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Agnieszka Korytko1
• Kamila Zglejc-Waszak1

• Jarosław Szuszkiewicz4
•

Marta Banach5

Received: 28 November 2021 / Accepted: 3 March 2022 / Published online: 21 June 2022

� Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences 2022

Abstract This review reflects upon our own as well as

other investigators’ studies on the role of receptor for

advanced glycation end-products (RAGE), bringing up the

latest information on RAGE in physiology and pathology

of the nervous system. Over the last ten years, major

progress has been made in uncovering many of RAGE-

ligand interactions and signaling pathways in nervous

tissue; however, the translation of these discoveries into

clinical practice has not come to fruition yet. This is likely,

in part to be the result of our incomplete understanding of

this crucial signaling pathway. Clinical trials examining the

therapeutic efficacy of blocking RAGE-external ligand

interactions by genetically engineered soluble RAGE or an

endogenous RAGE antagonist, has not stood up to its

promise; however, other trials with different blocking

agents are being considered with hope for therapeutic

success in diseases of the nervous system.

Keywords Receptor for advanced glycation end-products �
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Introduction

Neurodegenerative disorders are characterized by progres-

sive loss of neurons causing disturbances in cognitive,

psychomotor, and/or autonomic functions. The mechanism

of these disorders in most cases remains unknown and that

fact has hampered the identification of appropriate inter-

ventional strategies through the years. Molecules that may

play a role in the exacerbation of these conditions are likely

to be good candidates for therapeutic intervention in

neurodegeneration. Receptor for advanced glycation end-

products (RAGE) belongs to the group of so-called pattern

recognition receptors that are part of the innate immune

response signaling system and interact with a multitude of

ligands involved in the pathogen- or damage-associated

signaling pathways [1]. RAGE was first cloned from the

bovine lung cDNA library in the early 1990s [2]. Apart

from lung, RAGE was found to have a broad tissue

distribution including vascular tissue, cardiac tissue, renal

tissue, immune cells, and neural tissue [3].

Diabetic hyperglycemia-induced non-enzymatic glyca-

tion is recognized as a common source of advanced

glycation end products (AGEs) within the body, Thus, the

role of RAGE was initially studied in the context of

pathology associated with diabetes mellitus (DM) such as

diabetic neuropathy [4]. Apart from non-enzymatic
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glycation resulting from hyperglycemia, there is a second

source of glycotoxins and AGEs, which is diet. Up to 10%

of AGEs in the diet is taken up within the blood stream [5].

AGEs can be produced in food products via the Maillard

reaction between amino-acids and reducing sugars [6].

Dietary AGEs may be an independent environmental risk

factor in diabetic neuropathy [7]. High levels of AGEs are

found in high-heat processed nuts, grains, and canned

meats [8]. Similar to AGEs derived within the body,

dietary AGEs can induce signaling through RAGE and

contribute not only to diabetic neuropathy but modify the

course of all the disorders in which RAGE participates.

Thus, dietary AGEs in processed food may be an important

contributor to the chronic ailments of modern times. In

addition to diabetic neuropathy, by the beginning of this

century the role of RAGE in neurodegenerative conditions

also became apparent [9].

In recent years, major progress in deciphering RAGE-

ligand interactions has been made, identifying several

novel, previously unknown binding partners and signaling

pathways. At the time of manuscript preparation, [25

biding partners have been reported: besides its first

described ligands—advanced glycation end products

(AGEs) [10]—RAGE interacts with advanced oxidation

protein products (AOPP) [11], the S100/calgranulin protein

family [12] (S100A1, S100A12, S100A14, and S100B),

amphoterin/high mobility group box 1 [13] (HMGB1),

protein diaphanous homolog 1 (DIAPH1) [14], epidermal

growth factor receptor [15], growth factor receptor-bound

protein 2 [16], transforming protein RhoA [17] Toll/

interleukin-1 receptor domain-containing adapter protein

(TIRAP) [18] , TPA-induced transmembrane protein,

transthyretin [19], complement components C3a and C1q

[20], amyloid b precursor protein [21], brain-derived

neurotrophic factor [22] b-2 Mac1 [23], nucleic acids

[24], phosphatidylserine [25], lysophosphatidic acid [26],

and heat shock protein 70 (HSP70), [27] and is predicted to

interact with: chromosome 2 open reading frame

(C2orf15), chemokine-like factor superfamily member 7,

cyclic AMP-responsive element-binding protein 3, MAP

kinase-activated protein kinase 5, mesoderm induction

early response protein 1, cytoplasmic protein NCK1,

protein kinase C zeta type—predications sourced from

the Uniprot (https://www.uniprot.org/) [28] and HitPredict

databases (http://www.hitpredict.org/) [29] (Fig. 1). The

RAGE extracellular domain via its multifarious ligands is

likely to participate in numerous signal transduction pro-

cesses that may have both physiological and pathological

implications. Indeed, most recent studies have implied a

role of RAGE in a variety of neurodegenerative conditions

that may not only be linked with just the accumulation of

glycation end-products but also may involve the interaction

of RAGE with other ligands. Therefore, RAGE signaling

has attracted a multiplicity of investigations. In contrast to

the large number of interactions that occur with RAGE via

its extracellular domain, RAGE via its cytosolic domain

usually interacts only with actin regulating protein -

DIAPH1 (formerly mDia1) [1, 14]. These biochemical

findings raise important questions regarding the ability of

the RAGE-Diaph1 signaling axis to distinguish between

signaling by the multifarious ligands in the physiological or

pathological process. A key challenge for the future in

RAGE research is to identify how the otherwise physio-

logical function of RAGE is co-opted by pathological

processes.

RAGE Structure

Human RAGE is encoded by a gene called AGER, located

within the Major Histocompatibility Complex class III

region on chromosome 6 [30], while in mice the gene

encoding RAGE is located on chromosome 17. There are

[30 known polymorphisms of human AGER, most of them

classified as single nucleotide polymorphisms, ten of which

are considered to be clinically relevant [31, 32].

Structurally, RAGE is a single-pass transmembrane

protein belonging to the immunoglobulin superfamily [33].

RAGE is comprised of three regions: an extracellular

region made up of three distinct domains, V, C1, and C2; a

single transmembrane domain; and a short intracellular tail

also known as a cytosolic domain [34, 35] (Fig. 2). RAGE

is known to self-associate and it oligomerizes on the

plasma membrane. The self-association of RAGE is

primarily mediated by the C1 domain. While the C2

domain of RAGE is structurally independent, the V and C1

domains have been shown to combine into a VC1

supradomain. RAGE interactions with its ligands are

mediated by a basic surface formed in the VC1 domain

which interacts with the acidic motifs within the ligand in

glycation end-products [36]. An isothermal calorimetry

study indicated that the S100B binding may be different

and non-competitive to AGEs and mediated by a

hydrophobic region [37]. These differences in the binding

mechanism of different ligands with RAGE may differ-

ently transduce the signals via Diaph1 or lead to the

recruitment of different intracellular signaling partners (see

next section). Changes in the levels of different ligands of

RAGE are therefore likely to profoundly alter RAGE-

mediated signaling.

So far, a few different RAGE mRNA splice variants of

physiological importance have been described: full-length

RAGE, N-RAGE (N-truncated RAGE, also called RAGE

splice variant 2, RAGE_v2) devoid of the V domain, DN-

RAGE (dominant-negative RAGE) devoid of the cytosolic

domain, and a C-truncated splice variant called endogenous

secretory RAGE (esRAGE, also known as RAGE splice
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variant 1, RAGE_v1), missing both transmembrane and

cytosolic domains [38]. In addition to these variants, an

array of other isoforms has been identified or genetically

engineered such as RAGE splice variant 3 thru 13 of

unknown functions or sRAGE (soluble RAGE) —a genet-

ically-engineered RAGE inhibitor [32]. Both naturally-

occurring esRAGE and genetically-engineered sRAGE

inhibit RAGE signaling by acting as RAGE substitutes

Fig. 1 String depiction of

RAGE-ligand interactions. For

clarity, only the most prominent

and well-studied protein inter-

actions are shown; AGER

(RAGE), S100 family of Ca2?-

binding molecules –S100A4,

S100A6, S100A12, S100A13,

S100B, S100P; TLR2, TLR,

MyD88, IRAK1, TIRAP, LY96

and CD14 parts of the innate

immune response pathways;

ITGAM, ITGB2, ICAM1,

ITGAL and ITGAX—involved

in the adaptive immune

response, participate in antigen

presentation, leukocyte migra-

tion, and T cell cytotoxicity.

Source: https://string-db.org/

[134]

Fig. 2 RAGE forms and structural domains: V—variable, biding site

for extracellular ligands; C—constant, conserved domain with

structural similarities to the C domains in other immunoglobulins;

T—transmembrane, I—intracellular, binding site for Diaph1 and

other, not yet identified intracellular ligands.
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and binding to its ligands [35]. These splicing variants are

likely produced by a highly-regulated process and play a

critical role in fine-tuning RAGE signaling under physio-

logical conditions. Breakdown of this regulation may thus

lead to aberrant RAGE signaling and to the development of

pathological states.

The expression levels of RAGE vary depending on the

developmental stage. A high level of RAGE expression

occurs during embryonic development, promoting neuronal

differentiation from undifferentiated embryonic stem cells

both in vivo and in vitro [39, 40]; however, the overall

expression level of RAGE declines over time, remaining

physiologically high only in lung tissue in the postnatal

period [35]. Apart from lungs, postnatally, physiological

levels of RAGE expression are found in endocrine glands,

kidneys, and the brain. At the cellular level, RAGE

expression has been reported in numerous cells of the

immune system, i.e. macrophages, monocytes, neutrophils,

lymphocytes, and dendritic cells; and in podocytes, car-

diomyocytes, vascular endothelial and vascular smooth

muscle cells, as well as on glial and neuronal cells of the

central nervous system (CNS) [34, 35]. The temporo-

spatial regulation of RAGE expression in a variety of

tissues underscores its physiologically relevant role.

Altered expression of RAGE is therefore often associated

with pathological states.

RAGE-ligand Interactions and Signaling Patterns

Studies have shown that, upon binding to its ligands via its

extracellular domain, RAGE often undergoes biochemical

and structural changes such as PKC phosphorylation and

homo-, hetero-, or oligo-dimerization. These structural

changes prompt RAGE to bind to various adaptor and/or

regulatory proteins such as TIRAP and MyD88 (myeloid

differentiation primary response gene 88), FPRs (formyl

peptide receptors), and BLT1 (leukotriene B4 receptor 1)

and triggers a cascade of intracellular responses, activating

different metabolic pathways [1, 34, 41]. RAGE-ligand

interactions via its extracellular domain also have effects

on its intracellular, cytosolic domain, driving RAGE

interactions with its cytosolic partner, DIAPH1, another

type of regulator protein, and activating second messen-

gers, thus triggering a set of differential metabolic signal-

ing pathways within cells [34, 42].

The results of RAGE-ligand interactions vary depending

on the cell and ligand type as well as ligand and RAGE

concentrations on the cell surface. Evidence shows that, in

many cases, the results of RAGE-ligand interactions lead to

pathological changes; however, some studies show that

depending on the developmental stage (pre- versus post-

natal) and the aforementioned factors, RAGE interaction

might be beneficial.

Studies have revealed that in the neuromuscular system

during prenatal development, RAGE signaling is benefi-

cial, promoting neuronal and myotubular differentiation,

neurite outgrowth, myotube formation, and neuron and

muscle cell proliferation [43, 44]. Furthermore, it has been

demonstrated that, at low concentrations, RAGE-ligand

interaction are beneficial after spinal cord injury by

targeting Schwann cells and promoting axonal myelination

and regeneration, counteracting to some extent the detri-

mental effects of neuroinflammation caused by excessive

RAGE activation present on microglia and astrocytes [45].

Another study examining RAGE signaling in neuroblas-

toma cells demonstrated that RAGE, upon binding to one

of its ligands, S100B, at low concentration offers neuronal

protection against Ab-driven neurotoxicity, while at high

doses it accelerates neuronal death in conjunction with

detrimental effects of Amyloid-b1-42 (Ab1-42) neurotox-

icity on neuronal cells [46, 47].

Similarly, low-level expression of RAGE seems to

benefit migration, maturation, and proliferation of at least

some cells of the immune system such as T cells, dendritic

cells, and granulocytes [48], while high RAGE expression

leads to exacerbated immune response, driven by overly

reactive monocytes and macrophages/microglia [49].

RAGE in the Nervous System —A Janus-faced

Receptor

Positive Effects of RAGESignaling in the Nervous System

The presence of RAGE in the nervous system was first

described by Brett and colleagues [3] in a survey study

examining the distribution of a novel (at the time) receptor

for advanced glycation end-products in various mature

bovine tissues. In that study, the presence of RAGE was

detected in a subset of neurons, ependymal cells, and

microvessels of the cerebral cortex and motor neurons of

the spinal cord, as well as in neurite outgrowths and cell

bodies of NGF-stimulated neuroendocrine PC12 cells [3].

Subsequent studies showed that RAGE, through its ligand

interaction, is involved in neuronal differentiation, neurite

outgrowth, and elongation, and post-injury nerve regener-

ation [45, 50–54] both in the embryonic and mature

nervous system, underscoring its mediatory role in the

developing and mature, adult, nervous system (Fig. 3)

Many of the physiological or positive effects of RAGE

in the nervous system were discovered during early studies

of its interactions with a couple of its ligands, i.e. S100s

and HMGB1. For example, it has been reported that RAGE

activation by both HMGB1 and S100 in neuroblastoma and

glioma cells promotes neuronal cell survival via an NF-jB

induced increase in expression of the anti-apoptotic protein

Bcl-2 [40]. Similar effects were also reported upon RAGE-
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S100B-HMGB1 binding, when both ligands, in a seem-

ingly coordinated manner, bound to RAGE, triggering

metabolic pathways that lead to neurite outgrowth [40].

This finding was later confirmed in dorsal root ganglion

cell culture, where RAGE, upon simultaneous binding to

S100B and HMGB1, activated neurite outgrowth promot-

ing signaling pathways [55].

The role of RAGE in neuronal differentiation was

documented in mouse-derived adult neuronal progenitor

cells [53]. Here, as in the case of RAGE-mediated neurite

outgrowth, stimulation of neuronal differentiation was

mediated via RAGE interactions with S100B, HMGB1,

and glycated bovine serum albumin coupled with NF-jB

signaling [53]. The results of another set of experiments

conducted in embryonic carcinoma cell lines on the role of

RAGE in neuronal differentiation showed that all three

proteins, RAGE, HMGB1, and S100B, are upregulated

throughout the entire differentiation period in these cell

lines. Furthermore, it was shown that the RAGE-ligand

interaction is coupled with the upregulation of chromo-

granin, a structural component of secretory vesicles

involved in neurosecretion at chemical synapses [50].

Studies have shown that positive RAGE signaling in the

nervous system is not only driven by its interactions with

S100B or HMGB1 but also, surprisingly, by its binding to

monomeric Ab1-42. In neuroblastoma cells, RAGE and

Ab1-42 interaction leads to upregulation of AMIGO

(amphoterin-induced gene and ORF) proteins involved in

neurite elongation and fasciculation, thus leading to

neuronal differentiation [52].

The positive role of RAGE in the nervous system has

also been reported under non-physiological, post-injury

circumstances, as demonstrated by studies on the role of

RAGE in the spinal cord and peripheral nerve injury

models [45, 54]. It was demonstrated that in the spinal cord

injury model, modulatory, pro-regenerative RAGE-

HMGB1 signaling outweighs its negative, pro-inflamma-

tory signaling, promoting neuronal stem cell differentia-

tion, and accelerating spinal cord recovery [56]; while in

peripheral nerve injury, RAGE-S100B interaction triggers

pathways mediating Schwann cell migration, thus promot-

ing post-injury peripheral nerve recovery [57].

Negative Effects of RAGE Signaling in the Nervous System

While the number of reports of positive effects of RAGE

signaling in the nervous system is limited, the reports on

the negative impact of RAGE signaling in the nervous

system are abundant and the negative effects are well

documented (Fig. 3). It is assumed that the negative impact

Fig. 3 RAGE signaling pathways: Ligands (such as AGEs, S100,

HMGB1, and others) along with regulatory/adaptor proteins (such as

TIRAM, MyD88, and others) by interaction with RAGE trigger a

cascade of intracellular signaling pathways (such as JAK-STAT,

MAPK, NF-jB, and others) that destabilize neuronal cells and lead to

their dysfunction with negative consequences: such as: induction of

reactive oxygen, pro-inflammatory cytokines, and downregulation of

homeostatic molecules and positive consequences such as: increased

neuronal survival, differentiation, and neurite outgrowth.
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of RAGE results from its role as a transduction receptor

through its binding to multiple, pro-inflammatory and pro-

oxidative stress ligands that activate inflammatory and

oxidative stress pathways, leading to cellular dysfunction

and degeneration resulting in cell death [58, 59].

Normally, in a non-disease setting, RAGE expression in

adult cells of the nervous system is low, however, it

increases as the concentration of its inflammatory and

oxidative stress triggering ligands such as AGEs, HMGB1,

S100B or when Ab1-42 increases excessively [60].

As discussed earlier, HMGB1, S100B, and/or Ab1-42

can trigger positive changes in the nervous system via

RAGE signaling, but to do so, their concentration has to be

low, slightly above their baseline. The higher the concen-

tration, the more detrimental the effects of their interaction

with RAGE [61, 62]. This kind of dichotomy is not true for

AGEs, as the results of their binding to RAGE are always

negative, triggering a cascade of metabolic changes leading

to oxidative stress and excessive inflammatory responses

[63, 64].

Similarly, negative outcomes of RAGE binding on cells

and/or tissues has also been reported in the case of its

interactions with its other ligands such as AOPP, comple-

ment factors, HSP70 or Mac-1, traditionally considered to

be a part of the oxidative stress/inflammatory signaling

pathways [63]. In addition to its increased activity upon

ligand binding, the RAGE signaling pathway might be

further enhanced by its upregulation in different nervous

system cell types, such as microglia, resident macrophages,

and astrocytes, further accelerating the accumulation of

pathological processes in nerve cells and tissue [61, 65].

Though detrimental effects of RAGE signaling have

been reported in several neurodegenerative diseases, its

exact role in the pathogenesis of neurodegeneration

remains elusive [66]. Based on current knowledge, it is

generally accepted that RAGE on its own does not trigger

neurodegeneration but exacerbates it by increasing oxida-

tive stress and neuroinflammation in disease. According to

the latest research models of RAGE signaling in the

nervous system, immune cells of the nervous system

(microglia of the CNS and resident macrophages of the

peripheral nervous system) are the first responders to

excessive accumulation of RAGE pro-inflammatory and

pro-oxidative stress ligands. RAGE on the surface of these

immune cells becomes activated upon binding to its ligands

and, along with triggering downstream pathological path-

ways, stimulates the expression of neuronal and likely

astrocytic RAGE, entering a positive expression loop and

accelerating the progression of pathological changes and

leading to neuronal dysfunction and degeneration [61, 65].

The dual nature of RAGE may thus result from its rather

broad tissue distribution.

RAGE and its Role in Central Nervous System

Diseases

Since its first discovery, RAGE has been implicated in the

processes of inflammation and neurodegeneration [65, 67].

The presence of this receptor was detected in neuroinflam-

matory, neurovascular, and neurodegenerative disorders of

the CNS such as multiple sclerosis, diabetes-induced

dementia, amyotrophic lateral sclerosis (ALS), Alzhei-

mer’s disease, Parkinson’s disease, and Huntington’s

disease. Here we discuss the latest evidence on the role

of RAGE in the pathogenesis of CNS disorders, providing

the most recent data since our last publications reviewing

RAGE and its contribution to neurodegeneration (Figs 4,

5).

It is well-accepted that oxidative stress, inflammation,

and apoptosis are implicated in the pathogenesis and

progression of a number of neurodegenerative diseases,

including ALS [68, 69]. Multiple studies implicate ligand-

RAGE interaction in the genesis of reactive oxygen species

(ROS) and amplification of inflammatory stressors [65, 70].

The key to the biology of RAGE is that its activity is driven

by enhanced generation and accumulation of its ligands;

our and others’ studies revealed that the ligands of RAGE

are upregulated in human and murine models of ALS

[71–78]. In the CNS, RAGE has been found in neurons,

microglia, and astrocytes. Many studies indicate a central

and crucial role played by RAGE in the CNS [79]. The

signal transduction pathways activated downstream from

the RAGE-ligand interaction depend on the stimulation of

different cell types and ligands and elicit cell-type-specific

effects [51, 65, 79]. One of the novel effects by which

microglial RAGE works in a murine model of ALS is by

disrupting cell-cell communication leading to the genera-

tion of a pro-inflammatory microglial phenotype [80]. The

effects of RAGE activation on neurons, astrocytes, and

microglia vary, depending on the specific isoform as well

as the concentration level of RAGE on the cell surface

[79].

Neuroinflammatory diseases are another group of CNS

diseases whose main and most characteristic feature is the

presence of inflammatory infiltrates in the brain and/or

spinal cord parenchyma. Microglial cells are thought to be

the resident immune cells within the CNS and play a

crucial role in neuroinflammation via the secretion of pro-

inflammatory cytokines and other factors. RAGE on the

surface of microglia acts as a receptor for the Ca2?-binding

protein S100A8/A9 to activate NF-jB via the JNK/ERK

pathway to enhance the production of inflammatory

cytokines [81]. Neuroinflammatory disorders such as

multiple sclerosis [82] are often associated with demyeli-

nation. Another Ca2?-binding protein, S100B, may signal

through RAGE in downregulating oligodendrogenesis

123

J. Juranek et al.: Role of RAGE in the Pathogenesis of Neurological Disorders 1253



required for myelin repair. Thus, RAGE may act as a

double-edged sword in these conditions by increasing

inflammation and at the same time inhibiting myelination.

In fact, inhibition of the S100B-RAGE axis may improve

remyelination in lysophosphatidylcholine-mediated

demyelination [83]. Indeed, downregulation of mem-

brane-bound RAGE expression is often seen in multiple

sclerosis, and a higher level of sRAGE has been reported to

be associated with responsiveness to IFN-b therapy and

lower levels of disability in this disease [84]. Besides

Ca2?-binding proteins, in multiple sclerosis lesions, astro-

cytes may produce excessive AGEs due to a switch in

metabolism. Evidence suggests that these AGEs secreted

by astrocytes may act in a paracrine manner to activate

RAGE on microglia and macrophages present within the

lesions [85]. Thus, RAGE may play a dynamic role in

conditions like multiple sclerosis due to signaling via

multiple different ligands including Ca2?-binding proteins

and AGEs.

Together with RAGE, HMGB1 may also function in

triggering inflammation in the murine model of multiple

sclerosis via astrocytic SHH release in a RAGE-dependent

manner via p38, JNK and STAT3 phosphorylation [86].

Inflammation in the CNS is, however, not limited to

neuroimmunological disorders. In fact, inflammation is a

hallmark of many neurodegenerative conditions such as

Fig. 4 RAGE-activation-dependent signaling is present in numerous

disorders of the nervous system. The diseases noted in the text are

divided into two tables based on the location of the pathological

changes. The RAGE ligands listed are assigned to specific conditions.

Pro-inflammatory RAGE ligands such as S100A, S100B, and

HMGB1 participate in the development of disease by binding to

RAGE. Although in some circumstances, low and slightly raised

levels of a given molecule may have a neuroprotective, pro-

regenerative effect on the neuronal system, excessive levels lead to

pathological pathway activation. A Chemo-induced neuropathy is an

exemplary peripheral nervous system (PNS) disease. The figure pre-

sents multiple mechanisms that lead to neurodegeneration. Paclitaxel

is an anti-cancer drug that causes an increased expression of RAGE in

the DRG (1). At the same time, it increases the expression of HMGB1

in macrophages (2). Oxaliplatin has a similar effect on non-

macrophage cells (3), as it increases the production of HMGB1.

Interestingly, recent research provides data suggesting that papaverine

treatment increases neuronal recovery, which helps in alleviating

neuropathic pain (4). B Multiple sclerosis is an exemplary CNS

neurodegenerative disease. Microglial RAGE binds to S100A8/A9,

activating NF-jB via JNK/ERK pathway, which then increases the

production of inflammatory cytokines. Moreover, due to metabolic

changes, astrocytes produce excessive AGEs, which also bind to

RAGE on microglia and macrophages within the lesion. Subse-

quently, this leads to demyelination along with inflammation, to

further neurodegeneration and health decline.
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Alzheimer’s disease and Huntington’s disease. Most neu-

rodegenerative disorders are accompanied by the formation

of protein aggregates and defects in protein homeostasis. In

Huntington’s disease, protein aggregation is a result of

CAG repeat expansion; however glycation may contribute

to defective proteostasis [87]. In fact, there is increased

expression and co-localization of RAGE with its ligands in

the striatum of patients with Huntington’s disease [88].

HMGB1, another ligand for RAGE may be involved in

ROS sensing by huntingtin and its nuclear transport [89].

However, despite these reports suggesting that RAGE

signaling contributes to Huntington’s disease, a clear

picture regarding role of RAGE in this pathology is yet

to emerge.

Similarly, there are indications that RAGE may also

play a role in Alzheimer’s disease.

Studies have shown that RAGE on endothelial cells

mediates the influx of amyloid beta through the blood-brain

barrier, triggering release of inflammatory cytokines and

simultaneous vasoconstriction, as well as increased T cell

infiltration leading to amyloid accumulation and increased

inflammation in the brain [90–92]. Further, altered

metabolism may affect RAGE cleavage in patients with

Alzheimer’s disease, but the pathophysiological relevance

of this finding remains to be investigated [93]. Experimen-

tally, intracranial injection of AGE in murine models

enhances many of the hallmarks of Alzheimer’s disease

[94]. It is also known that inhibition of RAGE signaling in

microglia may be beneficial in a mouse model of

Alzheimer’s disease since some synaptic plasticity can be

regained by inactivating RAGE [95]. Consistent with this

notion, it has been found that placement of mesenchymal

cells engineered to secrete sRAGE protects against neu-

ronal loss in an Alzheimer’s mouse model [96].There have

been three clinical trials first testing the safety and efficacy

and later followed up by examining therapeutic effects of

Fig. 5 RAGE and its role in CNS diseases. Schematic of RAGE

signal transduction and its role in CNS diseases. The presence of

RAGE has been detected in many nervous system disorders (1)

RAGE on the surface of microglia acts as a receptor for the Ca2?-

binding protein S100A8/A9 to activate NF-kB via the JNK/ERK

pathway to enhance the production of inflammatory cytokines, such

as TNF, IL-6, and IL-1b. Neuroinflammatory diseases of the CNS are

characterized by the presence of inflammatory infiltrates in the brain

and/or spinal cord parenchyma; simultaneously, the S100B-RAGE

interaction may enhance the axonal demyelination in neuroinflam-

matory disorders such as ALS, Alzheimer’s disease, Parkinson’s

disease, schizophrenia, and depression. Not only microglia, but also

astrocytes may produce excessive AGEs. (2) Evidence suggests that

these astrocyte-secreted AGEs act in a paracrine manner to activate

microglial RAGE. AGE-RAGE interaction may impact NF-kB via the

JNK/ERK pathway and enhance the production of inflammatory

cytokines resulting in demyelination. (3) HMGB1, another ligand of

RAGE, may be involved in ROS sensing by huntingtin and its nuclear

transport. (4) Moreover, RAGE plays a critical role in transport of the

hormone oxytocin that is important for physiological behaviors like

maternal bonding. Overall, RAGE may participate in a large number

of neurodegenerative and mental health conditions.

123

J. Juranek et al.: Role of RAGE in the Pathogenesis of Neurological Disorders 1255



RAGE blockers in Alzheimer’s disease; while they were

safe and effective, the therapeutic effects were less

promising (for more information, see clinicaltrials.gov),

indicating that in the pathogenesis of the disease some

other factors besides RAGE–Ab1-42 interactions might

play a more prominent role. It should be noted though that

the neuroinflammatory aspect of RAGE signaling has not

been tested, hence it might provide a new venue for

Alzheimer’s disease treatment options.

Parkinson’s disease is the second most common later

age-onset neurodegenerative condition. In toxin-induced

Parkinson’s disease mouse models it has been reported that

pharmacological inhibition of RAGE protects dopaminer-

gic neurons in the substantia nigra from 6-hydroxy-

dopamine mediated cell-death [97]. Further, MPTP (1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine) treatment (an-

other toxin producing parkinsonism) has been shown to

cause alterations in molecules belonging to the RAGE

signaling pathway [98]. Downregulation of RAGE in

MPTP-treated mice decreases the associated inflammation

by suppression of NF-jB [99]. Overall, available data

indicate that RAGE signaling plays a significant role in

pathophysiology of both major neurodegenerative condi-

tions, Alzheimer’s and Parkinson’s disease, and is likely to

be a common molecular target for therapeutic intervention.

Aside from the role in neuroinflammatory and neurode-

generative diseases, new evidence has revealed that the

contribution of RAGE may also extend to neurovascular

disorders such as diabetes-induced dementia affecting

brain vasculature, leading to disturbances of cerebrovas-

cular homeostasis and cognitive decline via its interactions

with brain-derived neurotrophic factor [22]).

Finally, the role of RAGE has also been noted in ALS

and some mental disorders including schizophrenia. Both

pharmacological and genetic suppression of RAGE pro-

duces notable improvement in the muscle power of a

murine model of ALS hSODG93A [100]. Despite the

symptomatic improvement in muscle power these manip-

ulations of RAGE fail to produce any significant improve-

ment in the course of the disease and survival of these mice

[100], indicating that the role of RAGE is downstream of

the pathogenic mechanism and most likely involved in

inflammation. In support of this idea, complete abolition of

RAGE expression in hSODG93A mice reduces microgliosis

and inflammation, significantly slows the progression of

the phenotypes, and extends the survival [80]. Mechanis-

tically, these benefits may be due to the suppression of

inflammatory genes that is induced in this murine model

due to aberrant expression of RAGE and its ligand S100B

in astrocytes [101].

RAGE also plays a critical role in transport of the

hormone oxytocin in the brain and is important for

physiological behaviors like maternal bonding [102, 103].

Contradictorily, increased RAGE expression in microglia

may contribute to depressive behavior in stress [104]. In

fact, polymorphisms within the RAGE gene have been

found to be associated with the risk of schizophrenia, a

prevalent mental disorder [105]. One possible mechanism

that has been put forward is that a decrease in the soluble

splice variant esRAGE in schizophrenia causes an increase

in carbonyl stress [106].

Overall data suggest that, due to its role in triggering

inflammation and oxidative stress, RAGE participates in a

large number of neurodegenerative and mental health

conditions. In addition, RAGE performs valuable functions

in the brain, including hormone transport and essential

behaviors such as maternal bonding. This Ying and Yang

nature of RAGE function needs further investigation before

RAGE can be safely used as a target for therapeutic

intervention.

RAGE and Pathogenesis of Sensorimotor Disorders

The presence of RAGE on immune cells as well as

endothelium indicates that RAGE participates both in

inflammation and vasculopathy, hallmarks of peripheral

neuropathies. In addition, RAGE signaling defects in

neurons also may produce axonopathy, the third arm of

peripheral neuropathy [107]. Thus, aberrant RAGE signal-

ing may participate in peripheral neuropathy pathogenesis

in many different manners (Fig. 4, 6).

In the last four decades, the global incidence of DM and

the resulting hyperglycemia has doubled and is nearly 8.5%

of the population [108]. RAGE, as a multi-ligand messen-

ger receptor, is present in many tissues sensitive to

hyperglycemia and is associated with many pathological

processes in the initiation as well as the progression of

diabetic neuropathy, such as increased inflammation,

oxidative stress, protein glycation, and increased apoptosis.

In fact, sensorimotor neuropathy is a common consequence

of uncontrolled DM and hyperglycemia. Although the

pathology of diabetic neuropathy begins insidiously, it can

rapidly progress to conditions like diabetic foot with

ulcerations and Charcot’s neuropathy with the need for

amputation of the lower limb. Besides diabetic foot,

diabetic neuropathy affects the quality of life and increases

mortality in several other manners including chronic

neuropathic pain and increased risk of falling. Besides

control of blood sugar level and foot care there are no

disease-modifying agents for diabetic neuropathy at the

moment, making it crucial that molecules such as RAGE

and their signaling mechanisms be studied intensively.

Further, such studies are likely to inform us about other

neuropathies.

The role of RAGE in the pathogenesis of peripheral

neuropathy, especially diabetic neuropathy, is well studied
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and has been well described by us and others [109–112].

Studies on the role of RAGE in the pathogenesis of diabetic

neuropathy, conducted in murine models of this disease,

have shown that RAGE contributes to the exacerbated local

inflammation and the increase of oxidative stress in

hyperglycemia-sensitive tissues.

Intriguingly, the expression of RAGE as well as its

activation has been reported not only in diabetic but also in

non-diabetic neuropathies in patients [109, 113] and animal

models. For example, peripheral neuropathies are common

adverse effects of chemotherapy against neoplasms. Com-

monly-used drugs like paclitaxel are known to increase the

expression levels of RAGE in dorsal root ganglia and cause

peripheral neuropathies [114]. At the same time, paclitaxel

also causes the release of the RAGE interactor molecule

HMGB1 from macrophages within peripheral nerves [115].

A similar increase in capsaicin-mediated HMGB1 release

from macrophages has also been recently reported in

response to the proteasome-inhibiting chemotherapeutic

drug, bortezomib, in a mouse model, suggesting that

changes in RAGE signaling is modified in most chemother-

apy-induced peripheral neuropathies [116]. Interestingly,

there is evidence that HMGB1 is released from non-

macrophage cells and participates in chemotherapy-in-

duced peripheral neuropathy as seen with oxaliplatin in

rodent models [116]. Depending on the nature of the

pathology, peripheral neuropathy can be either painful or

painless in nature. Painful peripheral neuropathies may

produce allodynia (aberrant pain), and it has been reported

that RAGE antagonists are capable of reducing paclitaxel-

Fig. 6 RAGE and pathogenesis of peripheral nervous system

diseases. Schematic of RAGE signal transduction and its role in the

pathogenesis of peripheral nervous system diseases. (1) RAGE and

AGE are both elevated in the hyperglycemic milieu. However, while

RAGE is increased in both diabetics with and without peripheral

neuropathy, a higher amount of AGEs is found only in diabetics with

neuropathy. Hence, pathways that downregulate RAGE may be

important in the pathogenesis of peripheral nervous system diseases.

The extracellular domains of RAGE (V, C1, and C2) have the ability

to bind ligands, i.e. AGEs, HMGB1 and others. RAGE-HMGB1

interaction triggers signal transduction via the PKC pathway. (2)

RAGE-HMGB1 interplay may increase the activity of TRPV1

channels affecting neuronal depolarization in peripheral nerve,

amplified by the presence of capsaicin modulation of pain perception

in patients with diabetic peripheral neuropathy. (3) RAGE is

connected to many pro-inflammatory pathways. Hence, RAGE

signaling is important for macrophage infiltration within peripheral

nerves and the endothelium of vessels. These phenomena may be

crucial for the progression of diabetic peripheral neuropathy, diabetic

foot, retinopathy, adult macular degeneration, and other peripheral

nervous system diseases.
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induced allodynia in an animal model, suggesting a direct

role of RAGE signaling in this form of neuropathy [115].

Similarly, degradation of HMGB1 by thrombomodulin also

reduces allodynia in oxaliplatin-induced peripheral

neuropathy.

AGEs and RAGE are both elevated in the diabetic

population when compared to non-diabetics [117]. How-

ever, while RAGE is increased in both diabetics with and

without peripheral neuropathy, higher amounts of AGEs

are found in diabetics with neuropathy [117]. This may

lead to higher signaling through RAGE in neuropathy. In

fact, culturing neurons under hyperglycemic conditions is

sufficient to increase capsaicin-evoked depolarization that

is dependent on RAGE. Comparable results have also been

obtained from the nerves of diabetic animals [118] hence

supporting the notion that increased RAGE signaling in

hyperglycemia directly affects the function of sensory

neurons, producing conditions such as hyperalgesia (in-

creased pain) and allodynia. Besides AGEs, disturbed

sensory neurons via AGE signaling could also be due to

RAGE signaling via HMGB1, which increases the activity

of TRPV1 channels [119]. Experimentally, deleting RAGE

in an animal model of DM indeed partially rescues

functional deficits in nerves, further supporting a role of

RAGE in diabetic peripheral neuropathy. Besides directly

affecting neurons, RAGE signaling is also likely to affect

inflammatory cells. In animal model experiments, RAGE

signaling is important for the infiltration of macrophage

within peripheral nerves, with more macrophages exhibit-

ing a pro-inflammatory M1 phenotype [120]. RAGE has

been associated with vasculopathy and may be specifically

involved in microangiopathy-associated diabetic neuropa-

thy [121]. The importance of such RAGE signaling on

overall nerve function extends beyond diabetic or

chemotherapeutic neuropathy; it has been reported that in

animal models of spinal nerve ligation, RAGE plays a role

in hyperalgesia, thus providing evidence of RAGE signal-

ing in injury-mediated neuropathies. The precise molecular

pathway is uncertain, but it is known that the inflammatory

pathway is upregulated [122]. Altogether, RAGE may be a

target for intervention in both diabetic and non-diabetic

peripheral neuropathies due to its functional importance in

endothelial cells, as well as both neurons and immune cells.

A recent report on sepsis-induced neuropathy indicated that

using anti-inflammatory and antioxidant drugs such as

papaverine effectively blocks RAGE-HMGB1 signaling

and increases the chance of recovery [123]. Thus, RAGE

blockers could be used in the management of neuropathic

pain induced by a variety of conditions, including DM,

chemotherapy, sepsis, and even injury.

RAGE is also upregulated in optic nerve neuropathy in

Alzheimer’s patients [124]. Furthermore, RAGE-mediated

accelerated aging has also been suggested to participate in

glaucomatous optic nerve degeneration [125]. A recent

investigation found increases in the levels of both RAGE

and HMGB1 in Grave’s ophthalmopathy, and RAGE

expression in these cases are directly correlated with

dysthyroid optic neuropathy [126]. Apart from peripheral

and cranial neuropathies, microangiopathy is also a hall-

mark of various retinopathies, and indeed RAGE has also

been implicated in diabetic retinopathy as well as adult

macular degeneration [127, 128]. Besides peripheral sen-

sation and vision, RAGE signaling also likely affects other

sensory nerves and pathways. Deletion of RAGE in mice

increases their sensitivity to auditory stimuli [129], indi-

cating a physiological role of RAGE in auditory sensation.

RAGE may also play a pathological role in the auditory

pathway, especially damage to cochlear hair cells under

hyperglycemic conditions [130]. RAGE expression

increases within the auditory cortex in animal models of

noise-induced hearing loss, although the implications of

this are not known [131]. Finally, RAGE expression

increases with aging in the spiral ganglion cells of the

cochlea and may play a role in the pathogenesis of

presbycusis (age-dependent hearing loss) [132]. Overall,

the literature indicates that, besides influencing sensory

neurons in periphery, RAGE also play physiological and

pathological roles in the sensory modalities of cranial

nerves.

Interestingly, RAGE signaling has also been reported in

diseases of neuromuscular junctions such as myasthenia

gravis (MG), demonstrating lower levels of soluble RAGE,

acting as a RAGE decoy, while levels of its pro-inflam-

matory ligands such as S100A, S100B, and HMGB1 are

increased in the blood serum of MG patients, revealing

biomarker and therapeutic potential [133].

Summary

In conclusion, RAGE, as a transmembrane multifaceted

pattern-recognizing molecule, is capable of interacting

with multiple endogenous ligands. It participates in both

physiological and pathophysiological pathways in the

peripheral and central nervous systems. The multidirec-

tional involvement of RAGE in neuropathies makes it a

promising target for interventional treatment. The major

unknown to resolve is whether it is possible to determine

the therapeutic dose for the pharmaceutical manipulation of

RAGE. Further research is therefore required to gain a

more in-depth understanding of the receptor’s signaling

modulation and to develop potent therapies of the patholo-

gies in which RAGE has a detrimental effect.
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