achievable in the VQE
ansatz. “Ground state”: energy in the true ground state within each occupation
number subspace. “Slater determinant”: the energy achievedby anoptimisedSlater
determinant state as detailed in Supplementary Note 5. Dashed lines are exact
numerical calculations, solid line is experimental data. Plots show a piecewise linear
interpolation between integer occupations. a–c Energies E(Nocc) produced by VQE
experiments compared with exact results (U = 4). VQE results for 1 × 8 and 2 × 4 use

one variational layer; 1 × 4 has two variational layers. Inset shows zoomed-in region
around half-filling. d, e Chemical potentials μ for a 1 × 8 system, where μ(Nocc) =
E(Nocc) − E(Nocc − 1). Inset shows the derivative μ0ðNoccÞ= EðNocc + 1Þ �
2EðNoccÞ+ EðNocc � 1Þ of the chemical potential at even occupations. f Decay of
normalised charge correlations Ccð1, iÞ= ðhn1nii � hn1ihniiÞ=ðhn2

1 i � hn1i2Þ for even
occupation numbers. Solid lines: experimental results. Dashed lines: correlations in
ground state. Error bars were calculated according to the procedure described in
Methods section and are often too small to be visible.
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per site comparedwith the ideal VQE state energy per site at depth one
that we find is not too far from the discrepancy encountered between
state of the art methods, although those can reach larger sizes (see
Supplementary Note 9 for a comparison). This hints that being able to
scale up the system size and the number of layers in VQE, while pre-
serving the same level of errors, couldmake it competitivewith stateof
the art classical approaches.

We expect that the use of a higher-depth variational ansatz in
larger systems will enable the demonstration of phenomena such as
Wigner oscillations, charge-density-wave ordering, and magnetic
instabilities, and will shed some light on the different phases of the 2D
system. Achieving a high level of quantitative accuracy in computing
true ground state energies is a more significant challenge, which we
expect will require a larger number of variational layers still, perhaps
scaling with the system size12. Our efficient algorithm and error-
mitigation techniques provide a template that can readily be scaled up
to larger systems as quantum computing hardware continues to
improve.

Methods
Implementation of the Efficient Hamiltonian Variational ansatz
The variational ansatz we used is based on the Hamiltonian Variational
ansatz10, but with some of the hopping terms implemented using
FSWAP networks. This leads to the terms being implemented in a
particular, fixed order, which can affect the performance of the
quantum algorithm12. We therefore refer to this ansatz specifically as
the EHV ansatz.

There are five operations that we need as building blocks for our
circuit, each of which is implemented using two hardware-nativeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates and somesingle-qubit gates. The initial state is prepared

using Givens rotations (gate G in Fig. 7). Then each layer of the EHV
ansatz consists of onsite (gateO in Fig. 7) and hopping (gateH in Fig. 7)
gates, corresponding to time-evolution by onsite andhopping terms in

the Fermi-HubbardHamiltonian of Eq. (1), respectively, where hopping
terms are assumed to act only on adjacentmodes in the Jordan-Wigner
transform. We have

HðθÞ= e�iθðXX + YY Þ=2, OðϕÞ= eiϕ∣11i 11h ∣:

For a lattice with shape 2 × Ly, we need a fermionic SWAP (FSWAP)
gate to implement the FSWAP network (gate FSWAP in Fig. 7). Finally,
we need a gate for the change of basis needed tomeasure the hopping
terms (gate B in Fig. 7). In previous work it was suggested to use a
Hadamard gate within the f∣01i, ∣10ig subspace12; here we use an
equivalent operation that can be implemented more easily. Note that
this operation preserves occupation number, which allows the use of
error detection.

When implemented on hardware, the single-qubit gates shown in
Fig. 7 are decomposed in terms of the hardware-native PhasedXZ gate
primitive. Due to a sign error in our implementation of this decom-
position, in the experiments the onsite gate O(ϕ) was implemented up
to identical single-qubit Z rotations on each qubit, which leave the
overall state unchanged within a fixed occupation number subspace.
Spot checks comparing with a correctly decomposed onsite gate
confirmed that, as expected, these Z rotations didnot affect the overall
accuracy of the experiment.

The first step of the EHV ansatz is to prepare the ground state of
the noninteracting (U = 0) Fermi-Hubbard Hamiltonian. Preparation of
this state has been studied extensively before and an efficient algo-
rithm using Givens rotations is known11 which achieves circuit depth
N − 1, and a total of (N −Nσ)Nσ Givens rotations (for each spin sector),
where N is the number of modes per spin sector, or equivalently the
size L of the lattice (L = Lx × Ly) and Nσ is the number of fermions in the
spin sector σ. A detailed analysis of alternative state preparation
methods12 concluded that this algorithmwas themost efficient known

a

e

b c d

f g h

VQE, U = 4
VQE, U = 4, 
Nocc even

VQE, U = 4, 
Nocc odd

Ground state, U = 4

VQE, U = 8, 
Nocc odd

Ground state, 
U = 8, Nocc odd

Ground state, 
U = 4, Nocc odd

Ground state, 
U = 0, Nocc odd

Fig. 5 | Chargeand spindensities for a 1 × 8 lattice. In all panels theX axis gives the
occupation number Nocc while the Y axis gives the site index. The top row shows
experimental VQE results, while the bottom one displays exact ground state

quantities. a, e charge density. b–d, f–h Spin density. Here, plots are split by even/
odd occupations. In the ground state, spin is 0 everywhere for Nocc even.
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for small system sizes. To prepare this initial state we use the
OpenFermion40 implementation of this algorithm.

In order to implement our algorithm, two types of swap opera-
tions are needed: FSWAPs to rearrange the Jordan-Wigner ordering,
and physical (standard) swaps to bring distant qubits together. An
FSWAP operation can be implementedwith two native gates, as shown
in Fig. 7, whereas physical swaps would require three native gates.
However, in our experiment we are always able to use FSWAPs in place
of physical swaps. The one placewhere physical swaps would naturally
be used is rearranging qubits before and after implementing an onsite
(CPHASE) gate. As the onsite gates are diagonal, the sign part of the
FSWAP gates commutes with them and cancels out.

Measuring the energy of the VQE state can be achieved with three
different measurement circuits for 1 × Ly instances (vertical hopping 1
and 2, andonsite), andwith four circuits for 2 × Ly instances (horizontal
hopping, vertical hopping 1 and 2, and onsite). Onsite energy is mea-
sured via a computational basis measurement and counting the
number of sites where both spin-up and spin-down qubits receive a 1
outcome. For 1 × Ly, each type of vertical hopping term is measured
using a layer of basis transformations, using the B gate shown in Fig. 7.
These gates diagonalise the hopping terms, enabling the corre-
sponding energy to be measured via a computational basis measure-
ment. The second type of vertical hopping measurement can be
merged into the final layer of gates in the circuit (Fig. 1) to reduce the
quantum circuit depth. Measuring the energy for 2 × Ly instances is
similar, except that vertical hopping terms are split up in a different
way (also see Fig. 1), and some of them require a layer of FSWAP gates
before measurement.

Additional details about circuit complexity and scaling of algo-
rithms are given in Supplementary Note 3.

Variational optimiser
In this work we introduce a new variational optimisation method,
which we call Bayesian model gradient descent (BayesMGD), and
compare it with the standard simultaneous perturbation stochastic
approximation (SPSA) algorithm29, which has been previously suc-
cessfully used as an optimisation algorithm for VQE on super-
conducting quantum computers41,42, and the model gradient descent
(MGD) algorithm introduced by Sung et al.24 for precisely the task of
optimising parametric quantum circuits43.

The main idea of MGD is to sample points and function values
(θi, yi) in a trust region around θ, fit a quadratic surrogate model using
linear least squares to all data available in the trust region and use this
surrogatemodel to estimate the gradient. Our algorithm is designed to
improve on these ideas via Bayesian analysis. We perform iterative,
Bayesian updates on the surrogate model and utilise the sample var-
iance to estimate the uncertainty in the fit parameters and surrogate
model evaluations. Utilising the sample variance to estimate the
uncertainty of function evaluations allows formore accurate surrogate
models and estimating the uncertainty in the surrogate model eva-
luations allows us to put error bars on the predictions.

We are given a random field f(θ) (that is, a collection of random
variables parameterised by θ) and want to find the parameters θ such
that the expectation value μðθÞ :=E½f ðθÞ� is minimal. We assume that at
each θ the variance of the random variable f(θ) is finite, such that the
central limit theorem is applicable to sample means of f(θ). Since we
are always interested in situations where we take many samples at a
given θ and approximate μ(θ) by their mean, we can equivalently
assume—andwill fromnowon—that f(θ) is normally distributed at each
θ with known variance σ2(θ). Furthermore, the mean function μ(θ) is
assumed tobe smooth andhence it is locally alwayswell describedby a

1 x 8, U = 4

2 x 4, U = 4

1 x 8, U = 4

2 x 4, U = 4

a b

dc

Fig. 6 | Antiferromagnetic correlations at half-filling (U = 4) obtained with the
quantumprocessor. a, c Spin correlation function Cs(i, j) for a 1 × 8 (a) and 2 × 4 (c)
instance of the Fermi-Hubbard model. The ordering of sites for the 2 × 4 lattice

follows the Jordan-Wigner “snake” (Fig. 1).b,d Spin correlation functionCs(1, s) for a
1 × 8 (b) and 2 × 4 (d) system. The meaning of labels in b, d is as in Fig. 4.
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quadratic surrogate model

f sðθ;βÞ=β0 +
Xnc

j = 1

βjθj +
Xnc

j,k = 1, j<k

βjkθjθk ð4Þ

which is linear in itsmodel parametersβ0, βj and βjk, andwherenc is the
number of circuit parameters.

In each iteration m we randomly pick np = η dimðβÞ sampling
points θ(i) in a δm-ball around θm and get noisy function evaluations
yi ~N ðμðθðiÞÞ, σ2

i Þ with approximately known uncertainty σi, where η is
the ratio between the number of new sampling points np and the
number of points needed for a fully determined quadratic fit. The
sampling radius scales as δm = δ/mξ with a sample radius decay expo-
nent ξ and initial sampling radius δ. This new data {θ(i)} and {yi, σi} is
used to update our belief pm∣m−1(β) about the parameters β at them-th
step given the data up until stepm − 1 using Bayes’ rule to a new belief
pm∣m(β) incorporating the new data from the m-th step:

pm∣mðβÞ=Pðβ ∣ fθðiÞg, fyi, σigÞ
/Pðfyi, σig ∣ fθðiÞg,βÞpm∣m�1ðβÞ

=
Ynp

i = 1

N ðyi; f sðθðiÞ
;βÞ, σiÞ

×N ðβ;βm∣m�1,Σm∣m�1Þ
=:N ðβ;βm∣m,Σm∣mÞ,

ð5Þ

where in the last line we use the fact that the product of Gaussians is
again a Gaussian to implicitly define βm∣m and Σm∣m. We defer the
detailedderivationofβm∣m, Σm∣m in termsof thepriorβm∣m−1, Σm∣m−1 and
new data to Supplementary Note 8, together with a discussion of the
relation of BayesMGD and Kalman filters and pseudo-code for the
algorithm.

Since the surrogate model fs(θ;β) is linear in the model para-
meters β the usual uncertainty propagation formulas are exact and we
know that

f sðθm;βÞ ~N f sðθm;βm∣mÞ, ð∇βf sÞyΣm∣m∇βf s
� �

, ð6Þ

where ∇βfs denotes the gradient of fs with respect to β evaluated at
(θm;βm∣m). Similarly, we also obtain a distribution over the gradient
∇θfs(θm;β). The maximum a posteriori estimate for the gradient is
simply obtained by plugging the most likely value βm for the model
parameters β into the gradient of the surrogate model:

gðθmÞ=∇θf sðθ;βm∣mÞ: ð7Þ

With this estimate of the gradient we perform a gradient descent
step

θm+ 1 =θm � γmgðθmÞ: ð8Þ

Here, γm = γ/(m +A)α is the gradient step width with a stability
constant A, decay exponent α and initial step width γ.

Changingθdoes not change the local surrogatemodel, but it adds
uncertainty proportional to the step width to it. Hence the belief at
θm+1 without data at that point is described by

βm+ 1∣m =βm∣m

Σm+ 1∣m =Σm∣m +
γ2m∣gðθmÞ∣2

l2
1,

ð9Þ

where l is the length scale on which our quadratic model becomes
invalid. The choice of adding uncertainty proportional to the squared
step width is heuristic so far, but can be motivated using Gaussian
processes. A Gaussian process is a probability distribution over

Fig. 7 | Operations used within the Fermi-Hubbard VQE circuit. From top to
bottom, Givens rotations, hopping terms, onsite terms, fermionic swaps, and basis
changes for hopping term measurement—and how they can be decomposed in

terms of 1 and 2-qubit gates. Here, η = arcsinð
ffiffiffi
2

p
sinðϕ=4ÞÞ, ξ = arctanðtanðηÞ=

ffiffiffi
2

p
Þ,

and ϕ∈ [−π,π].
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functions that allows one, among other things, to compute the prob-
ability distribution of function value, gradient and hessian at some
point θm+1 conditioned on the function value, gradient, and hessian
available at some previous point θm. For a Gaussian process with a
squared exponential kernel and small ∣θm − θm+1∣ the uncertainty about
function value, gradient, and hessian at θm+1 grows with the squared
distance from θm. The exact rate at which the uncertainty for each of
the entries of βm grows requires in-depth analysis that we replaced
with uniform scaling in all entries.

The key novel ingredient in this algorithm is the usage of Bayesian
methods to reuse data obtained in previous iterations of the optimi-
sation and optimally incorporate the measurement uncertainty into
the estimates of the cost function. If the ansatz circuits permit, the
algorithmmay be further improved by replacing the generic quadratic
surrogate model with a more informed surrogate model that is moti-
vated by the true analytical form of the cost function, e.g. the trigo-
nometric polynomials used in the quantum analytic descent
algorithm44 when the ansatz gates are generated by tensor products of
Pauli operators.

Note added—In independent recent work45 another optimisation
algorithm, called SGSLBO (Stochastic Gradient Line Bayesian Optimi-
sation), is proposed for VQE that is at first glance similar to ours.
However, this algorithm is based on the use of stochastic gradient
descent to determine the gradient direction paired with Bayesian
optimisation for a line search along the gradient direction. In our case
“Bayesian” refers to the iterative Bayesian procedure we use to update
the model parameters β.

Details of implementation parameters
Characterising the VQE ground state for a given Fermi-Hubbard
instance can be separated into two parts: the VQE part, which runs the
BayesMGD algorithm to determine the optimal variational parameters
for the quantum circuit; and the state preparation part, which uses
theseparameters to produce copies of the VQE ground state itself, and
also many other FLO states used for error mitigation (see section 3 of
Supplementary Note 4). These parts can be carried out at different
times, which may be advantageous, as device performance fluctuates
over time. The state preparation part uses all error mitigation techni-
ques described in Supplementary Note 4, whereas for efficiency the
VQE part does not use particle-hole symmetry or TFLO.

In all cases of the VQE part, the BayesMGD optimiser used
1000 shots (energymeasurements) per evaluation point,multiplied by
2 for evaluating at the parameters and their negations (see section 2 of
Supplementary Note 4). Bounds on numbers of evaluations are shown
in Table 1. For all instances, hyperparameters η = 1.5, δ = 0.6, ξ =0.101,
l = 0.2 were used. For 1 × 4 and 1 × 8, γ = 0.3, A = 1 were used, whereas
for 2 × 4, γ =0.6, A = 2 were used. Increasing γ moves through the
parameter space more aggressively, and increasing the stability para-
meterA reduces the chance of overaggressivemoves at the start of the
algorithm.Wall clock time for completing a VQE run was under 30min
for 1 × 8 instances, and under 70min for 2 × 4 instances. We split the
circuits evaluated into batches of size at most 80 to avoid timeout and
circuit size constraints imposed by the quantum cloud platform.

In the state preparation part, we compute the energy of the VQE
ground state by taking the average over 100,000 energy measure-
ments, again both at the VQE parameter values and their negations. In

order to useTFLO, we also evaluate the energy at the closest FLOpoint
(the one where the onsite parameters are set to 0), with 100,000
energy measurements; and also at 16 other points (and their nega-
tions), which have been chosen such that their exact energies are well-
spaced. For each of these 16 points we perform 20,000 energy mea-
surements. We carried out this procedure three times for each
instance. Wall clock times are up to ~8min per run for 1 × 8 and 2 × 4
instances.

Error analysis
Error bars for energies and other quantities computed using VQE were
derived as follows. First, we assume that measurements of each
observable—conditioned on the occupation number in each spin sec-
tor being correct—can be modelled by a Gaussian distribution. We
approximate the mean and variance of this distribution by the sample
meanand sample variance found experimentally.We thenneed to take
into account additional variance coming from the uncertainty in the
number of runs retained after postselection. With N trials in total,
standard deviation σ (after postselecting), and probability p of post-
selection, it turns out46 that the variance of the sample mean is (σ2/
(pN))(1 + (1 − p)/(pN) +O(1/(pN)2)) (see Supplementary Note 6 for
a proof).

We now have error bars for the “raw” observable values produced
after postselection, but before the other error mitigation techniques.
As it is not straightforward to understand the effect of the TFLO pro-
cedure on errors analytically, we produce error bars for observables
after TFLO using a Monte Carlo technique, where we assume that raw
observables are distributed according to Gaussians with means and
variances determined by the previous step. We then sample obser-
vables from these distributions 1000 times for each of the parameter
settings used in TFLO (i.e. the FLO points and the VQE ground state
point) and run the TFLO procedure to produce an energy estimate.
The error bar we report is then the sample standard deviation of this
estimate.

In the cases of quantities derived from expectations of multiple
observables (i.e. spin and charge correlations)wemake the simplifying
assumption that the distribution of each of the observables combined
to produce that quantity is independent to produce an overall
error bar.

Error bars for the energies reported by BayesMGD are the internal
estimates produced as described above. These show the level of cer-
tainty of the algorithm but may not correspond to a true error bar for
the energy, if it were measured at the current parameters.

Data availability
Data for these experiments are available at Ref. [47].

Code availability
Code for these experiments is available at Ref. [47].
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