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ABSTRACT
Developments in artificial intelligence (AI) have led 
to an explosion of studies exploring its application to 
cardiovascular medicine. Due to the need for training 
and expertise, one area where AI could be impactful 
would be in the diagnosis and management of valvular 
heart disease. This is because AI can be applied to the 
multitude of data generated from clinical assessments, 
imaging and biochemical testing during the care of the 
patient. In the area of valvular heart disease, the focus 
of AI has been on the echocardiographic assessment 
and phenotyping of patient populations to identify 
high-risk groups. AI can assist image acquisition, view 
identification for review, and segmentation of valve 
and cardiac structures for automated analysis. Using 
image recognition algorithms, aortic and mitral valve 
disease states have been directly detected from the 
images themselves. Measurements obtained during 
echocardiographic valvular assessment have been 
integrated with other clinical data to identify novel aortic 
valve disease subgroups and describe new predictors 
of aortic valve disease progression. In the future, AI 
could integrate echocardiographic parameters with 
other clinical data for precision medical management of 
patients with valvular heart disease.

INTRODUCTION
The global incidence of valvular heart disease 
(VHD) has increased by 45% in the last 30 years, 
with an annual incidence of 401 new cases per 100 
000 people.1 This is due to an expanding ageing 
population and age-related VHD.1 Echocardiog-
raphy is the most common imaging modality used 
to identify patients with VHD as it is non-invasive, 
portable, widely available and cost-effective, and 
provides real-time assessment of cardiac structure 
and function.2 Currently, there are over seven 
million echocardiograms performed annually in 
North America.3 4 Despite this, there is evidence 
that a number of patients with VHD are underdi-
agnosed.5 Merely increasing the number of echo-
cardiograms performed to provide screening to the 
millions of people at risk of developing VHD is not 
feasible within current clinical practice paradigms 
and budgetary limits.6 Even the advent of hand-
held/point-of-care ultrasound machines may not 
address this need, as diagnostic quality image acqui-
sition and interpretation for VHD require training 
and expertise.7–9 Moreover, busy clinicians must 
incorporate multimodal imaging and clinical and 
biochemical patient data for decision-making.

Developments in the field of artificial intelligence 
(AI) hold great promise in transforming how patients 
with VHD are assessed and managed as it can simu-
late the complex, multimodal decision-making 
required (figure  1). It is already changing how 

echocardiographic images are acquired, processed 
and quantified. AI methods can also be applied to 
the wealth of information contained in the images, 
measurements and clinical data obtained that are 
not currently considered during assessment. In this 
review, we will discuss the emerging work of AI in 
VHD assessment. First, we will provide a summary 
of AI concepts related to medical imaging and the 
contemporary implementation of AI to echocar-
diographic valvular image assessment. Then we 
will examine the AI methods used for phenotyping 
VHD and assess the studies in this area. Finally, we 
will discuss the future directions of AI echocardiog-
raphy and valvular assessment.

AI IN CARDIAC IMAGING
AI is a method used to identify patterns of asso-
ciations between predictors and outcomes. Its 
power comes from its ability to find these asso-
ciations from large amounts of data and, with no 
prior knowledge of associations, draw non-linear 
relationships between a wide variety of predictors 
with an outcome of interest. These large amounts 
of data, termed ‘big data’, are characterised by 
the 4Vs: volume, variety, velocity and veracity 
(figure  2).10 Patient data collected today can be 
considered ‘big data’ and AI is potent in its ability to 
perform multidata integration and generate predic-
tions using clinical, imaging, electrophysiological 
and genomics information. With improved access 
to significant computing power and therefore the 
capacity to process large amounts of data, AI can 
perform complex decision-making in a fraction of 
the time needed by humans.11

Based on the type of problem, different AI algo-
rithms can be applied to clinical and imaging data 
(figure 2). However, the most widely implemented 
model has been the convolutional neural network 
(CNN) due to its success in medical imaging. CNN 
architecture is modelled based on the visual cortex 
of the brain and involves identifying crucial image 
features that allow for image identification. By 
applying different filters, or sieves, to an image, 
image features can be extracted and correlated with 
the outcome of interest. This form of modelling 
can be extremely accurate but requires significant 
computational power and many images to train a 
model to build associations.12

AI is currently encountered in automated ECG 
interpretation, cardiac CT and MRI chamber 
measurements, and most recently two-dimensional 
(2D) echocardiography strain analysis and Doppler 
tracing.13 Given the dominant role of echocar-
diography in VHD, this review will focus on this 
modality. Echocardiograms are ideal for AI appli-
cations as each echocardiographic study contains 
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several acquisition modes, multiple views and numerous frames 
generating a large amount of data, of which only a fraction are 
clinically appreciated. AI on these big data can generate gains in 
echocardiographic valve imaging assessment and identification 
of novel disease markers through phenotyping.

AI TO IMPROVE ECHOCARDIOGRAPHIC IMAGE VALVE 
ASSESSMENT
The application of AI to echocardiographic images in patients 
with VHD falls into four main categories: (1) image acquisition, 
(2) view recognition, (3) image segmentation and (4) disease 
state identification.

Image acquisition
In patients with VHD, the echocardiographic study is focused 
on acquiring images that allow the diagnosis of valve disease 
severity and the impact on related cardiac structures. Thus, in 
addition to the cardiac chambers, acquired images should allow 
clear visualisation of the valve leaflets/cusps, the jet origin and 
extent in regurgitant lesions, the source of the flow acceleration 
for stenotic lesions, and the complete continuous wave (CW) 
Doppler signal of the maximal flows. Acquisition of such images 
requires training, especially when regurgitant jets are eccentric 
or wall-hugging or gradients are highest in non-traditional off-
axis planes. Some laboratories have addressed specific quality 
issues such as the acquisition of maximal aortic stenosis (AS) 
gradients by implementing ‘buddy’ systems.14 However, this is 
time- and labour-intensive.

AI has the potential to improve valve assessments through 
the development of programs that guide image acquisition. 
Currently the focus of such AI-assisted image acquisition has 
been on basic non-colour images such as the parasternal or apical 
views.15 16 One such developed AI algorithm has been assessed 
by comparing the quality of images acquired by novice nurses 
scanning patients with AI guidance against expert sonogra-
phers.15 The percentage of evaluable images of the aortic, mitral 
and tricuspid valves obtained by the novice users were 91.7%, 
96.3% and 83.3%, respectively. Future iterations of these early-
stage programs can be used in patients with mitral or tricuspid 
regurgitation or guide Doppler interrogation in AS.

View identification
Similar to its current use to identify left ventricular (LV) views, 
AI could improve valve assessment by identifying images 
containing valve data to allow for reading in ‘stacks’, automated 
measurements, and even aid interpretation using current guide-
line criteria.9 This could offer significant time savings and poten-
tially improve report quality by increasing severity assessment 
agreement between readers, which can be as low as 61% for 
mitral regurgitation (MR) severity.17 The first step for such AI 
programs would be to identify the views that include valve infor-
mation.18 While many papers have been published on standard 
view identification, few have been published identifying specific 
valve anatomy or Doppler signals. One publication has described 
using AI to identify and track mitral and tricuspid valve leaf-
lets in the apical four-chamber view to identify the presence 

Figure 1  Pathway of a patient with valvular heart disease and areas of care where AI can improve assessment and management. The top left and 
right images are three-dimensional TTE images of the aortic valve in short axis during systole and diastole representing progression from a normal 
to a diseased state. Below are the stages of care (screening, surveillance, decision to intervene, intervention). AI can be applied to any type of patient 
data (ie, clinical notes, echo images) obtained at any of these stages. In turn, the collective set of data can be used by AI to improve management at 
various care stages. AI, artificial intelligence; TTE, transthoracic echocardiogram.
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of pathology.19 This paper reported that their program could 
detect mitral valve leaflets with accuracy of 98% and tricuspid 
valve leaflets with accuracy of 90%. Studies have also reported 
overall success in identifying Doppler data of 94%.20 A sepa-
rate AI program has found that accuracy of identification of CW 
Doppler signal images was better at 98% compared with pulsed-
wave (PW) images, which had an accuracy of 83% because a PW 
signal can look similar to a faint CW signal.21

Image segmentation
AI-driven automated image analysis to provide measurements 
would greatly increase quantitative assessments, accuracy and 
reproducibility. This can be achieved through image segmenta-
tion, which refers to recognising a specific structure in the image, 
identifying its boundaries and performing measurements. Appli-
cation of image segmentation can be applied to 2D and three-
dimensional (3D) echocardiographic chamber images with the 
goal to automate size and function measurements. Note, most 
of this work has been performed using labelled images, but there 

are some studies developing programs without manual image 
delineation.22–24 In addition, segmentation can be performed 
of the valve annulus, leaflets/cusps, jets and Doppler spectral 
profiles.

Valve annulus and leaflet
Commercial and non-commercial programs have been devel-
oped that use AI methods to provide automated valve measure-
ments from 3D aortic, mitral and tricuspid echocardiographic 
images (table 1). It must be noted that early programs in this 
area were based on computational methods, which apply math-
ematical rules for automation, rather than AI methods such as 
CNNs. Due to the proprietary nature of commercial software 
packages, details on the included AI algorithms are not avail-
able, although it is likely that current iterations include some 
form of AI analytics (online supplemental table 1).25–27 Overall, 
these commercial packages have a few limitations. Some are 
technically semiautomated processes that require expert initiali-
sation and others can only be applied to images generated from 

Figure 2  (A) Characteristics of big data. (B) Common AI definitions. (C) Common model architectures used in AI depend on the purpose of 
modelling. With supervised learning, predictors are mapped to a known outcome. When the outcomes of interest are clinical, machine learning 
methods such as random forest and support vector machine are used. When the outcome of interest is imaging-based, then deep learning methods 
such as convolutional neural networks are used. (D) With unsupervised learning, the predictors are visualised on a plot to find natural clustering 
of the data. A typical use in valve disease studies has been in phenotyping to identify higher risk phenotypes. Methods used with unsupervised 
learning include topological data analysis, model-based clustering, agglomerative hierarchical clustering and clustering around medoids. AI, artificial 
intelligence.

Table 1  Summary of AI applications by valve

Valve Pathology AI application

 �   �  Image acquisition View identification Image segmentation Disease state identification Phenotyping

Aortic Stenosis x  �  x x x

Regurgitation x  �  x x  �

Mitral Stenosis x x x x  �

Regurgitation x x x x  �

Pulmonary Stenosis No current literature.

Regurgitation

Tricuspid Stenosis x x x  �   �

Regurgitation x x x  �   �

AI, artificial intelligence.

https://dx.doi.org/10.1136/heartjnl-2021-319725
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echocardiographic machines produced by the same vendor 
(figure 3).27

Non-commercial programs have also been developed to aid 
valve annular and leaflet segmentation (table 2). These programs 
focus on CNN development using mitral valve images. These 
methods’ Dice coefficients (measurement of accuracy in the 
setting of image identification) for mitral valve segmentation 
were modest to good, ranging from 0.48 to 0.79.28 Error rates of 
these automated program measurements were low at 6.1%±4.5% 

for annular perimeter measurements and 11.94%±10% for area 
measurement.29 The strength in these algorithms is their perfor-
mance on low-quality images, while their limitations arise from 
their overestimation of mitral valve borders and false structure 
identification caused by image artefact.

Doppler
One study has been published applying AI segmentation to 
colour Doppler images. Zhang et al22 studied 1132 patients with 
expert reader-defined MR, ranging from mild to severe, to train 
an algorithm that can quantify MR from 2D echo colour images. 
On an external validation data set of 295 patients, the accuracy 
of classification was 0.90, 0.89 and 0.91 for mild, moderate and 
severe MR, respectively. Similarly, little has been published on 
AI automation of CW and PW measurements. From one publi-
cation, compared with a board-certified echocardiographer, AI 
automation of CW and PW measurement of peak velocity, mean 
gradients and velocity time integral showed excellent correlation, 
with all correlation coefficients greater than 0.9.30 Commercial 
software has been developed to perform semiautomated 3D 
proximal isovelocity surface area (PISA) measurements with 
good accuracy and reproducibility, as multiple measurements 
can be made, although it is unclear if AI is used in modelling.31

Disease state identification
Deep learning approaches are powerful in that they can automat-
ically encode features from data for recognition that are beyond 
human perception.32 In the case of disease state identification, 
echo images do not need to proceed through the traditional AI 
workflow of image identification and segmentation as diseases 
can be directly linked to the echocardiographic images. Using 
a cohort of 139 patients with no, mild, moderate and severe 
MR, Moghaddasi and Nourian33 developed an algorithm that 
can automatically quantify MR severity with 99.52%, 99.38%, 
99.31% and 99.59%, respectively, for normal, mild, moderate 
and severe MR. Similarly, AI programs can automatically iden-
tify rheumatic heart disease involving the aortic and/or mitral 
valves with 72.77% accuracy.34 These algorithms are also able to 
effectively recognise prosthetic mitral valves as demonstrated by 

Figure 3  Example images of commercial valve analysis software. 
Mitral valve models from (A) GE, (B) Philips and (C) TomTec. (D) An 
aortic valve model from Siemens. A, anterior; AL, anterolateral; Ao, 
aorta; L, left coronary cusp; N, non-coronary cusp; P, posterior; PM, 
posteromedial; R, right coronary cusp.

Table 2  Non-commercial AI-driven algorithms for valvular detection in echocardiography

Authors (year) Data
Training data 
population Outcome of interest Algorithm used Findings

Vafaeezadeh et al 
(2021)35

2044 TTE studies: 1597 had 
normal valves and 447 had 
prosthetic valves.

Patients with normal 
mitral valve and mitral 
valve prosthesis: 
both mechanical and 
biological.

Identification of 
prosthetic mitral valve 
from echo images.

13 pretrained models with 
CNN architecture and fine-
tuned via transfer learning.

All the models worked with incredible accuracy (>98%), but the 
EfficientNetB3 had the best AUC (99%) for the A4C and EfficientNetB4 
had the best AUC (99%) for PLAX. However, these models were 
computationally more expensive for a small gain in AUC, so the authors 
concluded that the best model for this task is EfficientNetB2.

Corinzia et al 
(2020)50

Training: 39 2D TTE.
Test: 46 2D echos from 
EchoNet-Dynamic public 
echo data set.

Patients who were 
undergoing mitraclip: all 
patients had moderate 
to severe or severe MR.

Fully automated 
delineation of mitral 
valve annulus and both 
MV leaflets.

NN-MitralSeg, unsupervised 
MV segmentation 
algorithm based on neural 
collaborative filtering.

This model outperforms state-of-the-art unsupervised and supervised 
methods (NeuMF MF Dice coefficient of 0.482, with benchmark 
performance of 0.447), with best performance on low-quality videos or 
videos with sparse annotation.

Andreassen et al 
(2020)29

111 multiframe 
recordings from 3D TEE 
echocardiograms.

4D echocardiographic 
images of the mitral 
valve.

Fully automated 
method for 
mitral annulus 
segmentation on 3D 
echocardiography.

CNN, specifically a U-Net 
architecture.

With no manual input, this methodology gave comparable results with 
those that required manual input (relative error of 6.1%±4.5% for 
perimeter measurements and 11.94%±10% for area measurement).

Costa et al 
(2019)28

Training: 21 2D TTE echo 
videos in PLAX, 22 videos in 
A4C.Test: 6 videos in PLAX 
and A4C.

PLAX and A4C views 
from echos.

Automatic 
segmentation of mitral 
valve leaflets.

CNN, specifically a U-Net 
architecture.

This model is the first of its kind to perform segmentation of valve 
leaflets.
For AMVL, the median Dice coefficient in PLAX was 0.742 and 0.795 in 
A4C. For PMVL, the median Dice coefficient in PLAX was 0.60 and 0.69 
in A4C.
Cardiologists were then asked to score the segmentation quality on a 
scale from 0 to 2, with pooled score of 0.781, suggesting reasonable 
quality segmentation.

A4C, apical 4-chamber view; AI, artificial intelligence; AML, anterior mitral valve leaflet; AUC, area under the receiver operator curve; CNN, convolutional neural network; 2D, two-dimensional; 3D, three-dimensional; 4D, 
four-dimensional; MR, mitral regurgitation; MV, mitral valve; PLAX, parasternal long-axis view; TEE, transoesophageal echocardiogram; TTE, transthoracic echocardiogram.
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Vafaeezadeh et al,35 who developed and tested 13 different CNN 
algorithms, all of which had excellent area under the receiver 
operator curve (AUC) values of at least 98%.

AI VHD PHENOTYPING
During a routine echocardiogram, a large volume of potentially 
diagnostic data are generated, which are further increased with 
3D imaging and speckle tracking strain analysis. The totality of 
data available can be difficult for the busy cardiologist to parse 
and interpret and are likely underutilised.36 It is unknown how 
many ‘hidden’ variables exist within an echocardiogram and AI 
can help discover the value of these variables.7 This is especially 
relevant when discussing VHD, as currently the assessment is 
predominantly focused on valve haemodynamics. However, 
cardiac changes that occur in response to VHD could also be 
informative to severity assessment. Using AI for phenotyping 
allows for identification of novel disease groups and novel 
predictors of these disease groups. There have been consider-
able efforts in phenotyping VHD as practitioners are increas-
ingly recognising the heterogeneity of our current classification 
groupings. Phenotyping can help identify a high-risk subgroup 
that may require more timely intervention.

METHODOLOGICAL CONSIDERATIONS FOR PHENOTYPING 
IN STUDIES IN VALVE DISEASE
To evaluate phenotyping studies, there are five methodolog-
ical components that are helpful in their evaluation (figure 4). 
In determining the inclusion criteria, the disease group has to 
present a heterogeneous phenotype with a subgroup that experi-
ences worse outcomes. Attention should be paid to the inherent 
biases, such as those related to sex, or race, that can affect the 
population included in a data set.37 Predictors should be derived 
from various data sources as the use of AI to amalgamate data 
from echocardiograms, other imaging, ECG and patient clinical 

data can boost identification of high-risk groups from higher 
data granularity. During algorithm choice, unsupervised learning 
can be used to derive clusters that can be studied and compared 
with other clusters to identify high-risk groups and novel 
predictors of these groups. Performance metrics should include 
measurements of improved performance of classification.38 
Model validation is important to ensure the model can perform 
on non-training examples and is generalisable to its task. This 
measure is important as training data can be skewed and can 
contribute to bias in modelling. Validation can take many forms 
and is tailored to the purpose of the modelling.

AI PHENOTYPIC STUDIES IN AORTIC VALVE DISEASE
VHD phenotyping using machine learning (ML) is an emerging 
field with only three studies, all on AS, published (table 3). One 
study, not discussed in detail, identified aneurysmal proximal 
aorta phenotypes in 656 patients with bicuspid aortic valve 
(AV) disease using CT.39 The three AS papers, to be discussed in 
further detail, all investigated heterogeneity in patients with AS 
to identify high-risk subgroups.

Casaclang-Verzosa et al40 used unsupervised ML to create a 
patient–patient similarity network to describe the progression 
between mild and severe AS from 346 patients using 79 clinical 
and echocardiographic variables. A Reeb graph, where distances 
between patients define their similarities, was created using topo-
logical data analysis. Two subtypes of patients with moderate AS 
were visualised, with one group being male with lower ejection 
fraction and more coronary artery disease, while the other group 
had a lower peak AV velocity and mean gradients but higher LV 
mass indexes and left atrial volumes. In follow-up post aortic 
valve replacement (AVR), the patients’ loci in the Reeb graph 
regressed from the severe to the mild position. The model was 
then validated in a murine model of AS, with similar findings to 
the human Reeb graph. From this analysis, a subset of patients 

Figure 4  (A) Deep learning workflow in automated image analysis. (B) A stepwise approach to assessing machine learning phenotyping studies 
from the study population and the data/predictor selection to the algorithm choice and assessment metrics. 2D, two-dimensional; 3D, three-
dimensional; ROC, receiver operator curve.
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with moderate AS who experience aggressive deterioration of 
LV function were identified. This superior stratification supports 
the use of changes in LV and AV function along a continuum in 
disease management.

In Sengupta et al,41 the investigators sought to identify a 
high-risk group among a cohort of 1052 patients with mild or 
moderate AS and a discordant AS group which is the traditional 
low-flow, low-gradient group. Topological data analysis based 
on echocardiographic parameters derived a high-risk pheno-
type which had higher AV calcium scores, more late gadolinium 
enhancement, higher brain natriuretic protein and troponin 
levels, greater incidences of AVR, and death before and after 
AVR. These relationships remained true when the data set was 
restricted only to discordant AS. Model validation included 
developing a supervised ML model with an AUC of 0.988, which 
had better discrimination (integrated discrimination improve-
ment of 0.07) and reclassification (net reclassification improve-
ment of 0.17) for the outcome of AVR at 5 years compared with 
our traditional grading of valve severity. This paper showed that, 
using echocardiographic measurements and ML, there can be 
improved risk stratification in discordant AS where risks can be 
identified without the need for additional tests.

Kwak et al42 used model-based clustering of 398 patients 
with newly diagnosed moderate and severe AS, with 11 demo-
graphic, laboratory and echocardiographic parameters, to 
identify a high-risk subgroup that may not benefit from valve 
intervention. They found three patient clusters that differed by 
age, LV remodelling and symptoms. These clusters had different 
risks of mortality, with one group experiencing higher all-cause 
mortality and another group having high cardiac mortality. 
When the cluster variable was added to modelling predicting 
3-year all-cause mortality, there was improved discrimination 
(integrated discrimination improvement 0.029) and net reclas-
sification improvement (0.294). Important findings from this 
paper include the integration of non-echocardiographic measure-
ments and non-traditional measures of disease severity in risk-
stratifying patients with AS. This paper suggests that patients at 
high risk of non-cardiac death could warrant a different thera-
peutic strategy.

LIMITATIONS
Although there are many avenues for AI to improve echocar-
diographic VHD assessment, there are some limitations to this 
approach (table 4). AI is sensitive to data quality and valvular 
data can be challenging as the components are mobile and the 
images are prone to noise and artefact. Thus, training data must 
include a wide variety of images of varying quality to develop 
implementable AI solutions. AI models can have significant 
model complexity, rendering it a ‘black box’ and uninterpretable 
to the user. Measures such as saliency maps, which show which 
parts of the images are analysed for classification, can help the 
user understand how the algorithm functions.43 Widespread AI 
implementation has also been limited by questions related to 
patient privacy and consent, algorithmic bias that could cause 

diagnostic/management errors, algorithm scalability, data secu-
rity and an agreed-upon implementation strategy.44 45

SUMMARY AND FUTURE DIRECTIONS
The application of AI to echocardiographic valvular assess-
ment is growing and will become essential given clinical time 
constraints and the increasing volume of patient data. Echo auto-
mation using AI can reduce structural and economic barriers to 
VHD care, democratising access to disease screening, point-of-
care valvular evaluation and potentially referral for interven-
tion.34 46 47 For example, conditions such as rheumatic heart 
disease, which is underdiagnosed among marginalised popula-
tions, could benefit from automated disease detection and help 
connect patients with healthcare services.48 Additionally, plat-
forms such as federated cloud computing can allow for auto-
mated image acquisition in low access areas with real-time image 
interpretation/consultation occurring elsewhere in a private and 
trustworthy manner.49 AI applications in phenotyping could be 
used in other circumstances where valvular assessment on echo 
can be challenging, such as in identifying low-flow, low-gradient 
AS, or in disease quantification in mixed valve disease. Overall, 
AI can create efficiencies in the use of echo in healthcare that 
allows for enhanced valve disease identification, diagnosis and 
management, giving more patients access to timely, accurate and 
goal-directed treatment.
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