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Abstract

Eosinophils are important effector cells and therapeutic targets in allergic diseases. Emerging data 

indicate that eosinophils infiltrate a variety of solid tumor types and have pleiotropic activities 

by at least two non-mutually exclusive mechanisms: direct interactions with tumor cells, and 

intricate cross-talk with lymphocytes. In light of the immune checkpoint inhibition revolution in 

cancer therapy, we review eosinophil–lymphocyte interactions in the tumor microenvironment. We 

also analyze potential interactions between eosinophils and lymphocyte subsets, including T cells, 

natural killer cells and innate lymphoid cells. We provide perspectives on the consequences of 

these interactions and how eosinophils are accessory cells that can affect the response to various 

forms of T cell-mediated immunotherapies and might be therapeutically targeted to improve 

cancer immunotherapy.

Eosinophils differentiate from distinct CD34+ myeloid progenitor cells in the bone marrow. 

They have been mostly studied in the context of parasitic infections and allergic diseases1 in 

which CD4+ type 2 helper T cells (TH2 cells) primarily regulate eosinophils by generating 

the eosinophil growth, activation and survival cytokine interleukin (IL)-5 (ref.1).

Reports dating back to the late 1900s identified eosinophilia in the peripheral blood of 

patients with cancer2. Since then, eosinophils have been shown to infiltrate a variety of solid 

tumors, especially in mucosal organs such as the gastrointestinal tract and the lungs3, where 

they function either as participants of an integral inflammatory response or in response 

to therapies4. However, how eosinophils are recruited and activated in cancer has been 

some-what overlooked.
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In this Perspective, we provide an overview of known and possible interactions between 

eosinophils and lymphocyte subsets, including T cells, natural killer (NK) cells and innate 

lymphoid cells (ILCs). Clinical and experimental data regarding the potential involvement 

of eosinophils in various forms of T cell-mediated immunotherapies are also presented. 

This focus on eosinophils should promote a better understanding of how the cellular 

components of the tumor microenvironment (TME) are orchestrated and might encourage 

the development and optimization of therapeutic strategies for cancer immunotherapy.

Interactions of eosinophils with innate lymphoid cells

ILC2–eosinophil interactions.

The ILC family includes a heterogeneous group of immune cells with distinct yet pleiotropic 

activities. These cells have now joined a growing list of cellular TME components that might 

contribute to tumorigenisis5. ILC2s can respond to many signals and mediators of type 2 

immune responses6 and can secrete type 2 cytokines (such as IL-4, IL-5 and IL-13) that 

promote eosinophil expansion or migration via epithelial cell and macrophage production of 

chemotactic eotaxins6,7 (Fig. 1).

ILC2s have been shown to contribute to the TME in an eosinophil-dependent and 

eosinophil-independent fashion8. In one study9, intravenous injection of B16-F10 melanoma 

cells resulted in increased production of IL-5 by lung ILCs that share similar surface 

receptors and functional properties with ILC2s, including their ability to produce IL-5 in 

response to the epithelial cell-associated alarmins IL-33 or IL-25 (ref.9) (Fig. 1). This 

increase in IL-5 production was associated with increased eosinophilic infiltration into 

the lungs. Moreover, in mice lacking IL-5 or treated with anti-IL-5, intravenous injection 

of B16-F10 cells resulted in decreased eosinophil infiltration and increased lung tumor 

colonization in comparison with wild-type (WT) or control antibody-treated mice9. In a 

different study10, eosinophil–ILC2 interactions were proposed in experimental melanoma10. 

Induction of melanoma in BRAFCA;PTENloxp; Tyr:CreERT2 mice via topical application of 

4-hydroxytamoxifen leading to primary malignant melanoma formation, which resembles 

human disease11, resulted in recruitment of multiple types of ILCs10. Specific depletion 

of ILC2s using Il7rCre/+RoraΔ/Δ mice or the Cd4Cre/+Icosfl-Dtr/+ mice increased tumor 

burden, which was eosinophil dependent and granulocyte-macrophage colony-stimulating 

factor (GM-CSF) dependent10. Indeed, single-cell RNA sequencing of tumor-infiltrating 

leukocytes revealed that ILC2s were enriched with IL-5 and GM-CSF10, two hallmark 

eosinophil survival cytokines12. Notably, GM-CSF-deficient mice displayed an increased 

tumor burden, and reconstitution of ILC2s into tumor-bearing GM-CSF-deficient mice 

resulted in a specific increase of eosinophils and decreased tumor burden10. Conditioned 

media of IL-33-stimulated ILC2s promoted eosinophil survival10, and induced expression of 

genes encoding eosinophil granule proteins, Epx, Ear1 and Ear2, all of which are associated 

with the cytotoxic activity of eosinophils10 (Fig. 1). In support of an anti-tumorigenic 

function for the ILC2–eosinophil axis, intravenous injection of melanoma cells increased 

colonization of tumors in the lungs of ΔdblGATA eosinophil-deficient mice compared with 

WT mice10.
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In addition to IL-5 and GM-CSF, IL-33 (ref.13) is an important cytokine that can regulate 

the ILC2–eosinophil cross-talk in the TME. Transgenic expression or exogenous delivery of 

IL-33 in models of lung colonization following intravenous injections of B16-F10 melanoma 

cells or Lewis lung carcinoma increased antitumor immunity that was characterized by 

activation and infiltration of ILC2s and eosinophils, as well as CD8+ T cells and NK 

cells14,15. Furthermore, IL-33 directly activated eosinophils to enhance the expression of the 

adhesion molecules LFA-1 and CD11b and facilitated recognition and subsequent adhesion 

of eosinophils to tumor cells via tumor cell-expressed ICAM-1 (refs.14,16). In a different 

study17, in response to IL-33, eosinophils were transcriptionally activated17 and secreted 

granulate ribonucleases and granzymes, which can directly induce tumor cell death4 (Fig. 1).

NK cell–eosinophil interactions.

Eosinophils express multiple receptors that are capable of interacting with NK cells. 

Human eosinophils express the CD2 subfamily of receptors (including NTB-A, 2B4, 

CD84, CD58, IRp60 and CD48)18,19 as well as LFA-1 (ICAM-3) and ligands for the 

natural cytotoxicity receptors NKp30 and NKp46 (ref.20). These receptors are functional 

in mediating eosinophil–NK cell cross-talk as blockade of NKp46, NKp30 and LFA-1 can 

reduce eosinophil-mediated NK cell activation in vitro20.

Experimentally, IL-33 facilitates the recruitment of NK cells to the lungs of mice in response 

to intravenous injection of 4T1 tumor cells21. In this study21, NK cell recruitment was 

dependent on CCL5, mainly produced by eosinophils and CD8+ T cells21. Accordingly, the 

increase in IL-33-induced NK cell numbers in the lungs was reversed following depletion 

of eosinophils and CD8+ T cells21 (Fig. 1). Additionally, peritoneal injection of bone 

marrow-derived eosinophils that were stimulated with lipopolysaccharides or CpG DNA 

increased the percentage of peritoneal NK cells via a mechanism that seems to involve 

eosinophil secretion of CXCL10 and IL-12 (ref.22). In addition, CpG-activated mouse 

eosinophils increased NK cell-dependent interferon (IFN)-γ production and killing of YAC1 

lymphoma cells22 (Fig. 1). A pro-cytotoxic effect was also seen following co-culture of 

human eosinophils with IL-12-stimulated NK cells, resulting in a contact-dependent increase 

in NK cell cytotoxicity toward K562 myelogenous leukemia cells20 (Fig. 1).

Interestingly, under settings of preexisting type 2 immune responses such as those that 

occur in allergic inflammation, eosinophils can suppress NK cell cytotoxic activities and 

thus increase tumor burden23. This phenomenon was observed in mice that were treated 

with IL-33 or had preexisting Aspergillus-induced allergic airway disease, which resulted 

in increased lung colonization by B16-F10 melanoma cells after intravenous injection23. 

In these IL-33-treated mice, eosinophilia was positively correlated with IL-33 suppression 

of IFN-γ production by NK cells23. Depletion of eosinophils by anti-IL-5 reversed 

the suppressive effect of IL-33 on IFN-γ and granzyme B production by NK cells23. 

Furthermore, in these settings, ILC2-derived IL-5 promotes eosinophil-mediated suppression 

of lung NK cell activity by modulating the metabolic environment. Eosinophils readily take 

up the glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose 

(2-NBDG) and secrete lactate, which can suppress the effector functions of NK cells via 

glucose depletion and production of lactic acid23 (Fig. 1).
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Interactions of eosinophils with T cells

Effector T cells are the major effector cells in the adaptive immune response leading to 

tumor elimination24. Activated CD8+ T cells have direct cytotoxic activity against tumor 

cells, and optimal polarization of CD4+ T cells is essential to obtain durable systemic 

antitumor immunity25,26. Furthermore, CD4+ cytotoxic cells and the TH1 subset of helper 

T cells have antitumor activity27, whereas regulatory T (Treg) cells exert potent tumor-

promoting activity24.

Eosinophils–T cell interactions might promote antitumor immunity.

Bioinformatics and experimental evidence indicate a role for eosinophil–T cell interactions 

in cancer. An RNA profiling algorithm of RNA signatures corresponding with multiple 

immune cells was used to predict that the abundance of eosinophils correlated with 

abundance of resting memory CD4+ T cells in a variety of bulk RNA-sequenced primary 

tumors3. This predicted eosinophil RNA signature also correlated with RNA signatures of 

CD8+ T cells in bulk RNA-sequenced pleural metastatic samples from patients with breast 

cancer28.

Experimentally, eosinophils respond to cytokines that can be secreted by CD4+ T cells and 

CD8+ T cells. For example, clearance of lung and visceral metastases after intravenous 

injection of chicken ovalbumin (OVA)-expressing B16-F10 melanoma cells demonstrated 

that tumor clearance is dependent on secretion of IL-5 by TH2 cells, expression of CCL11, 

and the presence of degranulating eosinophils29. Furthermore, rejection of B16-F10 cells 

that were engineered to secrete GM-CSF led to the concurrent induction of TH1 and TH2 

responses, including the hallmark TH1 (IFN-γ) and TH2 (IL-4 and IL-5) cytokines. Both 

types of cytokine were required for optimal antitumor immunity, which resulted in activation 

of eosinophils and macrophages and their production of superoxide and nitric oxide29,30. 

Interestingly, IFN-γ stimulation augments direct eosinophil-mediated cytotoxicity toward 

colorectal cancer cells31, and IFN-γ-stimulated eosinophils acquire a transcriptional profile 

similar to M1 macrophages, which also typically have antitumor functions32 (Fig. 2). 

In addition, IFN-γ-stimulated eosinophils secrete T cell-recruiting chemokines, such as 

CCL5, CXCL9, CXCL10 and CXCL16 (ref.28). Furthermore, conditioned medium that 

was obtained from IFN-γ-activated eosinophils enhanced T cell migration in vitro28. In 

this study, bulk RNA sequencing of eosinophils obtained from the lungs of mice after 

intravenous injections of polyomavirus middle tumor antigen (PyMT) breast cancer cells, 

displayed a transcriptome signature that was enriched with IFN-γ-associated and STAT-1-

associated pathways28. Adoptive transfer of IFN-γ/tumor necrosis factor (TNF)-activated 

eosinophils into the lungs facilitated the infiltration of CD4+ and CD8+ T cells and promoted 

antitumor immunity (Fig. 2). Depletion of eosinophils using anti-Siglec-F antibodies in 

Rag2−/−/Il2rg−/− mice and pharmacological depletion CD4+ T cells, CD8+ T cells and 

eosinophils in WT mice showed that the anti-tumorigenic functions of eosinophils in this 

model are lymphocyte dependent28. IFN-γ also governs the anti-tumorigenic activities of 

eosinophils in other experimental models. Depletion of Treg cells in a model of intradermal 

injection of B16-OVA melanoma cells induced pronounced tumor eosinophilia associated 

with tumor rejection33. Pharmacological depletion of eosinophils demonstrated an essential 
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role for eosinophils in tumor rejection due to their ability to promote CD8+ T cell 

accumulation through secretion of CCL5, CXCL9 and CXCL10 (ref.33) (Fig. 2). In this 

study, co-adoptive transfer of OT-I CD8+ T cells with TNF and IFN-γ-activated eosinophils 

led to CD8+ T cell-mediated antitumor immunity, whereas adoptive transfer of CD8+ T cells 

alone failed to induce tumor rejection33. Also, intravenous transfer of eosinophils and CD8+ 

T cells triggered vessel normalization and reprogramming of tumor-associated macrophages 

to an M1 phenotype with increased expression of Ifng, Tnf and Cxcl10 and decreased 

expression of M2 macrophage markers associated with tumor-promoting activities, including 

Tgfb1, Chil3 (Ym1) and Arg1 (ref.33) (Fig. 2).

Eosinophils as antigen-presenting cells and amplifiers of T cell responses.

In addition to supporting T cell migration, eosinophils can amplify T cell activation via 

antigen presentation34. Although eosinophil-mediated antigen presentation has not been 

shown in the context of cancer, eosinophils can express and upregulate co-stimulatory 

and co-inhibitory molecules, such as major histocompatibility complex class II (MHC-II), 

CD80, CD86, CD40, CD48 and programmed death ligand 1 (PD-L1)32,35–40. Eosinophils 

also function as antigen-presenting cells (APCs) in various experimental models, where 

they induce CD4+ T cell proliferation and type 2 cytokine production (for example, IL-4, 

IL-5 and IL-13) (Fig. 2). Purification of eosinophils in the absence of ammonium chloride, 

which inhibits antigen processing, indicates that eosinophils can act as professional APCs 

and stimulate naïve T cells41. Proteomic analysis of eosinophils obtained from the lungs 

of PyMT-colonized mice demonstrated that eosinophils display high expression of the 

antigen presentation-related proteins β2-microglobulin, transporter 2 ATP-binding cassette 

subfamily B member (TAP2), and TAP-binding protein (TAPBP)28. Whether eosinophils 

can present antigen in the context of MHC class I recognition is unclear. Nonetheless, co-

culture of bone marrow-derived eosinophils with OT-I CD8+ T cells resulted in robust T cell 

proliferation in an antigen-dependent manner, suggesting that culture-derived eosinophils 

can present antigen via MHC-I (ref.42) (Fig. 2).

The ability of eosinophils to amplify T cell responses has also been shown in animal models 

of colorectal cancer. Assessing CD4+ and CD8+ T cell numbers in eosinophil-deficient 

PHIL mice (transgenic mice that express diphtheria toxin under the eosinophil peroxidase 

promoter causing eosinophil-specific cell death)43 and depletion of eosinophils using anti-

IL-5 neutralizing antibodies showed that T cell frequency and absolute numbers were 

unchanged in the TME. However, in the absence of eosinophils, decreased production of 

IFN-γ and TNF occurred upon restimulation of T cells with phorbol myristate acetate and 

ionomycin44. Similarly, depleting eosinophils in Apcmin/+ mice, which display spontaneous 

intestinal adenoma formation, resulted in impaired TH1 responses, which increased tumor 

burden. In this same study, specific ablation of Irf5 or Csf2rb (which mediate the signals 

of IL-5, GM-CSF and IL-3) in eosinophils resulted in impaired T cell responses and 

increased tumor burden44. These data suggest that eosinophils function through T cells 

to enhance antitumor immunity in colorectal cancer. Despite these findings, contrasting 

evidence suggests that the anti-tumorigenic function of eosinophils in colorectal cancer 

might be due to their responsiveness to T cell-derived cytokines, such as IFN-γ, rather than 

eosinophil-dependent recruitment or activation of T cells31. Certainly, in another study31, 

Grisaru-Tal et al. Page 5

Nat Immunol. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the anti-tumorigenic activities of eosinophils in inflammation-induced colorectal cancer and 

in Apcmin/+ mice are suggested to be driven by direct eosinophil cytotoxicity following 

IFN-γ stimulation, as direct cytotoxicity was not demonstrated in vivo31. Thus, the precise 

interaction of eosinophils with T cells and T cell-derived cytokines (especially IFN-γ) 

requires further research.

Eosinophil–T cell interactions in cryo-thermal therapy.

Eosinophils have also been shown to contribute to tumor-specific T cell responses induced 

by cryo-thermal therapy45. In this study, cryo-thermal therapy induced the infiltration of 

eosinophils into treated tumors. Infiltrating eosinophils had an activated phenotype as 

defined by increased mRNA expression of Infg, Tnfa, Il6, Cxcl10 and Cd86, as well as 

genes encoding the cytotoxic molecules granzyme B (Gzmb)) and perforin (Prf1). Cryo-

thermal-activated eosinophils induced the functional differentiation of CD4+ T cells and 

development of cytotoxic CD8+ T cells and promoted the cyto-lytic activities of these two 

cell types in vitro45.

Mechanisms of eosinophil-mediated T cell suppression.

Eosinophils are capable of suppressing T cell responses by direct and indirect mechanisms. 

Directly, eosinophil-express PD-L1 suppresses T cell responses in at least two settings, 

namely Heliobacter pylori infection36 and in allograft transplantation38. In the latter study, 

eosinophils suppressed lung T cell responses in a dose-dependent, contact-dependent and 

nitric oxide synthase (iNOS)-dependent fashion38 (Fig. 2). Indirectly, eosinophil-derived 

transforming growth factor (TGF)-β regulates the expansion of RORγt+ gastrointestinal 

Treg cells and eosinophils are capable of inducing Foxp3 expression in naïve T cells upon 

co-culture46.

In cancer, eosinophils can regulate the accumulation of Treg cells. In one study, intravenous 

injection of tumor cells resulted in an early and transient induction of IL-5 and eosinophils 

in the lungs of WT mice47. Il5−/− mice displayed decreased lung tumor nodule formation 

compared to WT mice, which was associated with decreased CCL22 expression and Treg 

cell accumulation. Adoptive transfer of bone marrow-derived eosinophils into these Il5−/− 

mice resulted in increased lung tumor colonization. Mechanistically, this study showed that 

eosinophil-secreted CCL22 facilitated tumor growth through local recruitment of Treg cells.

Cancer immunotherapy

Therapeutic targeting of T cells and/or utilizing their abilities to eliminate tumor cells 

have become two of the most promising avenues in cancer immunotherapy24. Although 

only a few studies convincingly demonstrate a causative role for eosinophils in T cell-

targeted immunotherapies, multiple clinical observations link eosinophils to such therapies4, 

proposing a paradigm in which a possible positive feedback loop exists between eosinophils 

and lymphocytes to augment treatment efficacy.
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Immune checkpoint blockade.

Immune checkpoints are cell surface molecules that control the function of various 

immune cells, including lymphocytes and myeloid cells48. Antibodies that therapeutically 

target cytotoxic T lymphocyte-associated protein 4 (CTLA4; inhibited by ipilimumab), 

programmed cell death protein 1 (PD-1, inhibited by pembrolizumab, nivolumab and 

cemiplimab-rwlc) and PD-L1 (inhibited by atezolizumab, avelumab and dervalumab) have 

entered mainstream oncology therapy49,50. Nonetheless, not all tumors respond to immune 

checkpoint inhibition (ICI), so identifying predictive biomarkers and accessory cellular 

mechanisms that participate in the antitumor response has the potential to enable the 

development of better therapeutics.

Eosinophils have been suggested as cellular biomarkers and possibly even end-stage 

effector cells in cancer therapy following ICI, especially with anti-CTLA4 and anti-PD-1 

antibodies51–54. Clinical reports from independent centers suggest that peripheral eosinophil 

counts are increased after ICI (Fig. 3 and Table 1). For example, in one study, the absolute 

eosinophil number was positively correlated with overall survival in patients with stage 

IV melanoma treated with at least one dose of ipilimumab55. In another study, increased 

eosinophil counts during ipilimumab treatment correlated with longer survival rates of 

patients with melanoma56. Although most clinical studies assess increased peripheral blood 

eosinophilia with ICI, degranulating eosinophils were also identified within melanoma 

tumors following ICI, and the presence of degranulating eosinophils correlated with CD8+ 

T cell numbers57,58. In that study, ICI treatment altered the activation profile of eosinophils 

and increased the frequency of eosinophils, which were associated with expression of 

the T cell-attracting cytokine IL-16 in the sera of treated patients57. Experimentally, anti-

CTLA4 treatment in models of breast cancer leads to intra-tumor eosinophil accumulation 

that is dependent on CCL11+ CD4+ T cells and CCL5+ CD8+ T cells59. Furthermore, 

IFN-γ production by eosinophils was essential for anti-CTLA4-induced blood vessel 

normalization, which results in elevated vessel perfusion, increased pericyte coverage 

and decreased vessel density59, and eosinophil depletion via anti-Siglec-F attenuated the 

inhibition of tumor growth by anti-CTLA4 therapy (Fig. 3). Although these data imply a 

causative role for eosinophils in the efficacy of CTLA blockade, corroboration is required 

using additional forms of eosinophil depletion. This limitation is especially important given 

that eosinophil depletion in the latter study was not confirmed by immunohistochemistry59.

Eosinophilia has been reported as a biomarker for positive outcomes following anti-PD-1 

therapy in many tumors60–65 (Table 1). The functional role of eosinophils in anti-PD-1 

therapy has been established in experimental models of melanoma, where increased 

tumor growth occurred in PHIL and ΔdblGATA eosinophil-deficient mice compared with 

WT mice10. In this study, ILC2-derived GM-CSF facilitated eosinophil activation and 

survival, and melanoma growth was decreased following in vivo treatment with IL-33 

or anti-PD-1. Notably, ILC2s expressed PD-1, and the combination of IL-33 with PD-1 

blockade substantially enhanced the antitumor response driven by the IL-33–ILC2–GM-

CSF–eosinophil axis (Fig. 3). Finally, another study showed that therapeutic inhibition of 

dipeptidyl peptidase 4 (DPP4) in mice using sitagliptin results in IL-33 induction, increased 

levels of CCL11, and subsequent eosinophil infiltration, degranulation and cytotoxicity 
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leading to reduced tumor growth66. Blockade of PD-1 and CTLA4 reduced the growth 

of Hepa1-6 and EMT6 tumor cells, and combination therapy with inhibition of DPP4 

resulted in a smaller tumor. The efficacy of the treatment was reduced after pharmacological 

depletion of eosinophils with anti-Siglec-F, even in the presence of PD-1 and CTLA4 

antibodies66 (Fig. 3). Collectively, these data suggest that eosinophils can participate in the 

antitumor response elicited by ICI.

CAR T cells.

Chimeric antigen receptors (CARs) are engineered synthetic receptors that function to 

redirect cells to recognize and eliminate other cells expressing a specific target antigen67. A 

major obstacle in the success of adoptive cell transfer of CAR T cells, especially in solid 

tumors, is an inability of CAR T cells to infiltrate the tumor. In one study, peripheral blood 

eosinophil counts correlated with clinical efficacy of CAR T cells recognizing CD19 in 

patients with B-lineage non-Hodgkin lymphoma68. In this study, depletion of eosinophils 

using anti-Siglec-F or anti-CCR3 in an experimental model of B-lineage non-Hodgkin 

lymphoma treated with anti-CD19 CAR T cells also indicated a function for eosinophils 

in CAR T cell antitumor efficacy. Eosinophils might support CAR T cell accumulation 

as fewer CAR T cells were recovered from the tumors in eosinophil-depleted mice and 

a decreased expression of CXCL9 and CXCL10 was observed in eosinophil-depleted 

tumors (Fig. 3). In support of this notion, in a different study, eosinophils facilitated the 

infiltration of T cells in a model of local irradiation69. NOD-Prkdcscid-Il2rg-null mice 

were subcutaneously and bilaterally injected with Raji lymphoma cells. Subsequently, 

irradiation was applied to one side and anti-CD19 CAR T cells were intravenously injected. 

Radiation promoted the intra-tumor infiltration of eosinophils and CD3+Fab+ CAR T cells. 

In this study, adoptive transfer of ex vivo-activated eosinophils improved tumor control in 

mice treated with irradiation and cytotoxic T cell transfer therapy. Conversely, eosinophil 

depletion impaired radiation-driven infiltration of CD8+ T cells and subsequent tumor 

control.

Finally, the potential application of eosinophils to enhance CAR T cell efficacy has been 

reported70. Human pluripotent stem cell-derived eosinophils had competent tumor-killing 

capacity in established solid tumors, such as HCT116 (human colorectal carcinoma), MDA-

MB-231 (human breast adenocarcinoma) and HepG2 (human hepato-cellular carcinoma)70. 

In that study, treatment with CAR T cells injected into established tumor-bearing mice 

revealed that the combination of CAR T cells and human embryonic stem cell-derived 

eosinophils had superior antitumor effects compared with those of CAR T cells or human 

embryonic stem cell-derived eosinophils alone.

Conclusion

Progress has been made in our understanding of the TME26 and evidence is now emerging 

that eosinophils are important contributors, including in response to cancer immunotherapy. 

Nonetheless, our understanding of eosinophil functions in cancer and cancer therapy is 

limited. This knowledge gap should be filled by further preclinical studies of causative 

anti-tumorigenic or pro-tumorigenic functions for eosinophils in the TME. To date, the 
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majority of studies in this area have focused on lung tumors, and to a lesser extent on 

tumors in the gastrointestinal tract. However, eosinophils infiltrate many tumor types3,4, 

thus future studies should look at additional anatomical sites. Although multiple single-cell-

based approaches have been used to characterize the cellular diversity and plasticity in 

any given TME, the transcriptional landscape and heterogeneity of eosinophils are not well 

understood. This is especially important as eosinophils are ‘absent’ from most single-cell 

RNA-sequencing analyses71. This limits our ability to fully understand whether unique 

eosinophil subsets exist and whether eosinophils interact with specific cells in the TME 

or have distinct functions. Future research might require new experimental approaches 

to overcome these challenges. Despite these limitations, the available data suggest that 

eosinophils can enhance tumor immunity by direct and indirect mechanisms that involve 

cross-talk with various lymphocyte subsets. Whether this cross-talk can be manipulated for 

therapeutic purposes is a guiding question for future research.
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Fig. 1 |. Eosinophil–innate lymphoid cell interactions.
Type 2 innate lymphoid cells (ILC2s) can shape the TME by regulating eosinophil 

activities. Stimulating ILC2s with IL-33 induces the expression of IL-4 and/or IL-13, 

which can promote eosinophil migration via induction of eotaxins (for example, CCL11 

and/or CCL24) in epithelial cells and macrophages. Moreover, IL-33 induces the secretion 

of ILC2-derived IL-5 and/or GM-CSF, which supports eosinophil survival, degranulation 

and cytotoxic activities. IL-33 can directly stimulate the expression of adhesion molecules 

(LFA-1, CD11b) in eosinophils, which mediate their binding to tumor cells via ICAM-1 and 

subsequent induction of eosinophil-mediated cytotoxicity. In addition to ILC2s, eosinophils 

have complex interactions with NK cells. Eosinophils can promote NK cell cytotoxicity via 

secretion of CCL5, CXCL10 and IL-12, which support NK cell migration and activation. In 

settings of preexisting allergic inflammation, ILC2s secrete IL-5, which binds to IL-5Rα 
(CD125) on eosinophils and can promote eosinophil-mediated metabolic shift in NK 

cells via glucose depletion and production of lactic acid, resulting in inhibition of NK 

cell cytotoxic activities. Pink boxes indicate direct eosinophil-derived mediators and/or 

activities; blue boxes indicate indirect eosinophil-mediated lymphocyte activities.
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Fig. 2 |. Eosinophil–T cell interactions.
Eosinophils can interact with T cells in various ways. IL-5 derived from TH2 cells and IFN-

γ derived from TH1 cells induce eosinophils to display anti-tumorigenic activities toward 

melanoma cells. Furthermore, activated eosinophils express multiple co-stimulatory ligands, 

including MHC-I, MHC-II, CD80 and CD86, which can facilitate eosinophil-dependent 

antigen presentation to CD4+ and CD8+ T cells and consequently support their proliferation 

and cytokine release. Activation of eosinophils with IFN-γ with or without TNF can 

induce the secretion of multiple chemokines, including CXCL9, CXCL10 and CCL5, 

which support the recruitment and cytotoxic activities of CD8+ T cells. In these settings, 

eosinophils reduce vascular leakiness and hypoxia (vessel normalization) and promote the 

polarization of macrophages toward an anti-tumorigenic (M1-like) phenotype. Eosinophils 

can also suppress T cell activities via direct and indirect mechanisms. Indirectly, eosinophil-

derived TGF-β regulates the expansion of RORγt+ gastrointestinal Treg cells. In addition, 

eosinophils can secrete CCL22, which promotes lung metastasis through recruitment of Treg 

cells to the TME. Finally, eosinophils can suppress T cell responses in an iNOS-dependent 

manner via PD-L1. Pink boxes indicate direct eosinophil-derived mediators and/or activities; 

blue boxes indicate indirect eosinophil-mediated lymphocyte activities.
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Fig. 3 |. Eosinophils as biomarkers and accessory cells in cancer immunotherapy.
a, CAR T cell treatment resulted in intratumoral infiltration of eosinophils. Depletion 

of eosinophils caused downregulation of CXCL9 and CXCL10, suggesting that tumor-

infiltrating eosinophils actively recruit CAR T cells. b, Therapeutic inhibition of DPP4 

in mice using sitagliptin results in induction of IL-33, increased CCL11 and subsequent 

eosinophil infiltration, degranulation, secretion of the eosinophil cationic proteins MBP 

(major basic protein), ECP (eosinophil cationic protein) and EDN (eosinophil-derived 

neurotoxin), and cytotoxicity, which leads to reduced tumor growth. c, Treatment by 

immune checkpoint blockade, such as with anti-CTLA4, anti-PD-L1 and/or anti-PD-1 

is associated with increased eosinophilia that is concomitant with better prognosis. 

Mechanistically, anti-CTLA4 therapy results in CD4+ and CD8+ T cell-dependent 

accumulation of eosinophils into the TME via T cell-expressing CCL11 and CCL5. 

IFN-γ production by eosinophils is essential for anti-CTLA4 treatment-induced vessel 
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normalization. Blockade of PD-1 results in increased secretion of GM-CSF by ILC2s 

expressing PD-1, which leads to eosinophil survival and increased eosinophil-mediated 

cytotoxicity and antitumor immunity. Pink boxes indicate direct eosinophil-derived 

mediators and/or activities; blue boxes indicate indirect eosinophil-mediated lymphocyte 

activities.
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